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Abstract

improving the accuracy of the results.

Background: The analysis of mass spectra suggests that the existence of derivative peaks is strongly dependent on
the intensity of the primary peaks. Peak selection from tandem mass spectrum is used to filter out noise and
contaminant peaks. It is widely accepted that a valid primary peak tends to have high intensity and is
accompanied by derivative peaks, including isotopic peaks, neutral loss peaks, and complementary peaks. Existing
models for peak selection ignore the dependence between the existence of the derivative peaks and the intensity
of the primary peaks. Simple models for peak selection assume that these two attributes are independent;
however, this assumption is contrary to real data and prone to error.

Results: In this paper, we present a statistical model to quantitatively measure the dependence of the derivative
peak’s existence on the primary peak’s intensity. Here, we propose a statistical model, named ProbPS, to capture
the dependence in a quantitative manner and describe a statistical model for peak selection. Our results show that
the quantitative understanding can successfully guide the peak selection process. By comparing ProbPS with
AuDeNS we demonstrate the advantages of our method in both filtering out noise peaks and in improving de
novo identification. In addition, we present a tag identification approach based on our peak selection method. Our
results, using a test data set, suggest that our tag identification method (876 correct tags in 1000 spectra)
outperforms PepNovoTag (790 correct tags in 1000 spectra).

Conclusions: We have shown that ProbPS improves the accuracy of peak selection which further enhances the
performance of de novo sequencing and tag identification. Thus, our model saves valuable computation time and

1 Background
Mass spectrometry is a popular method for protein
identification [1-6]. In a typical protein identification
experiment using mass spectrometry, proteins are first
digested into peptides by an enzyme, say trypsin. Tan-
dem mass spectra of the peptides are generated using a
tandem mass spectrometer (MS/MS). Traditionally, two
approaches for peptide identification from MS/MS spec-
tra have been used: database searches [3-8] and de novo
sequencing [9-31].

Typical database searches first identify a set of candidate
peptides from a protein sequence database, and then
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construct a theoretical spectrum for each peptide. Finally,
the similarity between the theoretical spectrum and the
MS/MS experimental spectrum is calculated and the most
similar peptides are reported as predictions. There are sev-
eral popular tandem mass spectrometry data analysis pro-
grams of this type: SEQUEST [3], Mascot [4], X!Tandem
[5], SCOPE [6], and ProbID [7], are some examples of
these. Before comparing a theoretical spectrum against an
experimental spectrum, noise peaks in the experimental
spectrum should be filtered out. Noise peaks in the spec-
trum can cause significant differences between the experi-
mental and theoretical spectra and, as a result, correct
solutions may be missed.

De novo sequencing, on the other hand, is database-
independent because it exclusively uses the information
contained in the MS/MS spectrum. Thus, the de novo

© 2011 Zhang et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:dwsun@ict.ac.cn
http://creativecommons.org/licenses/by/2.0

Zhang et al. BVIC Bioinformatics 2011, 12:346
http://www.biomedcentral.com/1471-2105/12/346

technique has the potential to identify peptides that are
not included in protein sequence databases. Widely-
used de novo packages include PEAKS [9,10], PepNovo
[11,12], et al. [13-31] Recently, variants of de novo
sequencing, the tag-based methods [32-38], have been
developed to identify a segment of a peptide rather than
a full-length peptide. After inferring the tags from a
MS/MS spectrum, the candidate peptides that do not
match any of the tags are filtered out. Therefore, an
effective tag identification method can improve identifi-
cation accuracy and reduce the running time for data-
base searches by reducing the number of candidate
peptides. Both de novo methods and tag-based methods
usually require high-quality spectra, and do not perform
well on spectra with noise peaks. Thus, peak selection is
important for the effective use of de novo methods.

Generally speaking, there are three types of peaks in a
tandem mass spectrum: i) the primary peak that is
highly likely to be accompanied by a set of derivative
peaks caused by the loss of ammonia, the loss of water,
or isotopic shift; ii) noise peaks from signals from mass
spectrometry and other unknown reasons; and iii) peaks
generated from contaminants. Although isotopic shifts
and neutral losses are often observed for peaks gener-
ated from contaminants, complementary peaks are sel-
dom observed. This provides a way to distinguish valid
peaks from noise and contaminant peaks. In this study,
the latter two peaks are called noise peaks.

