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Abstract

demonstrates the robustness of GFD.

Background: The Gene Ontology (GO) provides a controlled vocabulary for describing the functions of genes and
can be used to evaluate the functional coherence of gene sets. Many functional coherence measures consider
each pair of gene functions in a set and produce an output based on all pairwise distances. A single gene can
encode multiple proteins that may differ in function. For each functionality, other proteins that exhibit the same
activity may also participate. Therefore, an identification of the most common function for all of the genes
involved in a biological process is important in evaluating the functional similarity of groups of genes and a
quantification of functional coherence can helps to clarify the role of a group of genes working together.

Results: To implement this approach to functional assessment, we present GFD (GO-based Functional Dissimilarity),
a novel dissimilarity measure for evaluating groups of genes based on the most relevant functions of the whole
set. The measure assigns a numerical value to the gene set for each of the three GO sub-ontologies.

Conclusions: Results show that GFD performs robustly when applied to gene set of known functionality (extracted
from KEGGQ). It performs particularly well on randomly generated gene sets. An ROC analysis reveals that the
performance of GFD in evaluating the functional dissimilarity of gene sets is very satisfactory. A comparative
analysis against other functional measures, such as GS? and those presented by Resnik and Wang, also

Background

The Gene Ontology (GO) [1] is a cross-species, con-
trolled vocabulary describing three major functional
characteristics of gene products: molecular function, cel-
lular component and biological process. The information
is structured as a directed acyclic graph for each sub-
ontology. Each node in the graph represents a class of
genes identified by a GO-term. Each edge represents the
relationship between the terms it connects, which can be
“is a”, “is a part of”, or “regulates”, meaning that a child
class is either a part of the parent, is a more specific
example of the parent class or is regulated (positively or
negatively) by the parent, respectively.

The GO provides a controlled vocabulary for describ-
ing gene product functions and can be used to evaluate
the functional coherence of gene sets. There are two
major approaches for analyzing GO-based gene annota-
tions: enrichment tools and semantic similarity measures.
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Enrichment tools

Enrichment tools are used to determine the common fea-
tures of a set of genes by examining annotations and
finding GO-terms that they share to a significant extent.
For example, the To-Go java navigation tool [2] allows
users to navigate the GO with various kinds of queries.
There are also enrichment tools that provide ontological
analyses with different statistical models, including the
hypergeometric, binomial, Pearsons’s chi-squared and
Fisher’s exact tests [3]. GeneTools [4] is a web service
that provides access to several databases such as UniGene
[5], Entrez Gene [6], Swiss-Prot [7] and Gene Ontology.
It includes a tool for visualisation and statistical hypoth-
esis testing to assess the similarity of GO-term annota-
tions in different gene lists. The local graph structure of
GO hierarchy is available from GOLEM (Gene Ontology
Local Exploration Maps) [8]. It also supports rapid analy-
sis of an input list of genes to find enriched GO terms.
FuncAssociate [9], takes a list of genes as an input and
indicates whether a significant number of the genes share
a certain GO term. Based on the same concept of GO
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enrichment, the tools Bingo [10] and Ease (DAVID) [11]
take a set of genes and identify the saturated terms.

Semantic similarity measures

In general, GO-based enrichment tools are used to ana-
lyse GO term in large-scale gene sets. However, while
they all determine whether an observed number of GO
annotations in a set is significant, they lack a quantitative
similarity measure that would allow for a complete com-
parable analysis of gene sets or models produced by
microarray analysis. Although many enrichment tools are
used for analyzing microarray data and give a level of sig-
nificance for the designed enrichment, they only inform
about the data distribution and do not give information
on the inherent relationship, which is critical at compar-
ing sets of genes.

To address this issue, semantic similarity methods have
been developed. This category comprises GO-term, gene-
product and gene-similarity approaches. GO-term simi-
larity approaches have been presented by Couto et al.
[12], Kriventseva et al. [13], and Lee et al. [14] and are
based on measures [15-17] originally developed for other
semantic taxonomies. These measures determine the
similarity of two GO-terms using the information con-
tent for their lowest common ancestor. Guo et al. [18-20]
evaluated these methods and showed that Resnik’s
method is better than the others in terms of correlating
gene sequence similarities and gene expression profiles.
del Pozo et al. [21] proposed a new method for quantify-
ing functional distances between GO terms. Their
method is based on the simultaneous occurrence of
terms in the same set of Interpro [22] entries does not
rely on the structure of the GO itself. In the same vein,
Wang et al. [23] presented a method to encode a GO-
term’s semantics as a numeric value by aggregating the
semantic contributions of ancestor terms. This proposal
was used to develop a clustering tool to study the genes
in pathways retrieved from the Saccharomyces Genome
Database (SGD), and the clustering results showed that
Wang’s method is more consistent than Resnik’s method.

