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Abstract

Background: Systematic measurement of genetic interactions by combinatorial RNAi (co-RNAI) is a powerful tool
for mapping functional modules and discovering components. It also provides insights into the role of epistasis on
the way from genotype to phenotype. The interpretation of co-RNAi data requires computational and statistical
analysis in order to detect interactions reliably and sensitively.

Results: We present a comprehensive approach to the analysis of univariate phenotype measurements, such as
cell growth. The method is based on a quantitative model and is demonstrated on two example Drosophila cell
culture data sets. We discuss adjustments for technical variability, data quality assessment, model parameter fitting
and fit diagnostics, choice of scale, and assessment of statistical significance.

Conclusions: As a result, we obtain quantitative genetic interactions and interaction networks reflecting known
biological relationships between target genes. The reliable extraction of presence, absence, and strength of
interactions provides insights into molecular mechanisms.

Background

Population variations in complex phenotypes, including
many human diseases, are not caused by single poly-
morphisms, but result from variations in multiple genes as
well as from environmental factors [1]. The effect of multi-
ple genetic polymorphisms is typically not additive [2], but
can interact in complex ways. An understanding of this
pervasive epistasis will facilitate a better understanding of
the molecular mechanisms underlying phenotypes. The
use of genetic interactions has also been proposed to allow
more specific drugs with less side-effects [3].

While, in general, phenotypic variation may be caused
by interactions of any number of genes and environmental
factors, important insights may already be gained from
understanding pairwise gene-gene interactions. In many
cases, pairwise interactions can provide clues for the place-
ment of gene products in molecular interaction networks
[4]. Furthermore, the quantitative interaction profile of
one gene with many other genes can itself be considered a
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multivariate phenotype of that gene, and is a powerful
indicator of its molecular function [5-9].

In yeast, deletion-mutant libraries have allowed large-
scale automated analysis of double mutants using meth-
ods like SGA [6,10], SLAM [11], dSLAM [12], E-MAPS
[13] and GIM [14]. In worms, genetic interactions have
been discovered by visual scoring of RNAi applied to
genetic mutants [15] or by pairwise combinatorial RNAi
[16]. In cell lines from higher organisms, including Dro-
sophila and human, genome-wide RNAi screens have
been successful in identifying single-gene effects [17].
Recently, large-scale combinatorial RNAi experiments
have been used to map genetic interactions in Droso-
phila cells [18]. Many laboratories are now working on
similar combinatorial RNAi experiments, and effective
methods for analysis of the data are needed.

We will now introduce the required concepts. A quan-
titative phenotype y can be modelled as a function f of
genetic and environmental factors xy,..., x,;:

y=f(x1, ..., x). (1)

The phenotype y can, for example, be a measure of
the growth cells, but more general situations may be
considered.

© 2011 Axelsson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:elin@embl.de
http://creativecommons.org/licenses/by/2.0

Axelsson et al. BMC Bioinformatics 2011, 12:342
http://www.biomedcentral.com/1471-2105/12/342

Now consider a particular genetic and environmental
background x9, ..., x% often, this is called wild-type
under standard laboratory conditions. We denote the
resulting phenotype by y° and approximate the phenoty-
pic variations around y° that are caused by differences
from x?, ..., x0 by analytic expansion [19]

y—1° =) mi(xi—x))+
i=1
(2)

1 n
) Zw,-j(xi —x) (g —x)) +..,
=1

where the coefficients m; represent the effects of single-
gene or single-factor perturbations, w;; are pairwise inter-
action coefficients and ... stands for higher order terms.
In an additive situation, the higher order terms as well as
the quadratic term involving the pairwise interaction
coefficients w;; are negligible, and the phenotype varia-
tions y - y° are sufficiently well explained by the linear
term, i. e. the first sum on the right hand side of Equation
(2). We say that epistasis is present, or equivalently, that
an interaction is present, if any of the second or higher
order terms plays a significant role. There is ample evi-
dence for epistasis in many phenotypes of interest
[2,20-22].

The choice of scale on which the phenotype y is mod-
elled is important (for example, whether or not measure-
ments are logarithm-transformed; [23]), and alternative
definitions of what should be called an interaction have
been considered [24]. We will return to these questions.

