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Abstract

Background: Many Bioinformatics studies begin with a multiple sequence alignment as the foundation for their
research. This is because multiple sequence alignment can be a useful technique for studying molecular evolution
and analyzing sequence structure relationships.

Results: In this paper, we have proposed a Vertical Decomposition with Genetic Algorithm (VDGA) for Multiple
Sequence Alignment (MSA). In VDGA, we divide the sequences vertically into two or more subsequences, and then
solve them individually using a guide tree approach. Finally, we combine all the subsequences to generate a new
multiple sequence alignment. This technique is applied on the solutions of the initial generation and of each child
generation within VDGA. We have used two mechanisms to generate an initial population in this research: the first
mechanism is to generate guide trees with randomly selected sequences and the second is shuffling the sequences
inside such trees. Two different genetic operators have been implemented with VDGA. To test the performance of
our algorithm, we have compared it with existing well-known methods, namely PRRP, CLUSTALX, DIALIGN, HMMT,
SB_PIMA, ML_PIMA, MULTALIGN, and PILEUP8, and also other methods, based on Genetic Algorithms (GA), such as
SAGA, MSA-GA and RBT-GA, by solving a number of benchmark datasets from BAliBase 2.0.

Conclusions: The experimental results showed that the VDGA with three vertical divisions was the most successful
variant for most of the test cases in comparison to other divisions considered with VDGA. The experimental results
also confirmed that VDGA outperformed the other methods considered in this research.

Background
Multiple Sequence Alignment (MSA), the simultaneous
alignment among three or more nucleotide or amino
acid sequences, is one of the most essential tools in
molecular biology. The goal of multiple sequence align-
ment is to align sequences according to their evolution-
ary relationships. For small lengths and small numbers
of sequences, it is possible to create the alignment
manually. However, efficient algorithms are essential for
good alignments with more than eight sequences [1].
The existing algorithms can be classified into three
main categories, exact, progressive and iterative. The
iterative approaches can be of two types: iterative, and
iterative plus stochastic.
The Dynamic Programming (exact method) approach

[2] is good at finding the optimal alignment for two

sequences. However, the complexity of this method grows
significantly for three or more sequences [3]. We must
mention here that MSA is a well-known combinatorial
problem (NP-hard) where the computational effort
becomes prohibitive with a large number of sequences [4].
The progressive alignment algorithm (Tree Based

algorithm), proposed by Feng and Doolittle [5] itera-
tively utilizes the method of Needleman and Wunsch
[2] in order to obtain an MSA and to construct an evo-
lutionary tree to depict the relationship between
sequences. A good number of global alignment algo-
rithms, based on the progressive alignment method,
have been proposed, such as MULTALIGN [6], MUL-
TAL [7], PILEUP [8] and CLUSTALX [9]. MULTAL
generates the final alignments by aligning closest
sequences subsequently. MULTALIGN and PILEUP
make the final alignments from the guide tree (the pro-
gressive alignment), which is constructed using UPGMA
[10]. CLUSTAL W [1], based on a progressive approach,
is a global method. The CLUSTAL W builds up the

* Correspondence: r.sarker@adfa.edu.au
† Contributed equally
School of Engineering and Information Technology, University of New South
Wales at Australian Defence Force Academy, Canberra, Australia

Naznin et al. BMC Bioinformatics 2011, 12:353
http://www.biomedcentral.com/1471-2105/12/353

© 2011 Naznin et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:r.sarker@adfa.edu.au
http://creativecommons.org/licenses/by/2.0


final alignments from a guide tree, which is calculated
by a neighbour-joining algorithm [11]. CLUSTAL W
uses the Weighted Sum of Pair score, which considers
sequence weighting and position dependent gap penal-
ties. Although this approach is successful in a wide vari-
ety of cases, it suffers from its greediness [12]. The
CLUSTAL series (X, W and V) were developed based
on the same algorithm. The alignments produced by
these programs are exactly the same; the only difference
among them is the way the user interacts with the pro-
gram. PIMA [13] uses local dynamic programming to
align only the most conserved motifs. It offers two align-
ments, MLPIMA and SBPIMA. T-Coffee [12] is a sensi-
tive progressive alignment algorithm which combines
information from both global and local alignments. This
method is fast but there is a possibility to be trapped at
a local minima. The difficulty with the progressive
approach is that they usually converge to local optima
[1]. To overcome such a limitation, it is recommended
to use an iterative or stochastic procedure [14-16].
The iterative approach starts with an initial solution

and then the current solution is improved using iterative
steps. MUSCLE [17] is based on a progressive and itera-
tive algorithm. It has three stages: draft progressive,
improve progressive, and refinement. In each stage, a
multiple sequence alignment is generated. Similarly
MAFFT [18] is also based on a progressive and iterative
algorithm. It uses a Fast Fourier Transform (FFT) to
identify homologous regions. To evaluate the multiple
sequence alignments, MAFFT uses the CLUSTAL W
scoring system. ProbCons [19] is a Probabilistic and
Consistency based algorithm. It computes posterior-
probability matrices and expected accuracies for each
pairwise comparison. It also computes an expected
accuracy guide tree to progressively generate a final
alignment by applying a probabilistic consistency trans-
formation. ProbCons achieves more accurate results
than MUSCLE and MAFFT, but is slower than those
algorithms [19]. PRRP [20] is another global alignments
program which is based on a progressive approach. This
approach is robust, but it does not guarantee optimum
solutions [12]. DIALIGN [21] uses a local alignment
approach based on a segment to segment comparison,
rather than on a residue to residue comparison. This
method is successful in highly conserved flanking core
blocks, but is unreliable outside the conserved motifs.
There are some iterative and stochastic approaches for

MSAs (for example simulated annealing [22,23] and
evolutionary computation [24-28]). HMMT [29], based
on a simulated annealing method, maximizes the prob-
ability for sequence alignment where the solution could
be trapped in local optima [30]. Evolutionary Algorithms
(EAs) are population based stochastic global search algo-
rithms. EA starts with an initial population of individual

solutions. Different EAs use different representations (e.
g. lists, trees, graphs) for the individuals and different
reproduction operators (recombination or crossover and
mutation) to generate offspring for the next generation.
The main driving force in EAs is the selection of indivi-
duals based on their fitness (it may be based on the
objective function, or some other kind of quality mea-
sure). Individuals with higher fitness have a higher prob-
ability to be chosen as members of the population of the
next generation (or as parents for the generation of new
individuals). This corresponds to the principle of survi-
val of the fittest in natural evolution. There has been a
variety of different EAs proposed over the years, such as
Evolution strategies (ES), Evolutionary Programming
(EP), genetic algorithms (GA) and their variants. GAs,
the most well known algorithm in the EA family, have
been successfully used for both numerical and combina-
torial optimization. When using EAs for MSA, an initial
seed is generated by a progressive alignment method,
and then the steps of an EA are applied to improve the
similarities among the sequences. For example, MSA-EA
[31] improves the solution of the Clustal V [32] algo-
rithm by initially generating one seed with Clustal V.
This method works well when there are a large number
of fully matched blocks, but performs poorly when there
are only a few fully matched blocks [30].
There are other Genetic Algorithm (GA) based meth-

ods, such as SAGA [28], MSA-EC [33], GA-ACO [30],
MSA-GA [34] and RBT-GA [35]. In SAGA, the initial
generation is generated randomly with gap (null) sym-
bols inserted randomly inside the sequences to make
them equal in length. In this algorithm, 22 different
operators are used to gradually improve the fitness of
the MSA. These operators are dynamically scheduled
during the evolution process. The time complexity of
SAGA is large, mainly due to the time required by the
repeated use of the fitness function [33]. Shyu et al.,
[33] proposed two other approaches using GAs. In the
first approach, GA was used to evolve an optimal guide
tree which was created with the neighbor-joining
method. Shyu’s second approach facilitates the optimiza-
tion of a consensus sequence with a GA by using a ver-
tically scalable encoding scheme, in which the number
of iterations needed to find an optimal solution is
approximately the same regardless of the number of
sequences being aligned. Another algorithm, GA-ACO
[30], combines ant colony optimization with GA to
overcome the problem of becoming trapped in local
optimum. To do this, first GA is run with a randomly
generated initial population (initial parent alignments).
Its crossover operator then produces one or two off-
spring [31] from two parents, and a mutation operator
provides another possible variation of the alignments.
Finally, ACO (Ant Colony Optimization) was applied on
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the best alignment of the GA approach. MSA-GA is a
simple GA based method with a different scoring func-
tion. To test this algorithm, the authors performed two
sets of five runs for each of 28 test cases from the BAli-
Base 2.0 [36] dataset. RBT-GA combines GA with the
Rubber Band Technique (RBT) to find optimal protein
sequence alignments [37,38]. RBT is an iterative algo-
rithm that uses a DP table. The authors [35] solved 34
problems from references 2 and 3 of the benchmark
BAlibase 2.0 dataset. The experimental results showed
that the overall performance of RBT-GA was better
than the other methods compared in that paper. We
must mention here that local search methods are some-
times integrated with GAs [39-43] to enhance the per-
formance of GAs in solving MSA problems.
The EAs have an important advantage over progres-

sive methods in that the alignment component can be
made independent of the objective function. This means
that different fitness functions can be tested without
making any adjustment to the alignment procedure,
which makes them particularly attractive for testing new
objective functions. Another useful advantage of these
methods is that the computational duration can be com-
pressed by parallelization. These advantages motivate us
to apply EAs to solve MSA problems in this research. In
this paper, we propose a new approach based on a
genetic algorithm, namely VDGA, where we introduce a
decomposition method to divide the sequences into
smaller subsequences. These subsequences are then pro-
cessed separately before being combined back into
whole sequences. We have used the guide tree method
to generate an initial population, in each separate part
of the decomposition, and also during the mutation.
The proposed method starts with the DP distance table.
In the DP distance table, the distance between two
sequences is calculated from a pairwise alignment using
Dynamic Programming (DP). We have used this dis-
tance table to generate a guide tree. We have applied
and analyzed two techniques on the guide tree so as to
generate an initial population. In running the GA, we
have considered the Weighted Sum of Pair score as the
fitness measure, with the PAM250 [44] score matrix and
the CLUSTAL W default gap penalties.
The performance of the proposed algorithm has been

compared with the state of the art GA and non-GA
based methods, namely SAGA, MSA-GA, RBT-GA,
PRRP, CLUSTALX, Clustal W, DIALIGN, HMMT,
SB_PIMA, ML_PIMA, MULTALIGN and PILEUP8. To
allow us to compare with other methods, we have calcu-
lated the corresponding BAliscore of the best WSPM
score. For comparison, the results of the 26 datasets
solved by MSA-GA, and the alignment results of the 34
datasets solved by RBT-GA were taken from the pub-
lished papers [34] and [35] respectively. However, the

results of the other methods mentioned above, were
obtained from BAliBase 2.0 [36]. Based on the calculated
BAliscores, VDGA outperforms the GA and non-GA
based methods mentioned earlier.
This paper is organized as follows. After this back-

ground, the next section describes briefly the steps of a
basic Genetic Algorithm and the details of the proposed
VDGA method. The analyses of VDGA and compari-
sons with other well known methods have been dis-
cussed in the results and discussion section. Finally, we
have summarised our work and planed for future work
in the conclusions section.