The relationships of gene-products are also of interest
to researchers. Until recently, the most common methods
for measuring gene-product functional similarity were
pairwise approaches based on GO-term. Lord et al. [24]
were the first to apply this methodology, using the aver-
age of all pairwise similarities. The same approach was
used by Liu et al. [25], Azuaje et al. [26] and Chagoyen et
al. [27]. Lee et al. [14] and Guo et al. [28] used the maxi-
mum of all pairwise similarities; whereas Brameier and
Wiuf [29] and Wu et al. [30] used a composite average in
which only the best-matching term pairs are considered
(best-match average). Tao et al. [31] proposed a variant,
in which only those pairwise measures that exceed a
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threshold were considered. The performances of these
pairwise-based measures were tested by Xu et al. [32].
They concluded that the method based on the best-
match average consistently gave the best performance
out of all of the tests that were studied.

Other methods exist for measuring gene-product func-
tional similarity that are not based on pairwise approaches.
Lerman and Shakhnovich [33] presented several manifold-
embedding techniques for computing distances between
GO functional annotations and for estimating functional
distances between protein domains. Likewise, Schlicker et
al. [34,35] proposed a method for measuring functional
similarity by combining different ontologies to produce a
single similarity score. Their method, named FunSim, is
based on Schlicker’s measure (simpg,;), which combines
both of the Lin and Resnik GO-term similarity measures.

Bastos et al. [36] proposed three different measures:
GO, currence to measure the functional coherence of a list of
gene products; GOy, to indicate how well a cluster of
genes has been functionally characterised; and GOy, to
provide a measure of how many of the cluster’s functional
annotations are captured by the center of the cluster.
Zheng and Lu [37] developed a measure to determine the
overall functional coherence of a group of proteins by
using the semantic similarity of the biomedical literature
associated with the proteins.

The methods presented above measure the similarity of a
pair of GO terms, a measurement that can be extended to
a set of gene products or a pair of genes. The approaches
that address the functional coherence of a gene set do not
simply select the most common function found within the
set. Instead, the gene set coherence is determined as a
function of the similarity of all the pairs of genes within
the set [23]. Recently, Ruths et al. [38] proposed a GO-
based measure of functional similarity for gene sets, named
GS>. This measure quantifies the similarity of a set of genes
by averaging their individual contributions. Each gene is
compared to the other genes in the set by calculating how
closely the gene’s annotation match the annotations of the
others. GS* was compared to the GO pairwise measure of
Wang et al. [23] by extending Wang’s measure to average
the contributions of all gene pairs. The comparison
showed that GS? generates results more quickly and with
comparable quality. To our knowledge, GS* was the first
method used to determine the functional similarity of a
gene set by using an entire set of genes. Later, Richards
et al. [39] proposed another GO-based measure to evaluate
the functional coherence of gene sets. These measures are
based on the topological properties of graphs comprised of
genes and their GO annotations, and they consider the
enrichment of annotations and the relationships among
annotations when determining the significance of func-
tional coherence. Unlike our approach, the method of
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Richards et al. considers all of the annotations with equal
weight. The reader is refered to reference [40] for a survey
of semantic similarity measures.

Although these similarity measures have been used for
different applications [40], such as comparing gene pro-
ducts with different functions or predicting gene product
functions, they face a major limitation when confronted
with genes that are involved in several functions. For
such genes, the current tools give equal weight to all of
the biological functions and it is not possible to single
out the most relevant ones by considering the context of
the other genes involved [3].

In this work, we propose a novel method for measuring
gene set dissimilarity by weighting the most cohesive
(common and specific) functions based on the global
behaviour of the whole set of input genes. This measure,
named GFD, is based on the Gene Ontology, and it assigns
a numerical value to a gene set for each of the three GO
ontologies.