Results and Discussion

Data set

To develop experimental and computational methods,
we produced a benchmark data set from cultured Droso-
phila melanogaster cells (S2 cells). The phenotypic read-
out, after five days of co-RNAI incubation of cells in
384-well plates, was total ATP content, which served as
a measure of overall cell viability [25].

All pairwise interactions between 16 different genes
were assayed: 8 genes with a previously characterised
role in cell-cycle regulation and 8 genes selected ran-
domly from the transcriptome by use of a computer
random number generator. The 8 random genes hap-
pened to contain a few well-known multifunctional
genes, including the cell cycle regulator Rbf. Gene ontol-
ogy (GO) annotation terms for the 16 genes are pro-
vided in Additional File 1: Table S1.

The cells were incubated with all 16 « 15/2 = 120 pair-
wise combinations of dsRNAs targeting these genes. The
experiment was performed with two biological repli-
cates, using different passages of the cells; each of these
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contained 10 technical replicates. Hence, the data set
consists of 20 measurements for each dsRNA combina-
tion and 2,400 measurements in total.

We adapted a criss-cross design [26]. To this end, two
different 384-well stock plates were prepared: one row
plate, where each of the single dsRNAs occupied a full
row of wells, and one column plate, where each of the
dsRNAs was placed into a full column. By combining
reagents from the row plate with those from the column
plate, each pairwise combination of dsRNAs was
obtained twice. For each of the two biological replicates,
five plates were incubated and analysed.

Adjustment for plate effects and quality assessment
We applied plate normalisation [27]

Vi = ygfe — ips (3)

where yg,-re was the logarithm-transformed (base 2)

luminescence intensity of the i-th well in plate p and fi,
was a plate-specific correction coefficient. Methods for
computing fiy from the data need to be adapted to the
experiment [28]. Here, we used the midpoint of the
shorth of all values from plate p for wells with co-RNAj,
but not from control (Additional File 2: Figure S1). The
shorth of a distribution is the shortest interval that con-
tains half of the data; its midpoint can serve as an esti-
mator of the mode of the distribution, and the estimate
is generally less affected than, e.g., mean or median by
skewness or outliers in the data. Diagnostic plots for
quality assessment showed no significant spatial artifacts
(Additional File 3: Figure S2). Reproducibility was
assessed by scatter plots between replicates (Additional
File 4: Figure S3). In Section Choice of scale and neu-
trality function, we provide reasons for the choice of
the logarithm transformation for the analysis of this
data and discuss alternative approaches.

Estimating main effects and interactions

Next, we obtained estimates of interaction effects w;;
from the co-RNAi data. First, suppose that the baseline
value yo, the double knock down phenotype y;; and the
single-gene effects m; are known. Then, for i = j, the
interaction term w;; can simply be obtained from Equa-
tion (2) by solving w;; = y;; - yo - m; - m;. Note that
third and higher order terms are not present in a pair-
wise co-RNAi experiment. Now let y;; be the k-th repli-
cate measurement for the combinatorial knock down of
genes i and j, and suppose that we have estimated yq
as the baseline phenotype in replicate k and my, as the
single-gene effect of gene i in replicate k. We used the
data version of the above relationship to motivate the
estimator



Axelsson et al. BMC Bioinformatics 2011, 12:342
http://www.biomedcentral.com/1471-2105/12/342

K

N 1

wij = K Z &ije,  Where (4)
k=1

€ijle = Yijle — Yok — Mg — M. (5)
To obtain the main effect estimates m;, and the base-

line estimates o, we minimised the sum of squares,

N
, Nk ) = argmin Z Wi (6)
ij=1

(V01, <o Yok, M1, -

In the rest of this section, we provide the motivations
for this approach, contrast it with plausible alternative
choices, discuss implementation and describe variations
that may be useful for other applications.

Identifiability

In order to make the solution of criterion (6) unique, a
further condition is necessary, for instance ) ; mi, = 0
for each k. The choice of this condition does not affect
the estimated interactions @Wj and serves mainly for
computational convenience.