Methods
Genetic Algorithms: The Basic structure
The general steps of the common GA can be summar-
ized by the following pseudo-code:

1. Initialisation: Generate Initial population
2. Evaluation: Evaluate the individuals using a fitness
function
3. Select individuals (parents) and then
4. Apply the genetic operators to them so as to cre-
ate children
5. New generation: Create new generation from
some combination of old generation and new child
generations.
6. Go to 2 until it meets the stopping criteria.
7. End.

VDGA: The Proposed Algorithm
The proposed Vertical Decomposition using Genetic
Algorithm (VDGA) is a modification of the basic GA.
Its steps are: generation of initial population, generation
of child population by applying genetic operators, form-
ing a new population for the next generation, Vertical
Division, and the stopping criteria. The Vertical Division
is the key concept of the proposed algorithm. This tech-
nique is applied after generating the first/initial genera-
tion and after generating child generation. To do this,
inside the Vertical Division step, the alignment is sepa-
rated into different parts, the null symbols are removed
from each part and then the tree-base method is applied
on each part. After applying the tree-base method, each
part produces an alignment. The alignments of each
part are then combined to create a new alignment. As
the solution of the progressive alignment method (guide
tree) usually converges to a local optimum, therefore in
the initial generation stage, we use the guide tree
method to find the local optima and its neighbouring
points in two ways; randomly generated subtree and
shuffling. With the genetic operator (mutation), we also
use the guide tree method. To calculate the guide tree,
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we use both DP [2] and the Kimura distance [45] tables
as discussed below.

Distance Calculation
Dynamic Distance Calculation
For this, the DP distance of each pair is calculated using
equation (1) from a pairwise alignment [2]. To construct
the DP distance matrix (table), which shows the distance
between all sequence pairs are calculated,

Dynamic distance = (mismatch) /
(
align length

)
(1)

Kimura Protein Distance Calculation
Equation (2) is an alternate means to calculate the dis-
tance, and was developed based on the relationship
between the observed amino acid substitutions and the
actual (corrected) substitutions from PAM or BLOSUM
[46]. The match score is calculated by summing the
number of exact matches. In this method, the partial
matches between ambiguous symbols also contributes to
the match score as fractional scores. The value of S is
computed by dividing the match score by the number of
positions scored. Gap positions are ignored, and only
exact matches contribute to the match score [47].

S = (exact matches) /
(
positions scored

)

D = 1− S

Distance = −ln
(
1−D− 0.2D2)

(2)

The flowchart of the proposed VDGA method is shown
in Figure 1. In this figure, the block arrows represent the
steps of the algorithm and the black color arrows repre-
sent the use of guide trees inside the proposed algorithm.
The steps of this method are explained below.

Initial Generation
The aim of this step is to generate good initial solutions.
The flowchart for generating the initial population is
shown in Figure 2 and the stages are described below.
Stage 1
VDGA starts with a DP distance table. The guide tree is
constructed from this table, which is referred to as TR1,
and we generate a multiple sequence alignment (MSA1)
from this guide tree.
Stage 2
In the second stage, the distance table is calculated from
the multiple sequence alignment (MSA1), which is
called the Kimura distance table. The Kimura distances
are calculated from the aligned sequences. The second
tree, TR2, is constructed from the Kimura distance
table, and we then produce MSA2 as shown in Figure 2.
Stage 3
In this stage, two mechanisms are implemented on the two
trees (TR1 and TR2) to generate 100 different trees. The

first mechanism is to generate guide trees with randomly
selected sequences and the second is shuffling the
sequences inside those trees. The initial population pro-
duced by this method contains a set of multiple sequence
alignments. Therefore, after receiving the set of guide trees,
it needs to make a set of multiple sequence alignments.
The functions of these mechanisms are explained below.
Mechanism 1
In this case, sequence numbers are selected randomly
from one tree (either TR1 or TR2). The selected
sequences then make a new sub-tree with the same
branching orders as the original one, and the non-
selected sequences make another new sub-tree. Lastly,
these two sub-trees are connected together to make a
new tree. Figure 3 shows the behaviour of Mechanism 1.
Mechanism 2
In this case, two sequence numbers are selected ran-
domly from one tree (either TR1 or TR2). Then, these
two sequences exchange their positions to make a new
tree. Figure 4 shows the function of Mechanism 2.

Fitness
The Weighted Sum of Pair Method (WSPM) is commonly
used as a fitness measure for MSAs. For it, each column in
an alignment is scored by summing the product of the
scores of each pair of symbols and their pair weight. The
score of the entire alignment is then summed over all col-
umn scores by using equations (3) and (4).

S =
L∑

l=1

Sl where , Sl =
N−1∑

i=1

N∑

j=i+1

Wijcost(Ai,Aj) (3)

Initial 
i

Vertical Division 
(Decompositions) 

Combination 
(alignments of each 

part of  the 
decomposition are 

combined) 

Termination 
condition 

GA 

Guide tree 

Figure 1 Flowchart of VDGA.
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Here, S is the cost of the multiple alignments. L is the
length (columns) of the alignment; Sl is the cost of the
l-th column of L length. N is the number of sequences,
and Wij is the weight of sequence i and j. In CLUSTAL
W, the weight is calculated for each sequence and the
pair weight is the product of the two sequence weights.
cost(Ai,Aj) is the alignment score between the two
aligned sequences Ai and Aj. When Ai ≠ ‘-’ and Aj ≠ ‘-’
then cost(Ai ,Aj) is determined either from the PAM
(Percentage of Acceptable point Mutations) or BLO-
SUM [46] matrix. Also when Ai = ‘-’ and Aj = ‘-’ then
cost(Ai,Aj) = 0. Finally, the cost function cost(Ai ,Aj)
includes the sum of the substitution costs of the

insertion/deletions when Ai ≠ ‘-’ and Aj = ‘-’ or Ai = ‘-’
and Aj ≠ ‘-’, using a model with affine gap penalties as
shown in (4).

G = g + nx (4)

Here, G is the gap penalty, g is the cost of opening a
gap, x is the cost of extending the gap by one and n is
the length of the gap.
In CLUSTAL W, the author used different weight

matrices, which depend on the estimated divergence of

1 2 3 4 5 

N−F−S 
N−FLS 
NK−LS 
N−YLS 
NKYLS 

DP Distance 
Table 

Guide-tree 
 (TR1)  MSA1 

Stage 1 

Stage 2 

Kimura 
Dist. table 

1 2 3 4 5 

NF−−S 
NF−LS 
NK−LS 
N−YLS 
NKYLS 

Guide-tree (TR2)  MSA2 

Stage 3 

Generate Guide-trees 
by randomly selected 
sequences either from 

TR1 or from TR2 

Shuffling 
sequence numbers 

inside receiving 
tree 

Generate 100 
individuals (trees) 

Initial Population 
(Make MSAs from Trees) 

Figure 2 Flowchart of Initial Generation.

(e) 

1 2 7 3 4 5 6 8 

(c) (d) 

0 1 1 1 1 0 1 0 

4 2 7 3 6 8 5 1 

4 2 7 3 6 8 51 

(b) 

  (a) 

Figure 3 (a) Guide tree; (b) 1 represents randomly selected
sequence numbers from (a), and 0 represents unselected
sequence numbers; (c) subtree made by the selected
sequences; (d) subtree made by the remaining sequences of
(a); and (e) new Guide tree made from (c) and (d).

4 2 7 8 6 3 51 

Figure 4 Shuffling mechanism, sequence numbers 8 and 3
interchange their positions.
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the sequences to be aligned at each stage, and proposed
dynamically changeable gap penalties to overcome the
local minima issue. Therefore, in this research, the
CLUSTAL W weighted scheme, the CLUSTAL W
default gap penalties (gap opening penalty is -10 and the
gap extension penalty is -0.20), and the PAM250 matrix,
a mutation probability matrix, were considered for the
WSPM fitness measure. Note that PAM250 is consid-
ered to be a good general matrix for protein database
searching. Also, the PAM matrices have been developed
based on global alignments. To calculate the weight of
each sequence, we used the CLUSTAL W weight
function.
To optimize the VDGA, we have used both the sum

of pair and the weighted sum of pair methods for the
fitness function in our research. However, we have only
reported the weighted sum of pair scores as the algo-
rithm with this method performed better than with the
sum of pair fitness function. This is because of the fea-
tures (such as selection and crossover) and the para-
meters used in our algorithm.

Child Generation
For each individual in the initial population, the WSPM
score is calculated, and the individuals are then sorted
according to the descending order of their scores. To
generate a child population of 100 individuals in any gen-
eration, the following three genetic operators are used.