Method

GFD is based on an adaptation of the GO-tree structure
presented in [14]. The structure is used to develop a novel
GO-term dissimilarity measure for use in calculating gene
set dissimilarity. To our knowledge, this is the first report
of a measure that evaluates a gene set by taking into
account the most cohesive function found in the set. The
method involves searching for the most specific function
for each gene that is also similar to the other functions
found in the gene set.

The methodology is outlined in Figure 1, which pre-
sents an example of a set of four genes. The calculation
of GFD entails five consecutive steps, which are
described below.

First step: Gene Identification

The first step consists of finding the representative of each
input gene in the GO. Let us assume that the GO maps to
O genes for a specific organism. Let A be the set of genes
to be evaluated. Each ge A is searched for in ©, and if the
search is unsuccessful, g is transformed into a synonym g’
by using the gene synonym information given in the GO
annotation [41]. That is, the initial set of genes A = {g;,...,
g, is transformed into A" = {g}, ..., &, }, where each g’ is
present in ®. However, the gene is removed if no synonym
exists. For instance, in Figure 1, genes gl and g3 were
found in the GO, gene g2 was transformed into a synonym
(¢2), and gene g4 was not found.

Second step: Gene-function Identification

The second step consists of identifying the function of
the genes in a set. Each gene is transformed into the dif-
ferent proteins encoded by the gene (the gene products)
according to the Entrez Gene database [6]. Thus, a set
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of gene products H(i) = {g;p1,..., g} is associated with
each g € A'. Continuing with the previous example, g;
encodes the g1p; protein, g, encodes the gop; protein,
and gz encodes g3p;, g3p> and gzps.

Third step: Gene-product Filtering

In this step, each gene function is filtered by the three GO
domains. The proteins chosen in the previous step are
removed from those domains in which they are not
involved, and are otherwise selected. Thus, in Figure 1, the
g1p1 protein, encoded by gene g1, takes part in all three
ontologies; the protein encoded by gene g, (g.p1) is pre-
sented in the Biological Process and Cellular Component
ontologies; and gene g3 is represented by protein gzp; in
the Molecular Function ontology, by the gsp; and gsp, pro-
teins in the Biological Process, and by the gzp; protein in
the Cellular Component ontology. Once the input genes
have been transformed into their biological functionalities
and these have been filtered through each domain, the
next steps must be repeated for the three ontologies, vield-
ing three different results (one per ontology). For the sake
of clarity, we will only consider the Biological Process
ontology in the following descriptions and examples.

Fourth step: Gene-product Annotation Search

For each ontology, the annotations of each protein are
examined. A single protein can be associated with or
located in one or more cellular components, it is active
in one or more biological processes, during which it
might perform several molecular functions. This feature
is accounted for in the GO: each functional annotation is
identified by a unique GO term.

In Figure 1, the annotations of each protein in the
Biological Process ontology are depicted. For each gp;, a
set of GO terms is obtained, i.e., H(i, j) = {gpjt1,...,
gty For example, protein gip; has two different terms
in the Biological Process domain. Both functionalities are
used for the gipit; and gipit, GO terms.

Fifth step: Gene-product Functionality

At this stage, each functional annotation in the GO has
been indentified. The GO directed acyclic graph (DAG) is
used, but only the “is a” relationships are considered. Our
approach does not use the “part of” relationships for three
reasons: a) we would like to compare results among the
three domains, and the Molecular Function ontology does
not have the “part of” relationship; b) the “part of” rela-
tionship is used in the biological process ontology when
the child node is an instance of only a portion of the par-
ent process; ¢) the three ontologies are now “is a” com-
plete, meaning that every term has a path to the root node
that passes solely through “is a” relationships. In Figure 1,
the g1p1t, GO term is identical to the gzp,t, term. There-
fore, both functions are located in the same node of the
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Figure 1 Overall scheme of the method. Overall scheme of the method used to calculate the gene-set functional dissimilarity measure GFD.
The first three steps are used for all three ontologies. The last two steps are only illustrated for the Biological Process ontology.

GO DAG. Next, the retrieved information is transformed
into a tree structure (GO tree). A node will be present in
the GO tree for each path that exists in the DAG from
that node to the root. For instance, in Figure 1, gyp;t; has
two ways to reach the Biological Process root node, so this
node is duplicated in the resulting GO tree.