Before attempting to identify a peptide from a MS/MS
spectrum, it is useful to perform a pre-processing step
(called peak selection) to filter out noise and contaminant
peaks. A widely accepted peak selection rule utilizes two
peak attributes, peak intensity and the existence of deri-
vative peaks. Briefly, a peak accompanied by derivative
peaks and an associated complementary peak is likely to
be valid; peaks without these features are likely to be
noise. Our observations suggest that the existence of
derivative peaks and complementary peaks is strongly
depending on the primary peak intensity. Existing meth-
ods for peak selection adopt simple models that assume
that these two attributes are independent. This assump-
tion contradicts to real data and is error prone. In this
study we proposed a statistical model, named ProbPS, to
capture the interdependence of peak intensity and the
existence of derivative peaks in a quantitative manner.
Our experimental results demonstrate that our model
can improve both peak selection and tag identification.

2 Methods
2.1 Notation
For a peak p in a tandem mass spectrum,

o V =1 if the peak is a valid primary peak; otherwise
V=0.
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« I is the peak intensity;

« ISO indicates the existence of isotopic shift;

+ NH; indicates the existence of a peak that corre-
sponds to the neutral loss of an ammonia;

+ H,O indicates the existence of a peak that corre-
sponds to the neutral loss of a water;

+ COMP indicates the existence of a peak that corre-
sponds to a complementary ion;

2.2 The model for peak selection

2.2.1 Quantifying the dependency of derivative ions on
primary peak intensity

To investigate the dependency of derivative ions on pri-
mary peak intensity we used spectra from the Swed-
CAD database [39], a collection of high quality MS/MS
spectra of tryptic peptides. Using SEQUEST, we identi-
fied 15,897 unique, annotated peptide-spectrum matches
(PSM) to use as a training set.

We first count the number of valid primary peaks
with an intensity I (N;ys,(1)) in the training set. From
the valid primary peaks, the peaks having isotopic shift
were identified and counted (Njso(Z)). The probability
that a valid primary peak has an isotopic shift can then
be estimated as P(ISOJL V = 1) = 50 ),

Ntotal(l)
(ISO|I, V = 0), P(COMP|I, V = 1) and P(COMP|I, V =
0) were estimated and the results are shown in Figure 1,
2, 3, 4.

In Figure 1 an evident nonlinear relationship between
primary peak intensity and the existence of isotopic
peaks can be observed. The nonlinear relationship can
be explained by supposing that, for a primary ion, its
isotopic derivative is observed with probability p. Then,

Similarly, P
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Figure 1 Emperical density function of P(ISO|l, V = 1). Here, P
(ISQO|l, V =1) is approximated by an exponential function y = y, + A
X exp(R X X).
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for a total of I primary ions, an isotopic derivative would
I

1—(1—p)=1—eF
Therefore, it is reasonable to approximate this relation-
ship using an exponential function. Like P(ISO|I, V = 1),
P(ISO|I, V = 0) also approximates 1 as the peak intensity
goes to infinity. The reason for the slight differences in
Figure 1 and 2 is that a contaminant ion might generate
an isotopic shift similar to the shift generated by a pri-
mary ion. A significantly different pattern between P
(COMP|I, V = 1) and P(COMP|I, V = 0) is observed
(Figure 3 and 4) because for contaminant ions, comple-
mentary peaks are seldom generated.

The relationship between derivative peaks related to
neutral losses and primary peak intensity were also
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Figure 3 Emperical density function of P(COMP|l, V = 1). Here, P
(COMP|I, V = 1) is approximated by an exponential function y = y, +
A x exp(R X X).