Parameterisation

In general, equations (5) and (6) allow different values
for the baseline o, and the single gene effects iy, for
different replicates k. Here, we allowed for different oy,
and 7y, between the two biological replicates, but set
them equal within the 10 technical replicates each.
Hence, 32 parameters were fitted, for 16 dsRNAs in 2
biological replicates. We have found it useful to allow
different values for the two biological replicates in order
to adjust for slight, but detectable variations in experi-
mental parameters such as number of cells seeded, incu-
bation time, dsRNA reagent concentration and
transfection efficiency. Allowing the parameters j and
m; to pick up some of this - unintended, but hardly
avoidable - variability in the data, we expect to have
arrived at better estimates of the interaction effects w;;.
Such an approach is analogous to using different,
matched normalisation controls in different parts of an
experiment. If we had been confident that across repli-
cates these values were actually the same, then we could
have set them to be equal in (5) and (6), thus reducing
the number of parameters to 16 and slightly increasing
the precision of the estimates. On the other hand, if
model fit diagnostics had indicated that allowing these
parameters to even be different for each technical repli-
cate would fit the data substantially better, a more
highly parameterized model with 320 parameters could
have been fit, with a loss in estimation precision.

Use of single-gene and non-treated controls

Criterion (6) only uses the data from the co-RNAi wells
for the estimation of the baseline and the single gene
effects. It does not require, or use, measurements from
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single gene RNAI treatments or untreated control wells.
Our rationale for doing so was as follows. Ideally, the
values obtained through minimisation of (6) and from
direct measurements in controls should be the same;
however, more data points were available for evaluating
criterion (6) than there are control measurements,
hence the former provided better precision and was
more robust against individual outlier data points.
Furthermore, if there were a difference between baseline
and single gene effect estimates obtained in the two dif-
ferent ways, then we would prefer the estimates from
criterion (6), since -by construction- they lead to more
conservative estimates of interaction effects. In fact, cri-
terion (6) can be motivated by the assumption that
interactions should be rare, and by the aim of explaining
as much possible of the observed variation in y;
through baseline and single gene effects, and only con-
sidering what remains from that as interactions. If avail-
able, we propose using the data from single gene and
untreated control wells for quality control: compare
them to the estimates o, and sy, obtained from (6), and
deviations would indicate an experimental problem that
needs to be attended to before further interpretation of
the data.

Robustness

Instead of minimising the sum of squares (6), a robust
variant could be chosen such as minimising the
Ly-norm or a trimmed sum of squares (LTS regression;
[29]), or using M-estimation [30]. For our data, explora-
tion of these methods did not lead to substantially dif-
ferent results. In other situations, however, such variants
may be appropriate, for example, when the proportion
of interactions is not small, or when some of them are
large, and we advise researchers to check their data for
such effects.

Assessing statistical significance

For each pair of genes (i, j) we applied the ordinary
t-statistic to the residuals &, across the 20 measure-
ments (k = 1,..., 20) to weigh the evidence for the inter-
action to be non-zero. However, the large number of
replicates is a peculiarity of our benchmark dataset, and
cannot be expected in general. With few replicates, the
ordinary ¢-test has two problems: first, due to the small
number of degrees of freedom, the test will have little
power, leading to a loss of discoveries. Second, it
becomes likely that, by chance, small estimates of the
variance (the denominator of the ¢-statistic) are obtained
even if the true variance is larger, leading to a fraction
of discoveries with small effect sizes that would not be
replicated if the experiment were repeated. To address
both of these problems, in the context of microarray
analysis the moderated ¢-test has been proposed [31,32];
we investigated the same approach here.
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We wanted to assess the relative performance of three
different ranking methods: the p-value from the ordinary
t-test, the p-value from the moderated ¢-test, and the
average effect i (that is, simply the numerator of the
t-statistic). For this, we set up a benchmark set of true
interactions (positives) and non-interactions (negatives).
We considered those pairs true positives that had, on
the full data set with 20 replicates, a nominal p-value of
less than 0.001 in the ordinary ¢-test; all other pairs
were considered true negatives.

To simulate an application setting with few replicates,
we applied the ranking methods to the data from a sin-
gle plate, hosting two technical replicate measurements
per gene pair. We applied a set of thresholds, with
decreasing stringency, to the three ranking methods and
obtained the corresponding hit list. We then, for each
hit list, computed the true positive rate (TPR) as the
ratio between the number of true (as defined by the
reference) hits and the total number of positives, and
the false positive rate (FPR) as the ratio between the
number of false (as defined by the reference) hits and
the total number of negatives. This resulted in one ROC
curve per plate.