Once the tree structure is built, the input genes are
added to the GO tree as leaf nodes. These node posi-
tions designate the functional annotations found among
the gene set. Each leaf node position is determined
according to both the GO term and the protein product
of the gene. A gene can be present in different leaves,
which are different representations of the gene from dif-
ferent domains. Each GO-term gp;t; will have a number
of representations in the GO (the path from the GO
term to the root), as it can be present in different places
within the GO tree. This set of representations is
denoted by H(, j, k) = {gpjtir1s..., gpjtirs}, where ry ...
denote the representations of term gpix.

After the GO tree is constructed, the input genes can
be evaluated. At this point, the initial information A =

{g1,..» g4} has been transformed into three representa-
tions of g;, one representation of g,, and three represen-
tations of g3, each of which is located in a structure that
also provides information itself. The gene set functional
measure GFD, which is described in detail below, is
based on the gene-representation similarity and is sup-
ported by the GO-tree structure.

Gene-Representation Functional Dissimilarity
Let r, and rg be two gene representations. The dissimi-
larity between them is given by:

length (o, 1)

RO@T8) = donin(r,) + depth(rs)

oY)

where length(r,, rg) denotes the minimum number of
nodes separating r,, from rg in the GO tree (i.e., the num-
ber of nodes in the path from r,, to rg) and depth indi-
cates the level of representation in the GO tree. From a
biological point of view, length indicates the functional
relationship of the two GO terms, whereas depth
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indicates the level of specificity of the representation.
Thus, the measure penalises gene-representation pairs
that are widely separated, and it rewards specialisation.
This measure provides values between 0 and 1, where
values close to 0 mean “similar”, and values near 1 mean
“dissimilar”.

Two gene representations, r, and 7, present the best
similarity when they share the same parent (length(r,, rp) =
1) and their depths are the maximum (depth(r,) = depth
(rg) = k). In this case, their functional dissimilarity is:

1

~0
k+k

R(ry,18) =

In contrast, the worst case occurs when two gene

representations are low in the GO tree (depth(ry) =

depth(rg) = k), and they do not share any ancestor node
other than the root node (length(ry, rg) = k + k - 1):

2k—1 _

1
2k

R(ry,18) =
For example,

1
R(g1p1t211,83p2t211) = 4 =0.125

+4
7
R(g1p1t172, g3p2tat1) = 4,4 = 0875

For this set of genes, the minimum and maximum
values for R are 0.125 and 0.875, respectively.

Functional Dissimilarity Measure

The functional dissimilarity is based on the gene-repre-
sentation dissimilarity described above. Our approach
extrapolates the gene-representation dissimilarity mea-
sure to evaluate gene set homogeneity. Let A be a set of
genes {g1, &2,..., Z,}. The representation set for a gene g;
is given by T(g;), as shown in Equation 2, (see H(i, j, k)
in the fifth step).

T(g) = |J H(.jk) o)
jeH(i)
keH(i)

The Cartesian product P(A) = T(g;) x T(g>) x ... x T(g,)
defines the set of all possible sets of representations. The
dissimilarity S of a representation set p € P is given by
Equation 3, where R is the dissimilarity of two gene repre-
sentations as calculated by Equation 1. Note that |p| = |A|.

S(p) = Y. R@lsLely])

1
( |g| ) v8,y|0<8<y<|p| o

Finally, the GO-based functional dissimilarity, GFD, is
the minimum dissimilarity for all possible representation
sets for a given set of genes A.
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GFD(A) = ;33(2) S(p) (4)

In Figure 1 there are seven representations (three for T
(g1), one for T(g>), and three for T (g3)), which can gener-
ate nine possible sets of representations (3 x 1 x 3), so
|P(A)| = 9. There are two optimal representations for g
and another two for g3, which yield four possible optimal
configurations. However, there is only one optimal func-
tional combination according to the cohesive function of
all genes. By randomly selecting, we could obtain the
worst case (S(g1p1t1r1, Lapitirs, gspatar:) = 0.768), in con-
trast to the best case (S(g1p1t172, g2p1t171, g3p1E111) =
0.428).

It is worth noting that our approach does not select
the best GO term for each gene individually; instead, it
searches for the most common and specific function for
the whole set of genes. In this sense, GFD is quite dif-
ferent from GS?, because it only selects one function
per gene (the most globally cohesive function), whereas
GS? considers all of the gene functions.