I. Single point crossover.
II. Multiple point crossovers.
III. Mutation.

The following sub-section ‘Selection of Parameters’
considers the relative proportion of when these opera-
tors are used.
1) Single Point Crossover
In this crossover, one individual is selected from the top
50% and another from the bottom 50% of the parent
generation. The single point crossover [28] is implemen-
ted as shown in Figure 5. Its procedure is that first a
column position is selected randomly as shown with a
“*” in Figure 5. The parent having the better score is
then divided vertically at that column. Let us assume
that parent a has the better score column, so that this
parent is separated vertically into two pieces. The sec-
ond parent b is also divided into two pieces in such a
way that each row of the first piece (and hence also the
second piece) has the same number of elements as the
first piece (and hence also the second piece) of the first
parent. These pieces of these two parents are then
exchanged and merged together to generate two new
individuals as shown in Figure 5. However, only the bet-
ter new individual is chosen to be a child.

2) Multiple Point Crossovers
The parents’ selection process is the same as for the sin-
gle point crossover. For multiple point crossovers, each
parent is divided into three pieces. These pieces are
then exchanged between the parents and are then
merged together to generate two new individuals. How-
ever, only the best one will be taken as a child. The
crossover is implemented in two steps as described
below.
Step 1
To cut the first piece effectively, we compare the scores
of the first 25% of columns for both parents. The parent
having the better score is then divided vertically at that
column. The other parent is also divided using the
mechanism that was introduced in the single point
crossover, as can be seen in Figure 6.
Step 2
We now have two pieces of each parent from Step 1. To
create another piece, we follow the same procedure of
Step 1, but considering the last 25% of columns (as
shown in Figure 6). This gives us three pieces for each
parent. To complete the crossover, the middle pieces
are exchanged between the parents, and then all three
pieces are merged together to generate the two new
individuals as shown in Figure 6.
In Figure 6, the lengths (columns) of the two parents

(parent a and parent b) are 10 and 12 respectively. The
first 25% of the columns of the 1st parent are two and a
half (2.5) columns. In that case, we considered 3

   * 
ABC−DKG 
−BC D−KG 
A−C −D−G 
ABC −D−G 

Parent a 

A−BCD−K−G 
−B−CDK−−G 
AC −−D−G−− 
ABC D−−−G− 

Parent b 

−D−K−G 
−DK−−G 
−D−G−− 
D−−−G− 

ABC 
−BC  
A−C  
ABC 

Individual 1 
(a1+ b2) 

A−BC 
−B−C 
AC−− 
ABC− 

−DKG 
D−KG 
−D−G 
−D−G 

Individual 2 
(b1+ a2) 

ABC 
−BC  
A−C  
ABC 

a1 

−DKG 
D−KG 
−D−G 
−D−G 

a2 

A−BC 
−B−C 
AC−− 
ABC− 

b1 

−D−K−G 
−DK−−G 
−D−G−− 
D−−−G− 

b2 

Figure 5 Single point crossover.
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columns. In the first step, parent a has the better score
in the first 25% columns. Therefore, Parent a is divided
first and Parent b is tailored according to Parent a.
After the division, we have two pieces from each parent
(a1 and a2 from Parent a; b1 and b2 from Parent b). In
the 2nd step, Parent b has the better score in the last
25% of columns. Therefore, Parent b is divided first and
Parent a is tailored accordingly. This division provides
two new pieces for each parent (a2’ and a3 from a2; b2’
and b3 from b2). Next, two new individuals are gener-
ated by connecting the pieces as (a1+b2’+a3) and (b1
+a2’+b3). From these two individuals, the better one is
selected as a child.
3) Mutation
One individual (MSA) is randomly selected from the
whole population. From this MSA, the distance among
sequences are calculated and stored in a distance table.
The new guide tree is constructed from this calculated
distance. In the new guide tree, the sequence numbers
are shuffled to find a better guide tree and the MSA of
the new guide tree is considered as a mutated child.
This process is repeated until 50 sequential unsuccessful

attempts occur. If this operator finds a better guide tree
then it is considered as a new child, otherwise there is
no effect on this generation. The procedure of mutation
is shown in Figure 7.
4) Elitism
This common GA approach is used, whereby the best
solution is passed on unchanged to the next generation.

Vertical Division
For Vertical Division, we first separated (decomposed)
each alignment vertically into two or more sub-align-
ments as shown in Figure 8(a). After that, the null sym-
bols “-” were removed from each decomposed part.
Then the guide tree method was applied in each decom-
posed part. Therefore, we received a new alignment
from each decomposed part, which may or may not be
the same as the previous part. Now all of the new
decomposed parts are connected together. In this way
we obtain a new alignment. If the new alignment is bet-
ter than the previous one, then the new alignment is
kept, rather than the previous alignment. The working
stages of this process are illustrated in Figure 8.
Figure 8(a) shows a multiple sequence alignment

(MSA) before Vertical Division. To explain the process
of Vertical Division, three divisions are considered as
shown in Figure 8(b). Next, the null symbols are
removed from each decomposed part as shown in Figure
8(c). Following that, the tree-base method is applied
with each decomposed part and the new alignment of
each decomposed part is determined as shown in Figure
8(d). Finally, the new alignments of the three decom-
posed parts are combined and thus we obtain the new
alignment after the process of Vertical Division, as
shown in Figure 8(e).
The Vertical Division step is applied in two places

inside the proposed algorithm: once after the initial gen-
eration, and then after each child generation. We do

A−B−C 
− −BC− 
A−C−− 
−AC−− 

b1 

ABC EGKD−B− 
−BC E− WED−B 
A−C −GWEDB− 
A−C EG − −−BC  

Parent a Parent b 

A−B−C EG−−KDB 
−−BC− E WE−D−B 
A−C −G−W−ED−B 
−AC EG − −−−B−C  

b2 

−− EG −− KDB 
−−E WE− D−B 
−G −W−E D−B 
EG − −−− B−C 

−− EG −− 
−−E WE− 
−G−W−E 
EG −−−−  

b2´ 

KDB 
D −B 
D −B 
B −C 

b3 

ABC 
−BC  
A−C  
A−C 

a1 a2 

EG KD−B− 
E−WE D−B  
−GWE DB− 
EG −− − BC 

EG−− 
E−WE  
−GWE 
EG −−  

a2´ 

KD−B− 
−−D−B  
−−DB− 
−−−BC 

a3 

ABC 
−BC  
A−C  
A−C 

−− EG −− 
−−E WE− 
−G−W−E 
EG −−− −  

KD−B− 
−−D−B  
−−DB− 
−−−BC 

Individual 1 
(a1+ b2´+a3) 

Individual 2 
(b1+ a2´+b3) 

A−B−C 
− −BC− 
A−C −− 
−AC −− 

EG −− 
E−WE  
−GWE  
EG −−  

KDB 
D −B 
D −B 
B −C 

Figure 6 Multiple point crossovers.

ABC−DKG 
−BC D−KG 
A−C −D−G 
ABC −D−G 

Parent a 

Shuffling 
sequence 

numbers 1 
and 4 

Distance table 

1 2 3 4 

Guide 

4 2 3 1 

New Guide Tree 

ABCDKG 
−BC DKG 
A−C D−G 
ABC D−G 

Child 
Figure 7 Mutation.
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this so we can apply the Vertical Division technique on
aligned sequences. This is due to the fact that if the
sequences are of different lengths, the Vertical decom-
position of unaligned sequences may introduce either
too many or too few residues in each decomposed part.
Therefore, it could be difficult for the Vertical

decomposition of an unaligned sequence to produce a
good solution.
Motivation for Vertical Division
It is known that smaller sequences can be aligned
quickly with a high level of accuracy [48]. This moti-
vates us to divide the longer sequences into smaller
parts, align them separately, and then combine them to
generate aligned complete sequences. We have also
observed in aligned sequences that sometimes the resi-
due (character) is almost trivially incorrectly aligned.
However, for larger sequence lengths and for a large
number of sequences, it is computationally expensive to
improve the multiple sequence alignments by simply
shuffling the null symbols for the entire length of the
MSA. Therefore, we have proposed an alternative, but
efficient option to improve the MSA.

New Generation
To form the new population, the best 50% of the com-
bined parents and children are selected while ensuring
that there is no duplication of the individuals. We must
mention here that we have also studied other splits,
such as 40-60 (parent-child) and 60-40. The study
results showed that the 50-50 split outperforms the 40-
60 and 60-40 splits with an average improvement of
4.38% and 7.66% respectively. Therefore, we have chosen
the 50-50 mix with the proposed VDGA, which ensures
a better balance between exploration and exploitation.
The population size of 100 is chosen as it was used in
SAGA [28]. Moreover, we have experimented with other
population sizes which are discussed in a later section.
The process of forming a new generation is demon-
strated in Figure 9. The new population is then consid-
ered as the parent population in the next generation
and so is used to continue the evolution process of
VDGA.

Termination Condition
The best solution in each generation is recorded. If the
best solution remains the same in 100 consecutive gen-
erations, the algorithm will be terminated. We have set
this termination condition based on our experimental
observations. We have tested our VDGA algorithm for
up to 300 generations after getting the best solution,
and we have observed that the best solution was hardly
changed and that the variation of the average solution
per generation was also insignificant.

Results and Discussion
Test Datasets
In order to evaluate our proposed approach, we have
solved a good number of test datasets from the bench-
mark BAliBase alignment database. The original BAli-
Base version 1.0 [49] consists of 142 reference

ABC    
−BC    
A−C  
A−C 

EG−     
E−W    
−GW   
EGW    

−KDB 
E−DB 
E−DB 
− BC− 

(d)  After applied Tree-base method on each part,      
new MSA of each part. 

A−BC    
−B−C    
A−C−  
−AC− 

E −G −     
− E W−    
G −W−   
EG −W  

−K−DB 
E−D−B 
ED−B− 
− −B−C 

(b)  MSA is separated into three parts. 

ABC    
BC    
AC  
AC 

EG     
EW    
GW 
EGW   

KDB 
EDB 
EDB 
BC 

(c)  Null symbols are removed from each part. 