Figure 1 indicates clear benefits from using the mod-
erated t-test. The ordinary t-test generally performs
poorly in such situations with limited amount of replica-
tion. When only two technical replicates from the same
plate were used (panel a), the variance of replicates was
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constant or close to constant across the different inter-
action pairs. Hence, the variance estimates used in the
moderated ¢-test were the same or almost the same for
all gene pairs, making the resulting moderated ¢-statistic
proportional -and therefore equivalent- to the numera-
tor of the ¢-statistic (the average effect size ﬁ),-j), and no
significant difference in performance was seen between
the two methods in this setting. However, when varia-
tion is higher, as is the case when also biological repli-
cates were considered (Panel b), the moderated ¢-test
was able to pick up some of the gene-pair dependence
of the variance and outperformed the average effect size
ﬁli]’.

The reference that we used for this benchmark, as
described above, is not a ground truth in a strict sense,
and the TPR and FPR values may be biased because of
errors in the reference. However, for the purpose of
method comparison, the relative positions of the ROC
curves of the three ranking approaches are still informa-
tive as long as the reference set is enriched for ground
truth compared to a random set; in effect, the biases
cancel out each other. This pragmatic use of the ROC
has also been called pseudo-ROC analysis [33].

Resulting interactions

The detected interactions are summarised in Figure 2.
The figure uses three different visualisation tools: the
heatmap representation of the interaction matrix @, the
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Figure 1 Comparison of test statistics. Comparison of test statistics. The plots show average ROC curves for normal t-statistic, moderated t-
statistic and effect size. Panel a shows the results when using data from two technical replicates, panel b is from two biological replicates with
two technical replicates each. The moderated t-statistic and effect size outperform the ordinary t-statistic in both scenarios; on data with
biological replicates, the moderated t-statistic performs better than the effect size.
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Figure 2 Interaction matrix and graph. (a) Heatmap matrix representation of interaction estimates. The colours represent effect size on the
log, scale. The eight genes from the cell cycle set, CSN3, CSN4, CSN5, fwd, pbl, Rho1, trbl and zip are shown in the lower and left halves of the
matrix. The other eight genes had been selected randomly from the fruit fly genome. (b) Threshold graph representation of the interaction
matrix. The edges show all interactions with false discovery rate adjusted [42]p-value < 0.1 from the t-test and absolute effect size > 0.3. Orange
nodes indicate the cell-cycle set, grey nodes the randomly selected set. The colour of an edge represents the sign: positive interactions are red
and negative blue. (c) Correlation graph based on the Spearman correlation coefficient. Correlations with absolute correlation coefficient > 0.8
are shown as edges. The colour of an edge represents the sign: positive correlations are red and negative blue.

threshold graph representation of the same matrix, and where i; denotes the i-th row of the matrix Wy i.e. the
the threshold graph representation of the correlation interaction profile of gene i across all other tested genes.
matrix Most interactions are seen within the cell-cycle set of

genes; there are few interactions between the cell-cycle

¢ij = cor(ibi., j.), @) related genes and the randomly selected set of genes.
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Among the randomly selected set, Rbf is interacting
strongly with Rhol. Rbf is in fact a known cell cycle reg-
ulator [34]. The DrolID database [35] reported seven
interactions between the cell cycle related genes. Of
those, three were found significant in our data: CSN4-
CSN5 [36], CSN3-CSN4 (predicted) and CSN3-CSN5
(predicted). Among the novel interactions, Rhol showed
negative interactions with CSN3, CSN4 and CSN5
(CSN3-5). Consistent interaction patterns with CSN3-5
are expected as CSN3-5 are three subunits of the COP9
complex.

The directions of the observed interactions are informa-
tive: A knock-down of any of the three COP9 subunits
resulted in reduced viability. The interactions within
CSN3-5 are positive (the negative viability effect of the
double knock-down is less severe than the expected effect
from the two single knock-downs). One can speculate that
knocking down one of the subunits is enough to disrupt
the complex and cause a viability effect, and that once the
complex is dysfunctional, knocking down another subunit
has little additional effect.