Results and Discussion

ROC analysis

The performance of our approach was tested by compar-
ing it to three different measures: an information con-
tent-based measure (Resnik [17]); a hybrid (node- and
edge-based) measure (Wang [23]); and GS? [38], the first
measure reported to efficiently evaluate sets of genes
instead of pairs of genes or GO terms. Both Resnik and
Wang’s measures for terms were calculated using their
implementations in Bioconductor [42] and extrapolated
to gene sets using the best-match average approach. The
GS? source was downloaded from the website referenced
in [38].

ROC analyses have been widely used in the literature
[32] because they can be used to score the performance
of classifiers and rankers as a trade-off between sensitiv-
ity or as a true positive rate and false positive rate. In
addition, the area under the ROC curve is presented, as
it provides information about the level of randomness of
the approach.

Two data sets were used: sets with and without func-
tional coherence. Both data sets were generated accord-
ing to the information stored in KEGG. KEGG[43] is a
database of biological systems that integrates genomic,
chemical and systemic function information. This data-
base offers genomic information about several hundred
organisms, from which we selected Saccharomyces cerevi-
siae (SCE). All of the metabolic pathways from SCE were
used as examples of gene sets with functional coherence.
A cluster of genes was associated with each pathway. The
data set without functional coherence was designed to be
the same size as the functional coherence, but the genes
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within the clusters were randomly generated. Thus, for . . )
. A) Biological Process
each pathway, we have two gene clusters of size k: one
with genes involved in the same pathway and another 1 — ;
with randomly generated genes. I ne——
ROC analysis was performed for the three GO ontolo- :
gies. In particular, the GFD, Resnik and Wang methods
were compared for the three ontologies, whereas GS>
was only used for the Biological Process ontology
because this measure can-not provide values for the 04l L
other two ontologies. The ROC curve was plotted over ,_/
the interval [0, 1] with increments of 0.01, as illustrated 02 e
in Figure 2. The area under the ROC curve (AUC) is ,I/
enclosed in brackets. g [ i f—
GFD shows similar and satisfactory behaviour for the Wafn”ékégiiéi ——
three ontologies. The Resnik and Wang methods per- 0 02 04 06 08 !
False Positive Rate
form differently. For the Biological Process ontology,
only Wang’s approach performs worse than expected, B) Molecular Function
due to its false positive rate. The AUC is above 0.90 for
most measures, except for Wang'’s, which seems to be 1 /.
random (below 0.5). For the Molecular Function ontol- f/ /I (
0.8 ( /
0.6 - f
/
J

0.8 j

06 Hl

True Positive Rate

0.98, which is much greater than that of Resnik (0.65)
or Wang’s approach(0.17). For the Cellular Component
ontology, the performances of the three measures are
similar.

Although a biological process is not equivalent to a
pathway, these concepts are very similar. For example, 02 _E_n o
Cell cycle pathway (sce:04111) is directly related to “mito- T

s ” s s s M GFD (0.98) ——
tic cell cycle” GO-term according to the information 0 e -
stored in KEGG. Thus, genes within the same pathway s > ” " W;r;g bl T
must be similar in the Biological Process ontology. How- False Positive Rate
ever, those genes do not have to be similar in all cases
under the Cellular Component ontology since they can

ogy, our approach is excellent, with an AUC of about
0.4 o

True Positive Rate

C) Cellular Component

\
\

True Positive Rate

be located in different places of cell for some pathways. ; i
For example, Cell cycle genes related to transcription are S
located in the nucleus while those related to translation 08 -
are in the ribosome. Hence, the results obtained in this /
ontology are not sufficiently consistent in order to com- 06
pare the performance of the different approaches. Finally, ( } g
genes in the same pathway also have to be similar in the s
Molecular Function ontology. This ontology describes
types of activities, some of which are present in the path- s
way describing the process. This is crucial in our study
since our approach select the most cohesive function GFD (0.88) ——
among the genes. In contrast, Wang and Resnik Wang (089 ——
approaches are based on the best-match average where 0 02 04 06 08 1

. . . False Positive Rate
the same functionality may not neccessarily be selected . . , B
t te the overall similarity of the set of genes. This Figure 2 ROC Analysis. ROC analysis for the GFD, GS*, Wang and
O‘ compute . o ty g ’ Resnik approaches, as applied to each of three GO ontologies.The
will cause a high false positive rate (FPR). GFD only uses area under the ROC curve is indicated in brackets.
one GO-term to evaluate the similarity of a gene in
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relation to the rest, while the other approaches can select
different GO-terms to measure the similarity of a gene
with regard to the other genes. This is the main reason
for the poor performance of the Wang and Resnik in
Molecular Function compaired to Biological Process. In
general, the ROC analysis shows the robustness of GFD
and demonstrates the effectiveness of the approach in
evaluating the most cohesive functional annotation of a
set of genes.