ABCEG− −KDB    
− BCE−WE−DB    
A− C−GWE−DB 
A− CEGW−BC− 

(e) New MSA after Decomposition. 

(a)  MSA before Decomposition. 

A−BC   E−G −   −K−DB 
−B−C   − E W−   E−D−B 
A−C−   G −W−   ED−B− 
−AC−   EG −W   − −B−C 

Figure 8 Vertical Division Process.
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alignments with over 1000 sequences. BAliBase version
2.0 [36] is an improved version, which was extended
from version 1 to have 167 reference alignments and
over 2100 sequences. BAliBase version 2.0 contains
eight reference sets. Each reference set has a variety of
alignment problems. Reference 1 contains small num-
bers of equidistant sequences. The orphan or unrelated
sequences are considered in Reference 2. Reference 3
contains a pair of divergent subfamilies where the two
groups are less than 25% identical. Reference 4 contains
long terminal extensions, and Reference 5 contains large
internal insertions and deletions. Lastly, references from
6 to 8 contain test case problems where the sequences
are repeated and the domains are inverted. The details
of the datasets used for the experiments are given in the
‘Quality of Solution’ subsection.

Experimental Study
In this section, we have first analyzed the performance
of the vertical decompositions with both the guide tree
and the genetic algorithm. From that, we have proposed
the appropriate number of decompositions with the pro-
posed GA method. Finally, we have compared our algo-
rithm (VDGA) with other well-known methods. In this
research, we have analyzed our results based on 10 inde-
pendent runs. In comparison, MSA-GA and RBT-GA
used 5 and 10 runs respectively.

Vertical Division/Decomposition with Guide-tree
Initially, multiple sequence alignments were done with-
out a GA but solely by the application of the guide tree
method followed by the results of that being decom-
posed vertically into two, three and four parts, namely
Decomp_2, Decomp_3 and Decomp_4 respectively with

the null symbols ("-”) being removed from each part.
Then we again applied the guide tree methods in each
part of the decomposition. These alignments were evalu-
ated by WSPM and their corresponding BAliscore were
also calculated. Both of these scores are reported in
Table 1. In this case, we carried out experiments for 34
datasets from references 2 and 3 of the BAliBase (ver-
sion 2.0) [36] datasets. We also performed a non-para-
metric statistical test, namely the Wilcoxon Signed Rank
Test [50], with respect to the WSPM score and also
BAliscore as shown in Table 2.
Comparing with the WSPM solutions of the guide

tree, it is observed from Table 1 and Table 2 that
Decomp_2 was better in 29 test cases and found the
same best results in 3 test cases out of 34 test cases.
Decomp_3 found the same best results in 1 test case
and successfully found better solutions in 33 test
cases. Moreover, Decomp_4 was better in 32 test
cases and in two test cases it found the same best
results. The non-parametric test shows that these ver-
tical decompositions are significantly better than the
guide tree.
On the other hand, comparing with the corresponding

BAliscore solutions of the guide tree, Decomp_2 was
better in 23 test cases and found the same best results
in 5 test cases, Decomp_3 was better in 29 test cases
and found the same bestn results in one test case,
Decomp_4 was also better in 29 test cases and in three
test cases it found the same best results out of 34 test
cases. The non-parametric test also shows the significant
advantage of these vertical decompositions with guide
tree.
From the experimental observation it is clear that the

multiple sequence alignments using vertical decomposi-
tions perform better than that of the guide tree method
in most of the test cases. In a very few cases, these tech-
niques perform badly, or the same as, the guide tree.
Although in general Decomp_3 performed best, some-
times the other decompositions performed better in
some cases. After these experimental and statistical ana-
lyses with respect to the objective function and bench-
mark scores, we can safely conclude that the vertical
decompositions can play an important role in improving
existing solutions, and there is a possibility to find a bet-
ter multiple sequence alignment if the vertical decompo-
sitions are used with an evolutionary approach (such as
a genetic algorithm).

Analysis of Vertical Decomposition with GA
In this section, we have first analyzed the selection of
parameters for VDGA and then discussed the appropri-
ate number of decompositions. In some of the following
analysis, the decomposition was kept inactive to judge
the parameter’s effect individually.

Parent Generation Child Generation 

New Generation 

Genetic 
Operators 

Best scored 
Parent 

Best scored 
Children 

Individuals 

Figure 9 Graphical presentation of generating New Generation.
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Table 1 Performance of Decomposition techniques on the Solutions of the guide tree

Reference
No.

Name of
Dataset

Guide-tree Decomp_2 Decomp_3 Decomp_4

WSPM Correspon-ding
BAliscore

WSPM Correspond-ing
BAliscore

WSPM Correspond-ing
BAliscore

WSPM Correspond-ing
BAliscore

Ref. 2 1aboA -1001.96 0.552 -922.417 0.566 -954.859 0.573 -893.733 0.587

1idy 17.78 0.874 17.78 0.874 128.604 0.948 57.494 0.880

1csy -394.56 0.460 -375.955 0.568 -293.088 0.671 -279.613 0.747

1r69 -153.23 0.716 -122.574 0.750 -112.983 0.780 -109.973 0.723

1tvxA 118.32 0.916 118.322 0.936 118.322 0.936 127.866 0.941

1tgxA -141.68 0.798 -28.893 0.801 -26.709 0.815 54.808 0.809

1ubi -245.02 0.641 -151.429 0.618 -213.452 0.661 -215.21 0.671

1wit -572.81 0.673 -547.512 0.654 -551.823 0.670 -456.085 0.741

2trx 411.79 0.944 423.688 0.948 567.091 0.945 546.10 0.977

1sbp -226.99 0.710 -226.99 0.710 -200.282 0.733 -163.487 0.710

1havA -666.52 0.783 -499.625 0.787 -552.664 0.787 -470.297 0.793

1uky -368.69 0.651 -227.468 0.634 -320.261 0.629 -213.937 0.710

2hsdA -1139.99 0.679 -848.958 0.790 -1020.644 0.729 -1015.369 0.721

2pia -564.48 0.811 -466.756 0.799 -485.944 0.801 -341.627 0.764

3grs -649.94 0.698 -577.104 0.714 -609.335 0.709 -460.447 0.746

Kinase -1112.18 0.763 -973.132 0.741 -845.541 0.771 -924.093 0.747

1ajsA 1433.11 0.879 1481.384 0.901 1504.135 0.895 1502.130 0.881

1cpt -1406.04 0.732 -1406.03 0.732 -1392.476 0.725 -1200.642 0.751

1lvl -2855.24 0.705 -2855.241 0.705 -2281.80 0.726 -2687.77 0.749

1pamA -1895.88 0.699 -1238.72 0.750 -716.222 0.795 -1311.726 0.720

1ped 1556.41 0.890 1556.407 0.902 1610.442 0.901 1612.574 0.907

2myr 664.52 0.734 753.00 0.757 775.25 0.751 760.204 0.754

4enl -42.30 0.802 12.135 0.812 116.309 0.822 66.895 0.824

Ref. 3 1idy -1408.27 0.236 -1378.605 0.303 -1278.872 0.256 -1274.323 0.447

1r69 -1735.897 0.541 -1662.407 0.551 -1735.897 0.562 -1735.897 0.567

1ubi -1417.25 0.308 -1381.00 0.264 -1271.455 0.406 -1396.996 0.321

1wit -1059.74 0.553 -849.307 0.628 -1015.695 0.644 -806.003 0.676

1uky -5417.19 0.364 -4981.878 0.387 -5283.305 0.415 -5417.186 0.364

kinase -1112.18 0.736 -973.132 0.741 -845.541 0.771 -924.093 0.747

1ajsA -4597.06 0.264 -4597.06 0.264 -4551.029 0.264 -4597.06 0.264

1pamA -4217.03 0.680 -3997.312 0.687 -2981.082 0.746 -4107.983 0.694

1ped -2296.46 0.574 -1789.276 0.577 -1512.652 0.682 -1832.71 0.589

2myr -8545.30 0.318 -8516.803 0.359 -8163.882 0.355 -7483.46 0.347

4enl -783.58 0.600 -582.216 0.607 -216.91 0.635 -470.220 0.618

Table 2 Statistics test of Table 1 with Wilcoxon Signed Rank Test (based on negative ranks)

w.r.to WSPM w.r.to Corresponding BAliscore

Decomp2-Guide
tree

Decomp3-Guide
tree

Decomp4-Guide
tree

Decomp2-Guide
tree

Decomp3-Guide
tree

Decomp4-Guide
tree

’+’ ve Rank 29 33 32 23 29 29

’-’ ve Rank 2 0 0 6 4 2

Ties 3 1 2 5 1 3

Z -4.782 -5.012 -4.937 -2.520 -4.460 -4.174

Asymp.
Sig.