The correlation network provides additional insights.
It makes evident that the three COP9 subunits have
similar interaction profiles and therefore cluster
together. An interpretation is that it is the disruption of
the COP9 complex, through any of the three subunits,
that interacts with the rest of the gene set.

Scalability - Larger experiments

Future experiments are likely to test a considerably lar-
ger number of genes than the experiment discussed
here. We analysed a scalability testing (ST) data set, in
which a similar experimental design as described above
was used to assay cell viability in response to all pair-
wise interactions of a set of 84 dsRNA reagents. The
data preprocessing is shown in Additional File 5: Figure
S4 and Additional File 6: Figure S5.

Fit diagnostics

Fit diagnostics check how well a data analytical model
fits the data by plotting the residual distributions against
various explanatory variables. Depending on the view-
point, they can be used to check the adequacy of a
model and to assess the quality of the data. Figure 3
shows the distribution of the residuals ¢;; against the
predicted value Jor, + it + M1y, for the ST data. Trends in
this plot would indicate a model misspecification pro-
blem. No significant trends were apparent.

False discovery rate

Schweder and Spjotvoll [37] suggested a diagnostic
plot of the observed p-values that permits estimation
of the fraction of true null hypotheses. For a series of
m hypothesis tests with p-values p;, they suggested
plotting
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Figure 3 Fit diagnostics. Joi, + 71, + fj, the predicted effect of
combination (i, j) if there is no interaction, is plotted along the x-
axis versus gy, the difference between observed and predicted
value on the y-axis. The red line indicate local regression estimates
of local mean of g [49]. No significant trends are apparent.

(1 —pi, N(p;)) foriel, ..., m, (8)

where N(p) is the number of p-values greater than p.
An application of this diagnostic plot to the p-values
from the moderated ¢-test for the ST data set is shown
in Figure 4. If all null hypotheses were true, i.e., no
interactions were present, the p-values would each be
uniformly distributed in [0,1], and the cumulative distri-
bution function of (py,..., p,,) would fall close to the line
flx) = x/m. In fact, the curve is an approximately
straight line with smaller slope within between x = 0
and about x = 0.5, and then bends upward, indicating
that some null hypotheses are not true. The intersection
of the dashed line with the vertical axis at x = 1 indi-
cates evidence for a number of false null hypotheses
around 400 to 500.

Choice of scale and neutrality function

An analytic expansion like in Equation (2) is always pos-
sible, its usefulness, however, and that of the above defi-
nition of interactions, depends on the choice of scale of
the phenotype variable y [23]. Consider, for example,
cell number in a cell culture in exponential growth dur-
ing an incubation time ¢, and suppose that two different
genes may be perturbed by RNAI. In the absence of
interactions between the two perturbations, we might
expect

n(t) = ngel 1Mk, ©)
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Figure 4 Schweder and Spjgtvoll plot. A plot of the p-value
distribution for the ST data, as described in the text around
Equation (8) and as suggested by Schweder and Spjatvoll [37]. The
blue dots correspond to p-values from the moderated t-test of the
m = 3486 gene pairs. For visualisation, the graph is represented by
100 points sampled equidistantly along the x-axis. The dashed
straight line was fit to the values of the graph at x = 0 and x = 0.5.
It intersects the x = 1 axis at y = 3014, providing an estimate of
3486 - 3014 = 472 false null hypotheses.

where 7 is the cell number at time ¢, i is the initial cell
number, k is the growth rate of the unperturbed cells, the
indicator variables x,, x, € {0, 1} indicate whether or not
the gene was perturbed by RNAi, and m1;, m, are the two
perturbations’ individual effects on growth [38]. If we
expand 7 - nq directly as in Equation (2), we will get a
second-order term between x; and x, simply due to the
presence of the exponential function in Equation (9).
However, if we first transform the cell number measure-
ments to a logarithmic scale, for instance, y = log(n/n,,),
where n,; = ng exp(kt) is the cell number at time ¢ with-
out perturbation, then y is exactly described by the linear
expression (mx, + myx,) kt, which better reflects the
fact that the perturbations do not interact. This is the
approach we have taken above. In the following, we dis-
cuss some points regarding the choice of scale that may
need to be considered in different experimental settings.