calculated and are shown in Figure 5, 6, 7, 8, 9, 10,
where b-ion and y-ion are listed separately because they
differ in the possibility of neutral losses. The results in
the figures indicate that P(ISO|I, V = 1) approximate 1
as the primary peak intensity goes to infinity. On the
other hand, P(NHs|I, B) and P (NHjs|I, Y') approximate
a number smaller than 1 and so do P(H,O|l, B) and P
(H20|1, Y'). The reason for this is that neutral losses are
related to the composition of the amino acid ions. Some
amino acids can lose ammonia or water, while others
cannot [8]. In our study, we have introduced a scale fac-
tor to capture the influence of the amino acid composi-
tion on neutral losses. Figure 5, 6, 8, and 9 support the
earlier observation that b-ions are more likely to have
neutral loss than y-ions [40,41]. In summary, noise
peaks usually show different patterns from valid peaks,
and this observation presents an opportunity for valid
peak selection.
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Figure 5 Emperical density function of P(NHs|l, V = 1) for b
ions.
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2.2.2 Bayesian framework for peak selection

A quantitative description of the dependences was
employed to develop a Bayesian framework for peak
selection. Let P(V = 1|1, D) denote the probability that a
peak is valid given two types of peak attributes, peak
intensity /, and the existence of derivative peaks D =
{ISO, NH3, H,O, COMP }. Then, P (V = 1|I, D) was esti-
mated as follows:

P(V =1]|I,D)
P(I,D|V = 1)P(V = 1)
i P(D)
p(V=1)
T p(v=1) 4 plv=0)
where p' =V = P(I, D|V = 1)P(V =1) and p'" =¥ = P
(I, D|V = 0)P(V = 0).
Since derivative peaks are variants of primary ions, it
is reasonable to assume the independence of different
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Figure 7 Emperical density function of P(NH;|l, V = 0).

derivative peaks. Therefore, the numerator of the above
fraction can be decomposed as:

pV=U = (I, D[V = 1)P(V = 1)

=PIV =1)P(V=1)[[P(dILV =1)
deD (1)

=P(V=1DP(D) [] PV = 1)
deD

Similarly, the denominator can be rewritten as:
pV=1) = P(I, D[V = 0)P(V = 0)

=P(IlV = 0)P(V = 0) [ [ P(dIL V = 0)
deD )
=P(V = 0[)P(I) [ | P(dIL V = 0)
deD
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Figure 9 Emperical density function of P(H,0|l, V = 1) for y
ions.
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figures.

Finally, the following approximations were obtained:
P(V =1]I, D)

) Maeo P(ILV = 1)
[Licp P(AILV = 1) + 1, x [14cp P(dII, V = 0)

where r, = P (V = 0|)/P (V = 1|]).
P(V =0|I, D)

] [uep P(AILV = 0)
]_[deDP(dH,V =0)+71, X ]_[deDP(dH,V =1)

1
Where r, = P(V = 1|I)/P(V = 0]I) = .

The relationship between r,(I) and I was calculated
using the data set obtained from SwedCAD and the
results are shown in Figure 11. A clear geometric distri-
bution was obtained. Similar results were also obtained
using data sets from Keller’s lab [42] (See Additional
File 1: figure S1).

3 Results

3.1 Peak selection based on probPS

We use P(V = 1|I, D) (denoted as probPS) to deter-
mine whether or not a peak was valid. For each peak
in the training spectra, probPS was calculated, and the
distribution of probPS is summarized in Figure 12. It
can be observed that a valid primary peak usually has
a high probPS value, while a noise peak usually has a
low probPS value. Further, peaks with probPS > 0.5 are
highly likely to be valid. Therefore, we can utilize the
posterior probability to distinguish valid peaks from
noise ones. For instance, peaks with higher probPS can
be selected to execute the denovo algorithm or for tag
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identification. The probPS score can also be used to
improve database searches by filtering out invalid
peaks.

We also compared probPS against the relevance
value used in AuDeNS [43]. AuDeNS uses a frame-
work for de novo sequencing of peptides. It first cleans
the input spectrum with a number of data cleaning
algorithms ("grass mowers”), followed by a sequencing
algorithm. It applies the mowers to the input data,
assigning to each input peak i a relevance value r(i),
with the default being r(i) = 1. Hereby, each mower M
uses a relevance factor Rel,; (which can be set as
a parameter of AuDeNS), and the relevance
value of peak i is then given by
(i) =1+ ZM c mowers Rely - M(i), where M (i) is the
value assigned to peak i by mower M. The relevance of
a solution is then the sum of the relevances of the
peaks matched by this solution. Precisely, AuDeNS
produces a ranked list of sequence suggestions for a
spectrum.