(2-tailed)

0.000 0.000 0.000 0.012 0.000 0.000
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• Selection of Parameters
In the proposed VDGA algorithm, we have used two
basic search operators: crossover and mutation. In order
to determine the probabilities of crossover and muta-
tion, we have excluded the decompositions from GA
and have carried out five different experiments (100%
crossover; 60% crossover & 40% mutation; 50% cross-
over & 50% mutation; 40% crossover & 60% mutation;
and 100% crossover), using ten randomly selected Bali-
Base datasets (version 2.0) [36]. Our GA with the 50%-
crossover & 50%-mutation option obtained the best
solutions for seven out of ten datasets, the 60%-cross-
over & 40%-mutation for two and 40%-crossover &
60%-mutation for one (but as the same as that of 50%-
crossover & 50%-mutation). The options 100%-crossover
achieved the best solution in one test case. However, the
option 100%-mutation did not achieve any best solution.
The solutions obtained by the 50%-crossover & 50%-
mutation for the other three datasets were close to the
best scores. The GA with 50% crossover & 50% muta-
tion (which is the 3rd mix) achieved an average improve-
ment of 4.66% over the first mix, 0.421% over the
second mix, 1.02% over the fourth mix and 4.93% over
the fifth mix. From the experimental performance, we
have decided to use 50% probabilities of crossover and
mutation with VDGA. For the 50% crossovers, single
point crossover is selected for half of them and double
point crossover is used for the other half. These selec-
tions were also decided based on experimental analysis.
To form the child population from the parent popula-

tion, we have divided the population into two groups
based on their fitness values. Then one individual is
selected from the top 50% and another from the bottom
50% for crossover. However, the new population is
formed by taking the best individuals from the com-
bined previous parents and children.
We have chosen the population size of 100 as used in

SAGA [28]. However, we have run experiments using
the population sizes 50, 100 and 200 with 50% crossover
& 50% mutation. The performance of VDGA with a
population size 100 is significantly better than that of
with a population size 50 and shows no significant dif-
ference with a population size 200.
• Effect of Operators and Initial Population
The proposed genetic algorithm, VDGA, uses an
improved initial population and new genetic operators
that contribute to it performing better than other algo-
rithms. To analyze the effect of these two components
on the algorithm’s performance, we have excluded the
decomposition part from our algorithm and tested two
sets of new experiments. In the first set, GA was run
with a randomly generated initial population (instead of
our improved initial population), and the second set
used a hill climbing approach (for searching instead of

our GA) starting from the improved initial population.
WSPM was used as the fitness measure. Based on the
corresponding BAliscore of the best found WSPM solu-
tion, the full algorithm achieved an average improve-
ment of 8.43% compared to the same with the randomly
generated initial population and 12.79% compared to
the hill climbing approach. The first set of experiments
thus proved the superiority of our proposed initial
population, and the second set demonstrated the
strength of our proposed genetic search operators.
• Staging of Decomposition with VDGA
To determine the appropriate stage for using decompo-
sition inside VDGA, we have carried out experiments
on eight datasets from BAliBase. We have tested our
algorithm using decompositions in three cases. In the
first case, the decompositions were used only after the
initial generation, in the second case only after each
child generation and finally after all generations. For
Decomp_2, the VDGA with the third case improved the
average solution by 1.74% better than the first case and
0.6% better than the second case. For Decomp_3, the
VDGA with the third case improved the average solu-
tion of 2.91% compared to the first case and 0.87% com-
pared to the second case. Moreover, Decomp_4 with the
third case improved the average solution by 3.08% more
than the first case but the second case performed better
than the third case. Although VDGA with the third case
for decomposition 4, did not perform better than with
the second case, with other decompositions (Decomp_2
and Decomp_3) VDGA achieved much better average
performance when the decompositions were used after
all (initial and each child) generations, in comparison to
the first and second cases. From these experimental
observations, we have decided to use the decomposition
technique after all generations.
• Performance of Decompositions with GA
In order to judge the performance of the Vertical Divi-
sion with GA, we have also performed experiments for
34 datasets from BAliBase 2.0, where we have consid-
ered the GA and also the VDGA (Vertical Decomposi-
tions with GA) algorithms. The algorithms were each
executed for 10 independent runs. For each dataset, the
best and average WSPM scores out of the 10 runs were
recorded, and the corresponding BAliscore of the best
found WSPM solution was also calculated. The best and
average WSPM scores and the corresponding BAliscore
are reported in Table 3. To compare with other results
and algorithms, we have carried out non-parametric sta-
tistical testing with the Wilcoxon Signed Rank test with
respect to the best WSPM score, the average score and
also with the corresponding BAliscore as shown in
Table 4.
Comparing with GA in terms of the best WSPM

score, VDGA with Decomp_2 was better in 27, and
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Table 3 Performance of Decomposition techniques with Genetic Algorithm

VDGA Without Decomposition VDGA Decomp_2 VDGA Decomp_3 VDGA Decomp_4

Reference
No.

Name of
Dataset

Best
WSPM

Ave.
WSPM

Corresponding
BAliscore

Best
WSPM

Ave.
WSPM

Corresponding
BAliscore

Best
WSPM

Ave.
WSPM

Corresponding
BAliscore

Best
WSPM

Ave.
WSPM

Corresponding
BAliscore

Ref. 2 1aboA -377.456 -454.63 0.796 -301.74 -355.41 0.723 -234.25 -278.37 0.791 -334.12 -448.12 0.679

1idy 408.98 380.81 0.989 489.85 480.74 0.981 516.31 498.62 0.992 430.70 303.702 0.992

1csy -69.93 -101.09 0.764 -62.52 -66.29 0.731 -51.203 -59.42 0.885 -71.592 -86.019 0.831

1r69 -28.937 -50.94 0.965 -1.453 -5.086 0.859 18.728 10.32 0.934 33.625 22.863 0.874

1tvxA 334.38 315.46 0.920 364.01 321.49 0.944 387.32 384.51 0.974 384.79 286.39 0.944

1tgxA 342.38 307.97 0.878 339.61 321.15 0.867 367.42 342.23 0.878 390.56 376.289 0.850

1ubi 36.30 4.93 0.767 42.1 6.782 0.732 48.14 22.39 0.778 45.71 39.649 0.794

1wit -120.21 -183.60 0.851 -108.91 -199.764 0.875 -102.45 -113.59 0.815 -115.34 -186.919 0.774

2trx 903.23 855.29 0.986 929.39 905.042 0.959 957.92 945.45 0.986 944.13 921.391 0.986

1sbp -19.79 -75.19 0.765 -12.58 -18.98 0.782 -34.26 45.66 0.772 -29.019 -34.766 0.778

1havA 49.62 33.57 0.879 189.46 213.42 0.884 227.25 147.09 0.846 240.39 210.34 0.884

1uky -84.92 -121.98 0.808 21.91 -9.297 0.845 69.57 42.91 0.891 -76.23 -106.861 0.872

2hsdA -389.79 -443.99 0.796 -365.25 -426.28 0.856 -309.64 -355.36 0.829 -334.22 -391.32 0.742

2pia -146.38 -223.91 0.826 -125.35 -143.025 0.847 -53.76 -75.84 0.850 -33.85 -48.513 0.839

3grs -142.16 -210.66 0.746 -118.195 -142.41 0.717 -136.70 -164.49 0.751 -69.65 -131.917 0.781

Kinase -191.16 -224.46 0.799 -129.92 -263.61 0.825 -180.11 -195.82 0.888 -145.51 -221.963 0.812

1ajsA 1956.94 1920.89 0.899 1938.87 1918.284 0.906 2011.39 1958.0 0.905 1900.35 1827.312 0.902

1cpt -435.69 -490.22 0.875 -402.59 -551.276 0.869 -325.41 -413.98 0.812 -410.893 -504.988 0.853

1lvl -826.15 -916.93 0.781 -720.022 -884.03 0.803 -688.34 -810.04 0.819 -772.43 -1003.08 0.816

1pamA -974.64 -1019.11 0.814 -986.278 -1040.69 0.857 -941.56 -1012.69 0.863 -939.83 -1045.98 0.853

1ped 1940.82 1862.50 0.912 1911.36 18670.39 0.935 2003.19 1996.74 0.947 1998.13 1979.245 0.943

2myr 13970.32 13865.22 0.822 13991.45 13292.104 0.806 14123.57 14115.91 0.830 14095.12 14042.641 0.808

4enl 1386.81 1299.04 0.896 1161.56 1107.331 0.890 1329.23 1248.89 0.889 920.982 895.165 0.899

Ref. 3 1idy -512.34 -588.37 0.601 -588.25 -660.92 0.446 -496.91 -554.09 0.599 -482.98 -518.89 0.569

1r69 -1103.34 -1174.5 0.709 -1099.76 -1181.71 0.724 -1081.08 -1124.14 0.733 -1056.54 -1083.03 0.765

1ubi -959.62 -1004.26 0.386 -948.10 -1018.84 0.398 -871.85 -960.94 0.414 -916.78 -1005.13 0.410

1wit -223.56 -263.99 0.758 -319.695 -332.971 0.833 -241.51 -309.58 0.873 -233.687 -273.302 0.867

1uky -3565.98 -3662.99 0.468 -3412.58 -3595.6 0.469 -3181.7 -3308.02 0.481 -3287.773 -3328.27 0.526

kinase -294.62 -357.70 0.828 -225.67 -276.98 0.870 -153.90 -213.56 0.890 -193.57 -248.795 0.887

1ajsA -4199.49 -4250.98 0.311 -3375.033 -3467.24 0.383 -3136.73 -3463.15 0.453 -3339.93 -3439.16 0.408

1pamA -2106.98 -2163.54 0.835 -1989.045 -2179.37 0.853 -1843.03 -2015.55 0.788 -1889.85 -1903.52 0.792

1ped -1199.41 -1251.38 0.813 -683.44 -811.29 0.848 -411.75 -457.17 0.893 -721.65 -801.563 0.783

2myr -6498.07 -6574.31 0.513 -6180.015 -6305.04 0.586 -5523.14 -5801.53 0.651 -5962.83 -6103.28 0.519

4enl -45.86 -72.34 0.800 98.51 19.426 0.836 162.46 121.04 0.866 102.08 80.624 0.866
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Table 4 Statistics test of Table 3 with Wilcoxon Signed Ranks Test

Based on Best WSPM score

VDGA
(Decomp2-without_Decomp.)

VDGA
(Decomp3-without_Decomp.)

VDGA
(Decomp4-without_Decomp.)

VDGA
(Decomp3-Decomp2)

VDGA
(Decomp4-Decomp2)

VDGA
(Decomp4-Decomp3)

’+’ ve Rank 27 31 29 31 22 11

’-’ ve Rank 7 3 5 3 12 23

Ties 0 0 0 0 0 0

Z -3.189a -4.625a -4.026a -4.625a -1.975a -2.983b

Asymp. Sig. (2-
tailed)

0.001 0.000 0.000 0.000 0.048 0.003

Based on Avg. WSPM score

VDGA(Decomp2-
without_Decomp.)

VDGA(Decomp3-
without_Decomp.)