The exponential growth model (9) may not be appro-
priate for the whole duration of the experiment. Initially,
for small ¢, cells might need some time to recover from
an experimental treatment that they were subjected to
(such as transfection, seeding) before they go into their
optimal growth rate. For larger ¢, cell density might
become so large that saturation effects play a role, again
decreasing the growth rate.

Furthermore, depending on the measurement setup, in
particular for fluorescence or luminescence based
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measurements, background signal might contribute to the
observed data. In the worst case, k = k(£) is a complex
time-dependent function, possibly different for different
perturbations, and if n(¢) is only observed at one end point
¢, such effects can make it impossible to infer biologically
relevant interactions. In some instances, it might be possi-
ble to fit a more general growth model (that includes, for
instance, an initial lag phase and a background signal).

In some experiments reported in the literature, bio-
mass production n(t) was monitored over time. This
allows measuring the growth rate n'(t) dn(t)/dt as a
function of time. Typically, this function reaches a maxi-
mal value at some time between the start and end time
of the observation, and this value is used to quantify the
growth phenotype. Relative growth rate can be defined
as the dimensionless ratio [39]

max; 0

p= dng(t)
WL
aXe (1)dr

(10)

If the perturbation does not affect growth, then p = 1.
If the perturbation promotes growth, p will be larger
than 1, if it is slowing down growth, p will be less than 1.

Several authors have considered two perturbations to
be interacting if the product of their individual relative
growth rates, p; and p,, is different from that of the
combinatorial perturbation, i. e. if not p;5, = p; p»
[5,39,40]. This definition of interaction is somewhat dif-
ferent from that implied by (9). In particular, if expo-
nential growth (9) holds, then (10) simplifies to p; = 1 +
m; and p, = 1 + m,, and according to (9), the two per-
turbation are considered non-interacting if p1, = 1 + 1
+ my = py + p - 1. For small perturbations, the two
definitions are approximately equivalent, since (1 + ;)
(1 + my) =1 + my + my + mym, and mym, is negligible
if m, and m, are small compared to 1; for instance, for
my = my = 0.1, mym, = 0.01.

For strong perturbations, however, they lead to differ-
ent results. For the present work, we chose (9) because
it allows a more coherent treatment of data in which dn
(t)/dt is positive for some of the cases (typically, for the
wild type) and negative for others (say, for RNAi that
knocks down an apoptosis inhibitor). In those cases, p
can become negative, and interpretation of the multipli-
cative neutrality function p;, = p; p would be difficult.

Conclusions

We have discussed all steps in the data analysis of com-
binatorial RNAi screens, from experimental design to
hit list, including adjustment for plate effects and data
quality assessment, estimation of main effects and inter-
actions, fit diagnostics, assessing statistical significance,
visualisation and exploration of the interaction network.
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Assessing significance

To assess significance of interactions, we used the mod-
erated t-test. Compared to the ordinary ¢-test, it pro-
vides much better detection power when the number of
replicates is small.

However, there are caveats with ¢-test approaches, and
more sophisticated criteria might be needed for some
applications. The first caveat pertains to the fact that
the t-statistic compares average effect size to the esti-
mated standard deviation of the effects. Hence it pena-
lises interactions that are strong, but whose quantitative
effect is highly variable between replicates; if such pena-
lisation is desired, a ¢-statistic is appropriate, but in
some cases, such interactions may be of interest.

The second caveat is that the null hypothesis of the
t-test - that the effect size is exactly zero - is unrealistic,
and with more and more data, more and more null
hypotheses will be rejected, resulting in many called
interactions that are statistically significant, but of very
small size. This problem, which can be illustrated by
Lindley’s paradox [41], is a well known shortcoming of
simple hypothesis testing. In this paper, we considered a
data set that had 20 replicate measurements for each
pair of genes (Figure 2), and a large number of gene
pairs had a small p-value. In Figure 2, we only show
those edges with ¢-test, false discovery rate adjusted [42]
p-values below 0.1 and with an absolute average effect
size greater than 0.3. Setting such an effect size cutoff
may appear somewhat ad hoc, and more theoretically
founded statistical techniques exist: in a Bayesian
approach, a prior can be used that encodes a preference
for finding many gene pairs without interactions; simi-
larly, a joint, sparse regression model could be used,
using penalisation on interaction efficients, as with
LASSO [43].