For the sake of fair comparison, we used the same
data sets as AuDeNS, i.e, a training set with 266 LCQ
spectra, and a test data set with 20 LCQ spectra. The
results of the comparison (shown in Figure 13) suggest
that probPS outperforms relevance. Specifically, when
the false positive rate is set to 0.2, probPS has a higher
true positive rate (0.9) than relevance (0.79).

We also compared the performance of probPS and
AuDeNS using two categories of primary peaks, high
peaks (peak intensity / >10000) and low peaks (peak
intensity / <10000). The results of the comparison are
summarized in Figure 14 and 15. It has often been
assumed that high intensity peaks are more likely to be
valid. However, this is not always true because valid low
intensity peaks also exist. For example, ions with small
mass/charge ratios, say b3, y7 and y3, are generally of low
intensity and can even be invisible in ion trap fragmen-
tation spectra. The results in Figure 6 illustrate that
probPS is much better than the relevance of AuDeNS
for selecting low intensity peaks.

3.2 Improving de novo identification using probPS

We investigated whether or not peak selection can
improve de novo performance. We ran the de novo
algorithm [31] in AuDeNS with two types of spectra,
one that was generated through peak selection based on
probPS and the other that was generated through peak
selection based on relevance. The de novo algorithm in
AuDeNS will generate top 30 candidate peptides, and
the ranks of correct matched peptides obtained using
the two peak selection methods are listed in Table 1.
For some spectra, say 03C.1361.1361.2, peak selection
using probPS is better than that using AuDeNS because
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probPSgave the real peptide a higher rank. For the
01C.0492.0496.2 spectrum, the de novo algorithm failed
to identify the correct peptide when peak selection
based on relevance was used; in contrast, when probPS
was used, the real peptide was identified. Using probPS
for peak selection the de novo algorithm correctly iden-
tified the top 3 candidate peptides, and overall probPS
(reporting 8 correct peptides) outperformed relevance
(reporting 6 correct peptides).
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Figure 14 ROC plots of peak selection performance of AuDeNS
and probPS for primay peaks with low intensity.

We performed cross-validation over the 266 LCQ
spectra. The 266 spectra were arbitrarily divided into
four groups and in each validation round, three groups
were used as the training set, and the remaining group
was used as the test set. Because some of the spectra
were from the same peptide, which might lead to over-
fitting, a pre-processing step was performed to ensure
that spectra from the same peptide were in the same
group. The performance of probPS and AuDeNS in the
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Figure 15 ROC plots of peak selection performance of AuDeNS
and probPS for primay peaks with high intensity.
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Table 1 de novo peptide identification results after peak selection based on probPS and relevance

Spectrum Peptide Results(relevance) Results(probPS)
Vacuoles_01C.0492.0496.2 SKAEAESLYQSK A 3rd®
Vacuoles_01C.0628.0632.2 AADVGADLVGK Tst 1st
Vacuoles_01C.1507.1511.2 TDALDAAGNTTAAIGK - -
Vacuoles_01C.1829.1831.2 HGVQELEIELQSQLSK - -
Vacuoles_02C.0845.0845.2 AGEFFASAHR 2nd 3rd
Vacuoles_02C.0893.0896.2 NIAVGRPDEATRPDALK - -
Vacuoles_02C.1670.1670.2 AAVIGDTIGDPLK - -
Vacuoles_03C.0695.0699.2 QYQALGGGANTVAHGYTK - -
Vacuoles_03C.1029.1033.2 QYQALGGGANTVAHGYTK - -
Vacuoles_03C.1141.1145.2 SLGAAIIYNK 2nd 2nd
Vacuoles_03C.1296.1300.2 LAADTPLLTGQR 2nd st
Vacuoles_03C.1361.1361.2 LVDIGTVTAQQAK 11st 3rd
Vacuoles_03C.1365.1372.2 IRLENEIQTYR - IRLEGGEIQTYR
Vacuoles_03C.1437.1441.2 VYVGQGDSGWYVK - -
Vacuoles_03C.1781.1785.2 TLDEQVDQEEFVR - -
Vacuoles_03C.1801.1805.2 QISNLQQSISDAEQR - -
Vacuoles_03C.1934.1934.2 SLGAAIIFNK 2nd 2nd
Vacuoles_04C.1034.1034.2 NIEQHASDNVNK 2nd 2nd
Vacuoles_04C.2115.2118.2 IGGIGTVPVGR IGGIGEAPVGR IGGIGEAPVGR
Vacuoles_04C.3786.3789.2 TAENFANYTGDQGYPGGR - -