VDGA(Decomp4-
without_Decomp.)

VDGA(Decomp3-
Decomp2)

VDGA(Decomp4-
Decomp2)

VDGA(Decomp4-
Decomp3)

’+’ ve Rank 22 32 24 31 22 11

’-’ ve Rank 12 2 10 3 12 23

Ties 0 0 0 0 0 0

Z -2.197a -4.744a -2.949a -4.078a -1.342a -2.829b

Asymp. Sig. (2-
tailed)

0.028 0.000 0.003 0.000 0.180 0.005

Based on Corresponding BAliscore

VDGA(Decomp2-
without_Decomp.)

VDGA(Decomp3-
without_Decomp.)

VDGA(Decomp4-
without_Decomp.)

VDGA(Decomp3-
Decomp2)

VDGA(Decomp4-
Decomp2)

VDGA(Decomp4-
Decomp3)

’+’ ve Rank 22 24 23 26 19 9

’-’ ve Rank 12 8 10 8 13 22

Ties 0 2 1 0 2 3

Z -1.496a -3.020a -1.439a -2.967a -0.926a -2.215b

Asymp. Sig. (2-
tailed)

0.135 0.003 0.150 0.003 0.355 0.027

a. Based on negative ranks.

b. Based on positive ranks.
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worse in 7 test cases as shown in Table 3 and Table 4.
The Z value (-3.189) and the significant test result (P =
0.001 < = 0.05) in Table 4 show that VDGA with
Decomp_2 is significantly better than GA. VDGA with
Decomp_3 found better solution in 31 test cases, and
the statistical test results (Z=-4.625; P = 0.00) prove that
the VDGA with Decomp_3 is also significantly better
than GA. Moreover, VDGA with Decomp_4 is also sig-
nificantly better than GA. In doing so it found better
solutions in 29 test cases and worse in 5 test cases.
Among these three decompositions, VDGA with
Decomp_3 successfully found better MSAs in a maxi-
mum of 31 test cases out of 34.
When considering the average WSPM score, the

VDGA with all three decompositions (Decomp_2,
Decomp_3 and Decomp_4) are significantly better than
GA. In doing so VDGA with Decomp_2 was better in
22 test cases, Decomp_3 was better in 32 and
Decomp_4 was in 24. In this comparison, VDGA with
Decomp_3 successfully found better solutions in a maxi-
mum number of test cases in comparison to the other
two decompositions. The statistical test results in Table
4 show that VDGA with Decomp_2 is not significantly
different than VDGA with Decomp_4.
Also comparing with the corresponding BAliscore of

the best finding WSPM solution, VDGA with Decomp_2
was better in 22 test cases, Decomp_3 was in 24 and
Decom_4 was in 23. The significance test in Table 4
shows that VDGA with Decomp_2 and also with
Decomp_4 are not significantly different than GA. How-
ever, VDGA with Decomp_3 is significantly better than
GA. Moreover, VDGA with Decomp_2 and with
Decomp_4 are not significantly different. VDGA with
Decomp_3 is significantly better than the two other
decompositions.
From the above experimental results and their statisti-

cal analyses, it is clear that VDGA with Decomp_3
found better solutions in more test cases than the other
two decompositions and GA, and it is significantly bet-
ter than GA and VDGA with the other two decomposi-
tions with respect to the best and average WSPM score
and the corresponding BAliscore. As we have considered
test sequences with length of up to 1000 in this
research, we considered that the appropriate number of
divisions for VDGA is 3 (Decomp_3) for sequences up
to 1000 length. Further experiments would be required
to determine the best setting for longer sequences.
• Computational Effort and Convergence
The computational time required for finding good mul-
tiple sequence alignments is dependent on the sequence
length, the number of sequences, and the similarities of
the sequences. In addition, the choice of algorithmic
parameters also plays an important role. We have tried
to develop a relationship between the computational

time required (with our algorithm) and the sequence
length and sequence numbers. However, it is hard to
make any firm conclusion based on linear/nonlinear
regression analysis.
To show the convergence behavior of our algorithm

(VDGA with Decomp_3), we have plotted the best and
the average WSPM scores against the number of gen-
erations. As examples, three such plots (for one specific
run) for three datasets from reference 3 are presented in
Figure 10. These graphs show that our algorithm
improved both the best and the average scores very
rapidly at the initial stage of the search process and that
the best score then converged to a solution. This is the
type of pattern we expect from good search algorithms.
As of the plots, although the average scores do not con-
verge, the rate of improvement for the best score in the
later generations of the algorithm is insignificant.

Quality of Solutions
To judge the quality of the solutions produced by our
algorithm, we have considered only those benchmark
datasets and algorithms that were considered in the
papers reporting MSA-GA and RBT-GA, and that used
BAliscore (an open source program of the BAliBase
benchmark) to measure the accuracy of the solutions.
The authors of MSA-GA considered the best solution of
five runs for each dataset and reported the BAliscore.
Moreover, the authors of RBT-GA also reported the
best solution of ten runs with BAliscore. In our algo-
rithm, we considered ten independent runs of each data-
set and have used the corresponding BAliscore of the
best found WSPM solution. BAliscore scores a solution
(multiple sequence alignment) between 0.0 and 1.0. If
the solution is identical with the corresponding manu-
ally created reference alignment then the score is 1.0. If
nothing matches with the reference alignment then the
score is 0.0. However, if some parts match with the
reference alignment, then the score is in between 0.0
and 1.0.
In MSA-GA, the authors considered 28 test datasets

from references 1 to 5 and reference 8. Among them,
18 datasets were from reference 1 and two were from
each of the other reference datasets. However, currently
BAliscore does not work for reference set 8. This is
because of insufficient information supplied either by
the reference alignment file or by the annotation file.
Therefore, we excluded the two datasets of reference 8,
thus leaving 26 for comparison. In RBT-GA, the author
considered all 23 test datasets of reference 2, and 11 out
of 12 from reference 3. In total, we considered 56 test
datasets, including 18 from reference 1, 23 (all) from
reference 2, 11 from reference 3, and 2 from each of
references 4 and 5. All these datasets belong to the
BAliBase 2.0 benchmark datasets.
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Problem Solving with VDGA_Decomp_3
For each of the 56 datasets, we have executed our algo-
rithm for 10 independent runs and recorded the best,
worst, and average WSPM scores with standard

deviation, and the corresponding BAliscore of the best
WSPM score in Table 5. The WSPM scores could be
either positive or negative, as it depends on the level of
similarity among the residues in the sequences. This is

Figure 10 Graphical presentations of the performance of the VDGA_Decomp_3 method w.r.to the Best and Average WSPM score per
generation.
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Table 5 The Summery of the test results of VDGA_Decomp_3 method

Name of Experiment Sequence Number Sequence Length With WSPM

Best Score Avg. Score Std Corresponding BAliscore

Ref. 1 1idy 5 58 69.45 53.21 4.56 0.573

1tvxA 4 69 34.98 21.32 7.91 0.267

1uky 4 220 9.039 -25.48 19.30 0.449

Kinase 5 276 -90.18 -91.90 1.46 0.545

1ped 3 374 41.21 25.91 8.98 0.482

2myr 4 474 -80.324 -82.725 3.26 0.359

1ycc 4 116 -18.313 -32.67 9.21 0.755

3cyr 4 109 21.6 14.56 4.85 0.821

1ad2 4 213 59.61 43.67 6.98 0.941

1ldg 4 675 89.21 51.81 7.91 0.906

1fieA 5 442 236.42 235.84 0.47 0.930

1sesA 5 63 283.20 275.60 5.41 0.962

1krn 4 82 70.21 62.45 1.34 0.960

2fxb 5 63 141.78 141.78 0 0.978

1amk 5 258 105.89 78.31 12.21 0.984

1ar5A 4 203 61.34 34.56 6.78 0.938

1gpb 5 828 847.84 846.94 0.94 0.984

1taq 5 928 612.66 608.22 5.10 0.959

Ref. 2 1aboA 15 80 -234.25 -278.37 35.77 0.691

1idy 19 60 516.31 498.62 11.32 0.992

1csy 19 99 -51.203 -59.42 6.61 0.885

1r69 20 76 18.728 10.32 8.52 0.834

1tvxA 16 69 387.32 384.51 1.69 0.974

1tgxA 19 71 367.42 342.23 27.92 0.878

1ubi 19 60 48.14 22.39 18.85 0.778

1wit 20 106 -102.45 -113.59 8.83 0.815

2trx 19 94 957.92 945.45 8.01 0.986

1sbp 16 262 -34.26 45.66 8.49 0.772

1havA 16 242 227.25 147.09 52.73 0.846

1uky 23 225 69.57 42.91 20.69 0.891

2hsdA 20 255 -309.64 -355.36 32.31 0.829

2pia 16 294 -53.76 -75.84 14.46 0.850

3grs 15 237 -136.70 -164.49 25.07 0.751

Kinase 18 287 -180.11 -195.82 18.76 0.888

1ajsA 18 389 2011.39 1958.0 39.43 0.905

1cpt 15 434 -325.41 -413.98 68.15 0.812

1lvl 23 473 -688.34 -810.04 73.21 0.819

1pamA 18 511 -941.56 -1012.69 69.29 0.863

1ped 18 388 2003.19 1996.74 6.95 0.947

2myr 17 482 14123.57 14115.91 20.69 0.830

4enl 17 440 1329.23 1248.89 48.67 0.889

Ref. 3 1idy 27 60 -496.91 -554.09 35.87 0.599

1r69 23 78 -1081.08 -1124.14 29.22 0.733

1ubi 22 97 -871.85 -960.94 58.08 0.414

1wit 19 102 -241.51 -309.58 38.91 0.873

1uky 24 220 -3181.7 -3308.02 113.83 0.481
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because, if the residues among the comparable
sequences are similar, or partially similar, it needs a
small number of null (’-’) symbols to make an alignment
of the sequences. In this case, the WSPM score of this
alignment is positive. On the other hand, if the dissimi-
lar parts among the sequences are high, a large number
of null symbols are added to the alignment. In this case,
the WSPM score becomes negative because of gap
penalties. Note that high positive values and low nega-
tive values are considered as good scores. We must also
mention here that the average scores in the 10 runs
were not very different and hence the standard devia-
tions were small.
For comparisons with other methods, we have taken

from the published literature [34-36,51] the benchmark
BAliscore results of those methods. The authors Gondro
and Kinghorn (2007) in MSA-GA [34], Taheri and
Zomaya, (2009) in RBT-GA [35], and Bahr et al. (2000)
in BAliBase [36] reported only SPS scores for compari-
sons. Therefore, for them we have compared only the
SPS scores. However, we also recorded the CS score of
the proposed VDGA method from the BAliscore pro-
gram. The comparisons are discussed below.