Computational analysis

The gene set functional coherence measure proposed
here is based on calculating the dissimilarity of all possi-
ble input gene-representation combinations. If the input
set has 7 genes and each gene encodes p gene products,
then each gene product supports £ GO terms in each
ontology, and the average number of gene representa-
tions per GO term is r. The computational order of the
similarity measure is:

T(n) € O((p x t x )" x n*) = O(K" x n?)

where K = p x ¢ x r is the number of gene representa-
tions per gene. K” is the number of different gene repre-
sentation sets for each input gene. The number- of gene-
representation pairs is #”. Consequently, the exhaustive
calculation of GFD has a high computational complexity,
making it intractable for large data sets. As the homoge-
neity measure for any set of genes should be calculated in
an efficient way, we introduce a heuristic technique based
on the Voronoi Diagram concept [44] that reduces the
complexity from exponential to polynomial order. For
each node in the GO tree, the nearest representation of
each gene for that node is obtained (according to R in
Eq. 1). Thus T(g;) (see Eq. 2) represents the set with a
unique representation for each node (the nearest from
gene i to the node). Once the nearest representation of
each gene is found for each node, the dissimilarity values

Table 1 Computational analysis
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of the nodes are calculated (Eq. 3). Finally, the smallest
value found for S is used as the GFD value.

To explore the effect of heuristics on the computational
cost, we analysed the well-known cell cycle pathway
(sce:04111) from Saccharomyces cerevisiae. To evaluate
this set, which contains 125 genes, it is necessary to con-
sider their 909 annotations. These annotations have 10,
410 representations, which generate 10*'**® combinations.
Our approach can evaluate these combinations in only 20
seconds (running on a laptop workstation). Similarly, to
evaluate the 125 randomly chosen genes, 10'***¢ combina-
tions were generated and evaluated in 29 seconds. Table 1
shows the computational cost of the five largest sets,
together with relevant information about the number of
annotations, representations and combinations for each set
of genes (the first row depicts the sets of genes obtained
from metabolic pathways, and the second row shows the
sets of randomly chosen genes).

The performance of the approach, in terms of the
influence of the heuristics on the quality of results, was
also analysed. Varying the number of children per node
(from 3 to 4) and the number of input genes (from 3 to
10) and randomly generating 100 different trees for each
setting, 1600 trees were considered for analysis with and
without the heuristics. The use of the heuristic algo-
rithm produced slightly different results in 2.5% of the
cases (44 trees), and the average relative error was
0.0005, indicating that the reduction of computational
cost does not significantly affect the quality of the
results.

Conclusions

We have introduced a functional dissimilarity measure
for gene sets, named GFD (GO-based Functional Dis-
similarity) that selects the most cohesive function from
a set of input genes. GFD was compared to the most
relevant techniques: GS® and the methods of Wang
et al. and Resnik et al. Comparisons were conducted for

Pathway Genes Annotations Representations Combinations (log;o) Time (sec)
sce01100 645 2544 72354 1131.73 1126
2046 23578 72749 645
sce01110 235 1005 26745 430.06 114
716 10502 27762 108
sce03008 157 312 4090 208.11 3
557 7883 189.89 41
sce04113 127 884 8850 204.08 19
450 4917 152.66 33
sce04111 125 909 10410 21656 20
461 5801 14946 29

The five Saccharomyces cerevisiae pathways with the highest number of known genes. For each set of genes (each pathway) the upper row represents real data

and the lower row illustrates the pseudorandomly generated data.
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two different data sets: one based on KEGG pathways
and another that was pseudorandomly generated.

To demonstrate the robustness of the method, an
ROC analysis was performed for the three GO ontolo-
gies to analyse the discriminatory power of the dissimi-
larity mesures and their sensitivity. In general, GFD is
much more accurate for the Molecular Function ontol-
ogy, and it is equivalent to the Resnik and GS* methods
for the other two ontologies. The area under the ROC
curve also shows good performance for both the Biolo-
gical Process and Molecular Function ontologies (0.99
and 0.98, respectively).
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