“These peptides were not among the top 30 candidate peptides selected by AuDeNS.
®The correct peptide was ranked 3rd in the top 30 candidate peptides selected by probPS.

four validation rounds are listed in Table 2. The results
clearly show the advantage of using probPS over
AuDeNS for peak selection.

3.3 Identifying tags based on probPS

Ordinary tagging methods directly identify tags on a
given mass spectrum. For example, PepNovoTag [36]
extracts all substrings of the desired length from the
PepNovo reconstruction process, and uses a logistic
regression model to evaluate these tags. This strategy
suffers from noise peaks in the spectrum. Our method
only uses the peaks with high probPS values to generate

Table 2 Cross-validation of the performance of probPS
and AuDeNS in improving de novo peptide identification

#Correctly identified peptides®

Round Methods #Spectra Top 1 Top 3 Top 30
1 relevance 61 4 7 14
probPS 61 4 11 20
2 relevance 69 7 10 19
probPS 69 12 17 26
3 relevance 69 3 8 17
probPS 69 3 10 28
4 relevance 67 8 11 23
probPS 67 11 16 26

tags. Specifically, our tag identification method (called
probTag) starts with the top peaks with high probPS
along with their complementary peaks to find the most
reliable neighbor peaks.

We selected the first 1000 spectra reported by Swed-
CAD as the test data set (spectrum IDs from
1.683.39666.2.dta to 1000.1312.70275.2.dta), and used
the remaining spectra in SwedCAD as the training data
set. Table 3 summarizes the tag identification perfor-
mance of probTag and PepNovoTag. When the desired
tag length was set to 3, probTag found 876 of the 1000
tags correctly while PepNovoTag found 790 tags. When
the desired tag length was set to 4, probTag found 760

Table 3 Comparison of probTag and PepNovoTag
(version 3

Tag Identification Performance

Tag Length Methods + - Accuracy?
3 PepNovoTag 790 210 79.00%
probTag 876 106 89.21%
4 PepNovoTag 709 291 70.90%
probTag 760 164 82.25%
5 PepNovoTag 610 390 61.00%
probTag 616 209 74.67%

9 Tag identification was “correct” if the tag was contained in the real peptide.
Accuracy denotes the ratio of “correct” tag identification.
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correct tags while PepNovoTag found 709 tags. When
the desired tag length was set to 5, the two methods
found almost the same number of correct tags; however,
probTag had a higher accuracy (74.67% for probTag
compared to 61.0% for PepNovoTag).

It should be noticed both PepNovoTag and ProbTag
are combinations of peak selection and tagging techni-
ques. This is only an implicit and indirect evidence of
the peak selection performance.

4 Conclusion and discussion
In this study, we described the dependence between
derivate peaks and primary ion intensity in a quantita-
tive manner. The experimental results demonstrate that
this quantitative description can help improve the accu-
racy of peak selection which further improves the per-
formance of de novo sequencing and tag identification.
In addition to the peak attributes used in the study,
other attributes like, for example, consecutive ions may
prove to further improve peak selection. In general,
valid peaks are more likely to have a consecutive ion
than invalid peaks. In future work, we aim to incorpo-
rate this attribute into our peak selection method.

Additional material

Additional file 1: supplementary Figure S1. The relationship between
r,(l) and [ was also calculated using the data set obtained from an ESI
data set provided by Keller. The relationship between r,(/) and / shows
similar geometric distribution shape, though parameters are not the
same due to different experiment conditions. Caption of the Figure:
Distribution of r,(/) calculated using the data set from the Keller's Lab.
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