Comparing VDGA with MSA-GA and Other Methods
To compare with the other methods, we have consid-
ered all three decompositions (Decomp_2, Decomp_3
and Decomp_4) with VDGA. The authors of MSA-GA
[33] selected 28 test cases from references 1 to reference
5 and reference 8. As discussed earlier, we have consid-
ered 26 out of these 28 test cases. The results are pro-
vided in Table 6 and are plotted in Figure 11.
In Table 6, the bold face data represents the best per-

forming scores among the methods. From Table 6 and
Figure 11, it is observed that VDGA with three decom-
positions achieved more accurate solutions than the
others, in 19 out of 26 test cases, while Decomp_2 was
better in three, Decomp_3 was in eleven and Decomp_4
was in six test cases. MSA-GA achieved better MSAs
for only two test cases, MSA-GA w/prealign for four,

and CLUSTAL W for one test case. However, both
MSA-GA w/prealign and CLUSTAL W found the same
solution in one test case. In seven test cases where
VDGA did not achieve the best solutions, the solutions
are close to the best solutions reported in the table. The
VDGA with Decomp_3 achieved accurate results in the
maximum number of test cases reported in this table.
Based on the average scores reported in the bottom

row in Table 6 and plotted in Figure 12, the VDGAs
with decomposition (Decomp_2, Decomp_3 and
Decomp_4) achieved higher scores and among these
VDGA_Decomp_3 was the best for the 26 datasets.
From the experimental results, we can claim that VDGA
had better performance on these 26 test cases. The aver-
age CS score of VDGA for the MSA-GA selected data-
sets was 0.663.

Comparing VDGA with RBT-GA
We have also compared our results with RBT-GA. We
have considered all of the 34 datasets and their approxi-
mate results as reported in the RBT-GA paper [35]. The
summary of the experimental results of references 2 and
3 are presented in Table 7 and Table 8 and are plotted
in Figure 13 and Figure 14 respectively.
• Performance of VDGA in Reference 2
The 23 datasets in this reference are significantly differ-
ent in lengths and numbers of their sequences. They
also contain what is called “orphan sequences”. VDGA
performed differently with different datasets. To judge
the performance of VDGA with respect to BAliscore, we
have compared with SAGA, RBT-GA, PRRP, CLUS-
TALX, DIALIGN, HMMT, SB_PIMA, ML_PIMA,
MULTALIGN and PILEUP8. Table 7 and Figure 13
show that for the 23 test cases, the VDGAs (Decomp_2,
Decomp_3 and Decomp_4 together) were successful in
finding more accurate solutions than the others in 21
test cases, and RBT-GA was successful in finding better
solutions in 3 out of 23 test cases. RBT-GA and VDGA
achieved the same best value in one test case. Among
the successful 21 test cases, VDGA with Decomp_2

Table 5 The Summery of the test results of VDGA_Decomp_3 method (Continued)

kinase 18 287 -153.90 -213.56 33.55 0.890

1ajsA 28 396 -3136.73 -3463.15 203.97 0.453

1pamA 19 511 -1843.03 -2015.55 127.14 0.788

1ped 21 388 -411.75 -457.17 48.81 0.893

2myr 21 482 -5523.14 -5801.53 305.24 0.651

4enl 19 427 162.46 121.04 37.29 0.866

Ref. 4 1dynA 6 848 -101073.19 -101151.87 41.21 0.033

Kinase2 7 468 -23090.7 -23051 23.12 0.542

Ref. 5 2cba 8 328 -755.07 -781.91 24.65 0.835

S51 15 301 -1657.26 1821.16 103.23 0.743
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found the best BAliscore in 6 test cases, VDGA with
Decomp_4 in four test cases and VDGA with Decomp_3
successfully found better solutions in 11 test cases. In 3
test cases, where VDGA could not achieve the best solu-
tion, it was close to the best solution.
The average scores are also shown in Table 7 and are

plotted in Figure 15. This figure shows that all vertical
decompositions achieved higher average accuracy than
the other methods considered in this section. Of those,
VDGA_Decomp_3 achieved the highest average accu-
racy, as it performed better for almost all test cases in
reference 2. The average CS score of VDGA for refer-
ence 2 was 0.814.
• Performance of VDGA in Reference 3
Reference 3 contains sub-groups of sequences where the
residue identities between groups are less than 25%. In
this paper, we considered 11 test cases out of 12, and
the experimental results that are presented in Table 8
and Figure 14 show that VDGA found more accurate

MSAs in 9 test cases, where VDGA_Decomp_2 was best
in 1 test case, Decomp_3 in 5 and Decomp_4 in 2 test
cases. VDGA_Decomp_3 and 4 found the same highest
score in one test case. Whereas SAGA was successful in
finding the best score in one, PRRP in one and
ML_PIMA in one test case. PRRP and ML_PIMA found
the same solution for one test case (1r69). Figure 14
shows that for some test cases, most of the methods
could not find any similarities in their solutions, in com-
parison to the reference alignments. Therefore, these
methods received zero score. PRRP and ML_PIMA
achieved the same best score in one test case, but both
received a zero score for another test case. However,
VDGA did not obtain any zero score.
The overall performance of all the methods for this

reference is presented in Figure 16. Although the VDGA
method did not achieve high accuracy solutions in some
test cases, the average performance of this method with
three decompositions are clearly better than the others

Table 6 Experiments on Selected Datasets of MSA-GA

Reference No. Name of
Dataset

MSA-GA MSA-GA
w/prealign

ClUSTAL W VDGA_ Decomp_2 VDGA_Decomp_3 VDGA_Decomp_4

Ref. 1 1idy 0.427 0.438 0.500 0.550 0.651 0.654

1tvxA 0.295 0.209 0.042 0.316 0.316 0.310

1uky 0.443 0.405 0.392 0.416 0.459 0.464

Kinase 0.295 0.488 0.479 0.531 0.545 0.548

1ped 0.501 0.687 0.592 0.443 0.482 0.451

2myr 0.212 0.302 0.296 0.347 0.359 0.282

1ycc 0.650 0.653 0.643 0.752 0.839 0.685

3cyr 0.772 0.789 0.767 0.797 0.898 0.797

1ad2 0.821 0.845 0.773 0.959 0.950 0.941

1ldg 0.895 0.922 0.880 0.914 0.946 0.903

1fieA 0.843 0.942 0.932 0.926 0.960 0.927

1sesA 0.620 0.913 0.913 0.917 0.962 0.923

1krn 0.908 0.895 0.895 0.942 0.960 0.892

2fxb 0.941 0.985 0.985 0.978 0.978 0.978

1amk 0.965 0.959 0.945 0.982 0.984 0.982

1ar5A 0.812 0.946 0.946 0.942 0.968 0.954

1gpb 0.868 0.948 0.947 0.976 0.984 0.983

1taq 0.525 0.826 0.826 0.938 0.959 0.944

Ref. 2 2pia 0.761 0.768 0.766 0.847 0.850 0.839

1pamA 0.755 0.758 0.757 0.857 0.863 0.853

Ref. 3 Kinase 0.58 0.619 0.619 0.870 0.890 0.887

1pamA 0.703 0.744 0.743 0.853 0.788 0.792

Ref. 4 1dynA 0.038 0.034 0.000 0.029 0.033 0.031

Kinase2 0.71 0.635 0.630 0.330 0.542 0.478

Ref. 5 2cba 0.422 0.621 0.628 0.839 0.835 0.846

S51 0.528 0.73 0.75 0.650 0.743 0.756

Average Score 0.627 0.695 0.679 0.727 0.744 0.735

Naznin et al. BMC Bioinformatics 2011, 12:353
http://www.biomedcentral.com/1471-2105/12/353

Page 18 of 26



as shown in Figure 16. The average scores of VDGA_-
Decomp_2 and Decomp_4 are higher than other meth-
ods, while VDGA_Decomp_3 achieved the highest
average score. Therefore, we can conclude that the over-
all performance of VDGA in reference 3 is also better
than the other methods mentioned earlier. The average
CS score of our VDGA approach for the RBT-GA
selected datasets for reference 3 was 0.524.