In the ST data, the number of replicates tested per
gene pair was much smaller, and the problem of many
statistically significant, but small interactions did not
arise. However, when we computed the correlation
threshold graph, such as in Figure 2c, from correlation
tests between all pairs of interaction profiles, a similar
problem arose: the correlation test has a sample size of
84, and hence is able to pick up weak, but statistically
significant correlations between gene interaction pro-
files. Again, in addition to statistical significance, we
used a threshold on the absolute correlation coefficient
in order to focus on the larger effects.

Interaction correlation networks

Individual genetic interactions can be biologically inter-
esting and relevant. This was illustrated by the indivi-
dual interactions between the three COP9 complex
homolog subunits, CSN3-5. However, individual interac-
tions do not generally seem to be well-conserved across
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species [44] and even within species, may depend on
genetic background, cell type and environmental condi-
tions. A property of gene pairs that appears to be more
generally conserved, and in many cases capable of pro-
ducing more robust insights, is the (dis)similarity of
their interaction profiles [9].

Other phenotypes

Our treatment was designed for cell growth phenotypes.
New technologies, in particular microscopy, are now
delivering measurements of many other kinds of pheno-
types, such as delays in cell cycle timing or changes to
cells’ morphology and motility [45-47]. How to detect,
and in fact, even to define what are, genetic interactions
for such phenotypes remains an open question, and an
exciting topic for future research.

Availability and requirements

A Bioconductor package, coRNAi, implementing our
methodology and containing all code to reproduce the
results presented here, is freely available from Biocon-
ductor [48]http://www.bioconductor.org/packages/
release/bioc/html/coRNAihtml.

Additional material

Additional file 1: Table S1 - Gene ontology (GO) annotation terms.

Additional file 2: Figure S1 - Per plate boxplots. The distributions of
the logarithm-transformed intensities varied over different plates. (a) After
centering, the locations were the same (horizontal bars within boxes). (b)
Shown are the data from sample (i. e. non-control) wells only. Plates 1-5
are technical replicates of the first biological replicate, plates 6-10 are
technical replicates of the second biological replicate.

Additional file 3: Figure S2 - Spatial patterns. False colour
representation of the spatial pattern of the intensities after normalisation,
on the same log,-transformed scale as in Figure Additional File 2: Figure
S1b. Each plate contained 384 (16 times 24) wells. On every plate, the
positive controls, shown in dark red, are in columns 7 and 14. Plates 1-5
(top row) are technical replicates of the first biological replicate, plates 6-
10 (bottom row) are technical replicates of the second biological
replicate. This structure of the experimental design is reflected in
somewhat different dynamic ranges (sizes of the strongest positive and
negative effects) between the biological replicates. Overall, the plots
indicate that the spatial patterns seen are consistent with expected
biological effects and show no evidence of xy position-dependent
artifacts [28].

Additional file 4: Figure S3 - Replicate reproducibility. Two technical
replicates, plotted against each other in the scatter plot, showed high
correlation and no outliers. Shown are the data from sample (i. e. non-
control) wells only. Similar reproducibility was seen for all technical
replicates.

Additional file 5: Figure S4 - Per plate boxplots for the ST data. The
ST data were measured on 24 plates. The distributions of the logarithm-
transformed intensities varied over the plates (a). After centering, the
locations were the same (horizontal bars within boxes) (b). Shown are
the data from sample (i. e. non-control) wells only.

Additional file 6: Figure S5 - Quality assessment for the ST data.
Panel (a) shows a false colour representation of the spatial pattern of the
intensities after normalisation, on a log,-transformed scale, across the 24
plates of the ST data. Each plate contained 16 times 24 wells. On every

plate, the positive controls, shown dark red, are in the rightmost column
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and in the second row from the bottom, except for well O18. The spatial
patterns seen are consistent with expected biological effects and show
no evidence of artifacts. Panels (b) and (c) show diagnostics of the
separation of the positive and negative controls. Panel (b) shows, for
each plate along the x-axis, the values of positive (red) and negative
(blue) controls along the y-axis. The same data is also shown in the
density plot in Panel (c). Panels (b) and (c) as well as the Z-factor = 0.86
[50] indicate good separation between the positive and negative
controls throughout the screen.
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