Statistical Analysis
To study the difference between any two stochastic
algorithms in a more meaningful way, we have per-
formed statistical significant testing. We have chosen a
non-parametric test, Wilcoxon Signed Rank test [50], as
it allows us to judge the difference between paired

scores when it cannot make the assumption required by
the paired-samples t test, such as that the population
should be normally distributed. The results based on the
best found solutions of VDGA are presented in Table 9,
where W (= W+ or W-) is the sum of ranks based on
the absolute value of the difference between two test
variables. The sign of the difference between two inde-
pendent samples is used to classify cases into one of
two samples: differences below zero (negative rank W- ),
or above zero (positive rank W+ ). As a null hypothesis,
it is assumed that there is no significant difference
between two samples. The alternative hypothesis is that
there is a significant difference in the fitness values of
the two samples. Hence, if the hypothesis test rejects
the null hypothesis, then there is a significant difference,

Figure 11 Graphical presentations of the experimental results on MSA-GA selected datasets.
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otherwise there is no significant difference. The number
of test problems is N = 26 and 34 for MSA-GA and
RBT-GA respectively, and we have used the 5% signifi-
cance level. Based on the test results/rankings, we
assigned two words (’yes’ for P < = 0.05 or ‘no’ for P >
0.05 ) for the comparison of any two algorithms (as
shown in the fifth column), where ‘yes’ means that the
VDGA algorithm (with Decomp_3) is significantly dif-
ferent and better than the second, ‘no’ means that this is
worse and there is no significant difference between the
two algorithms, and ‘same’ means there is no significant
difference and VDGA performed the same as the sec-
ond. We tested for significant with the BAliscore corre-
sponding to the best found WSPM scores produced by
VDGA, in comparison to the published BAliscore results
of the other methods.
In this comparison, we have considered only

Decomp_3 with VDGA, as we have found from the pre-
ceding experiments that Decomp_3 is the best for
VDGA. Therefore, to test the significance we have con-
sidered only VDGA_Decomp_3. In Table 9, it shows
that there is a significant difference when VDGA_De-
comp_3 is compared with MSA-GA, MSA-GA w/prea-
lign and CLUSTAL W for the dataset used in MSA-GA,
and when comparing VDGA_Decomp_3 with PRRP,
CLUSTALX, SAGA, DIALIGN, HMMT, SB_PIMA,
ML_PIMA, MULTALIGN, PILEUP8 and RBT-GA for
the dataset used in RBT-GA, as indicated by the hypoth-
esis test decision and the significance values. VDGA_De-
comp_3 is also significantly different than
VDGA_Decomp_2 and VDGA_Decomp_4 for all the
test cases. From the experimental observations, it is

clear that VDGA is significantly better according to the
Wilcoxon Signed Ranks test.

Conclusions
In this paper, a new GA based algorithm with Vertical
Decomposition (VDGA) has been proposed to solve
multiple sequence alignment problems. This approach
works with the solution of a guide tree. To generate an
initial population, two mechanisms are used. To assess
the performance of the algorithm, a number of experi-
ments were carried out for deciding the initial popula-
tion, the genetic operator, an appropriate set of
parameters for GA and of the suitable number of
decompositions.
An initial experiment was run to determine the para-

meters, and from the experimental results, the probabil-
ity of crossover and mutation was set to 50%-50%. A
simple hill climbing method with the standard VDGA
initial population was performed to verify the perfor-
mance of the genetic operators. Moreover, the VDGA
method was also run with a randomly generated initial
population to judge the performance of the initial gen-
eration. To test the performance of the decomposition,
this technique was applied on the solution of the guide
tree as well as inside the GA. The experimental results
showed that the decomposition technique can success-
fully find better multiple sequence alignments, and also
that the optimum number of decompositions for VDGA
is 3 (i.e. Decomp_3).
To evaluate our proposed approach, we considered a

good number of benchmark datasets from BAliBase 2.0,
so as to cover all the test sets of MSA-GA and RBT-

Figure 12 Overall Performance of all methods in MSA-GA selected datasets.
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Table 7 Experiments on Reference 2 Datasets of BAliBase

Reference
No.

Name of
Dataset

PRRP CLUSTALX SAGA DIALIGN HMMT SB_PIMA ML_PIMA MULTALIGN PILEUP8 RBT-GA VDGA_Decomp_2 VDGA_Decomp_3 VDGA_Decomp_4

Ref. 2 1aboA 0.256 0.65 0.489 0.384 0.724 0.391 0.22 0.528 0.000 0.812 0.723 0.791 0.679

1idy 0.37 0.515 0.548 0.000 0.353 0.000 0.000 0.401 0.000 0.997 0.981 0.992 0.992

1csy 0.35 0.154 0.154 0.000 0.000 0.000 0.000 0.154 0.114 0.735 0.731 0.885 0.831

1r69 0.675 0.675 0.475 0.675 0.000 0.675 0.675 0.675 0.45 0.9 0.859 0.934 0.874

1tvxA 0.207 0.552 0.448 0.000 0.276 0.241 0.241 0.138 0.345 0.891 0.944 0.974 0.944

1tgxA 0.695 0.727 0.773 0.63 0.622 0.678 0.543 0.696 0.318 0.835 0.867 0.878 0.850

1ubi 0.056 0.482 0.492 0.000 0.053 0.129 0.129 0.000 0.000 0.795 0.732 0.778 0.794

1wit 0.76 0.557 0.694 0.724 0.641 0.469 0.463 0.5 0.476 0.825 0.875 0.815 0.774

2trx 0.87 0.87 0.87 0.734 0.739 0.85 0.702 0.87 0.87 0.982 0.959 0.986 0.986

1sbp 0.231 0.217 0.374 0.043 0.214 0.043 0.054 0.186 0.177 0.778 0.782 0.772 0.778

1havA 0.52 0.48 0.448 0.000 0.194 0.259 0.238 0.5 0.493 0.792 0.884 0.846 0.884

1uky 0.351 0.656 0.476 0.216 0.395 0.256 0.306 0.585 0.562 0.625 0.845 0.891 0.872

2hsdA 0.404 0.484 0.498 0.262 0.423 0.39 0.561 0.593 0.278 0.745 0.856 0.829 0.742

2pia 0.767 0.752 0.763 0.612 0.647 0.73 0.695 0.765 0.766 0.730 0.847 0.850 0.839

3grs 0.363 0.192 0.282 0.350 0.141 0.183 0.211 0.192 0.159 0.755 0.717 0.751 0.781

Kinase 0.896 0.848 0.867 0.692 0.749 0.755 0.651 0.83 0.799 0.712 0.825 0.888 0.812

1ajsA 0.227 0.324 0.311 0.000 0.242 0.000 0.000 0.311 0.227 0.892 0.906 0.905 0.902

1cpt 0.821 0.66 0.776 0.425 0.388 0.184 0.277 0.777 0.688 0.584 0.869 0.812 0.853

1lvl 0.772 0.746 0.726 0.783 0.539 0.62 0.688 0.614 0.678 0.567 0.803 0.819 0.816

1pamA 0.711 0.761 0.623 0.576 0.53 0.393 0.386 0.566 0.702 0.66 0.857 0.863 0.853

1ped 0.881 0.834 0.835 0.773 0.696 0.651 0.647 0.741 0.749 0.78 0.935 0.947 0.943

2myr 0.582 0.904 0.825 0.84 0.443 0.727 0.75 0.894 0.786 0.675 0.806 0.830 0.808

4enl 0.668 0.375 0.739 0.122 0.213 0.096 0.092 0.384 0.224 0.812 0.890 0.889 0.899

Average Score 0.541 0.583 0.586 0.384 0.401 0.379 0.371 0.517 0.429 0.777 0.848 0.866 0.849
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Table 8 Experiments on Reference 3 Datasets from BAliBase

Reference
No.

Name
of

Dataset

PRRP CLUSTALX SAGA DIALIGN HMMT SB_PIMA ML_PIMA MULTALIGN PILEUP8 RBT-GA VDGA_Decomp_2 VDGA_Decomp_3 VDGA_Decomp_4

Ref. 3 1idy 0.000 0.273 0.364 0.000 0.227 0.000 0.000 0.045 0.000 0.546 0.446 0.599 0.569

1r69 0.905 0.524 0.524 0.524 0.000 0.000 0.905 0.000 0.000 0.374 0.724 0.733 0.765

1ubi 0.415 0.146 0.585 0.000 0.366 0.000 0.000 0.000 0.268 0.31 0.398 0.414 0.410

1wit 0.742 0.565 0.484 0.500 0.323 0.645 0.323 0.242 0.210 0.78 0.833 0.873 0.867

1uky 0.139 0.130 0.269 0.139 0.037 0.083 0.148 0.241 0.083 0.35 0.469 0.481 0.526

kinase 0.783 0.720 0.758 0.650 0.478 0.541 0.682 0.688 0.599 0.697 0.870 0.890 0.887

1ajsA 0.128 0.163 0.186 0.000 0.006 0.000 0.000 0.000 0.110 0.18 0.383 0.453 0.408

1pamA 0.683 0.678 0.579 0.683 0.169 0.546 0.590 0.546 0.754 0.525 0.853 0.788 0.792

1ped 0.679 0.627 0.646 0.641 0.172 0.450 0.507 0.665 0.722 0.425 0.848 0.893 0.783

2myr 0.646 0.538 0.494 0.272 0.101 0.278 0.494 0.253 0.310 0.33 0.586 0.651 0.519

4enl 0.736 0.547 0.672 0.050 0.050 0.393 0.438 0.652 0.498 0.68 0.836 0.866 0.866

Average Score 0.532 0.446 0.506 0.314 0.175 0.267 0.372 0.303 0.323 0.472 0.659 0.695 0.672
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Figure 13 Graphical presentations of the experimental results on reference 2 datasets.

Figure 14 Graphical presentations of the experimental results on reference 3 datasets.
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GA. The proposed method was optimized based on the
Weighted Sum of Pair score. Therefore, the BAliscore
corresponds to the best WSPM score. This was used to
compare with other methods, as the BAliscore is widely
used as the measure of quality/accuracy of multiple
sequence alignments. The experimental results showed
that VDGA performed better for most of the test cases.
Although the solution of VDGA was not the best for
some test cases, it was close to the best for those cases.
The overall behavior of our proposed method outper-
formed all of the other methods considered in this

paper. VDGA performed better than the others mainly
because of our proposed initial generation, the genetic
operators, the operators setting, and most importantly
its decomposition technique.
After statistical and experimental analysis, we can

safely conclude that the proposed method, VDGA with
Decomp_3, can be considered as an effective method for
solving multiple sequence alignment problems.
Future studies intend to extend the experiments and

to find a more efficient way for decomposition of
longer and many sequences. We also want to optimize

Figure 15 Overall Performance of all methods in reference 2 datasets.

Figure 16 Overall performance of all methods in reference 3 datasets.
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VDGA with different scoring schemes, such as the
recent Log Expectation scoring function [17], as well
as the consistency-based objective functions of COF-
FEE [52] and T-COFFEE [12], in order to test its
performance.
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