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Abstract

Background: Technological developments have increased the feasibility of large scale genetic association studies.
Densely typed genetic markers are obtained using SNP arrays, next-generation sequencing technologies and
imputation. However, SNPs typed using these methods can be highly correlated due to linkage disequilibrium
among them, and standard multiple regression techniques fail with these data sets due to their high
dimensionality and correlation structure. There has been increasing interest in using penalised regression in the
analysis of high dimensional data. Ridge regression is one such penalised regression technique which does not
perform variable selection, instead estimating a regression coefficient for each predictor variable. It is therefore
desirable to obtain an estimate of the significance of each ridge regression coefficient.

Results: We develop and evaluate a test of significance for ridge regression coefficients. Using simulation studies,
we demonstrate that the performance of the test is comparable to that of a permutation test, with the advantage
of a much-reduced computational cost. We introduce the p-value trace, a plot of the negative logarithm of the
p-values of ridge regression coefficients with increasing shrinkage parameter, which enables the visualisation of the
change in p-value of the regression coefficients with increasing penalisation. We apply the proposed method to a
lung cancer case-control data set from EPIC, the European Prospective Investigation into Cancer and Nutrition.

Conclusions: The proposed test is a useful alternative to a permutation test for the estimation of the significance
of ridge regression coefficients, at a much-reduced computational cost. The p-value trace is an informative
graphical tool for evaluating the results of a test of significance of ridge regression coefficients as the shrinkage
parameter increases, and the proposed test makes its production computationally feasible.

Background
Genetic data collected in case-control or cohort studies
of well-defined disease phenotypes can be used to iden-
tify genetic variants, typically single nucleotide poly-
morphisms (SNPs), associated with disease status. In a
genetic association study, the data consist of genotypes
and corresponding phenotypes from large numbers of
individuals with the disease phenotype of interest (cases)
and disease-free controls. A significant difference in the
frequency of a genetic variant between the case and con-
trol groups is taken to be indicative of an association
between that variant (or, more probably, a nearby causal
variant correlated with the typed variant) and the pheno-
type of interest. A framework also exists for analysing a
continuous phenotypes. Once one or more associated

variant have been identified, they can be included in pre-
dictive models for the estimation of disease risk in indivi-
duals for whom the (potentially future) disease status is
unknown. Technological developments, including com-
mercially available chips for typing millions of genetic
variants simultaneously, and next-generation sequencing
technologies such as those used in the 1000 Genomes
Project [1], are enabling the collection of large amounts
of genetic data from large numbers of individuals which
means that analysis of contemporary genetic data sets
involves the study of high-dimensional data.
A number of statistical approaches have successfully

been used to investigate the strength of association
between genetic variants and a phenotype of interest.
These methods include testing the significance of the
association of each variant with the phenotype indepen-
dently using standard univariate tests (such as the
Cochran-Armitage test for trend [2] or Fisher’s exact
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test). However, there are disadvantages to relying on uni-
variate methods for the analysis of genetic data. The data
from a genome-wide association study typically consists
of thousands or millions of SNPs, and this large number
of predictors introduces a multiple testing problem. Uni-
variate methods therefore require stringent significance
thresholds due to the large number of tests being under-
taken to prevent a high false-positive rate [3]. Further,
univariate methods fail to take into account the com-
bined effect of multiple SNPs. It is plausible that many
genetic variants together contribute to the phenotype
being studied [4], and one advantage of using multivari-
ate methods is that they allow for the study of the com-
bined effect of multiple SNPs. Multivariate methods
allow for the control of confounding variables, as in the
lung cancer replication study in this paper, where gender,
smoking status and age were included as unpenalised
covariates in the model.
Using multivariate methods, the regression model can

be extended to include, for example, interaction or higher
order terms, and in such a case a penalised regression
approach would be appropriate [5]. Penalised regression
methods have been applied to genetic data [6,7]. Among a
number of regression approaches used for prediction in
high-dimensional data, ridge regression has been shown to
perform best in terms of prediction error [8]. Ridge regres-
sion has successfully been used to analyse genetic data
where SNPs were in high LD [9]; it is the test of signifi-
cance used by Malo, Libiger & Schork that we evaluate
here.
To begin, we consider two regression models com-

monly used in the analysis of genetic data - the linear
and the logistic regression models, as follows.
The standard linear regression model is given by

Y = Xβ + ε (1)

where Y is a (n × 1) vector of dependent variables, Yi, i =
(1, ..., n) and X is a (n × m) matrix of predictors. b is a (m
× 1) vector of regression coefficients bj, j = (1, ..., m) and ε
is a (n × 1) vector of normally distributed random errors,

with εi
iid∼N (0, σ 2) . An example would be a model of the

relationship between a continuous phenotype (such as
blood pressure or plasma lipid concentration) measured in
n individuals, and the genotype of these n individuals at m
SNPs.
The ordinary least squares estimator for b is given by

β̂ = (X’X)−1X’Y (2)

The significance of individual OLS regression coeffi-

cients β̂j in a multiple regression model can be esti-

mated using a Wald test. The test statistic is

T0 =
β̂j

se(β̂j)

where se(β̂j) is an estimate of the standard error of the

jth regression coefficient. Under the null hypothesis

H0 : β̂j = 0 , T0 follows a Student t distribution with n - m

degrees of freedom.
Binary outcomes commonly arise in biomedical data

where they may represent, for example, cases and controls.
In the logistic regression model, Y is an n-dimensional
vector of response variables taking values 0 (controls) or 1
(cases), and X the n × m matrix of explanatory variables,
as before. For the ith individual we denote

xi = (Xi1, . . . ,Xim)

The ith response Yi is a Bernoulli variable with prob-
ability of success equal to pi. The logistic regression
model relates the probability pi that the ith observation
is a case to the predictor variables as

P(Yi = 1|xi) = pi =
exiβ

1 + exiβ
(3)

where b is a vector of parameters to be estimated.
The significance of individual logistic regression coeffi-

cients, β̂j , can be estimated using the test statistic

T0 =
β̂j

se(β̂j)

where se(β̂j) is an estimate of the standard error of

the jth regression coefficient. Under the null hypothesis
that bj = 0, T0 asymptotically follows a standard normal
distribution.
Genetic data often comprises more predictor variables,

m, than observations, n. In such a situation, unique maxi-
mum likelihood estimates of regression parameters do not
exist. Further, collinearity in the predictors, due to linkage
disequilibrium (LD) in genetic data, which typically
increases with the increasing density of available markers,
results in unstable maximum likelihood estimates of
regression coefficients.
An extensive literature exists on the application of

modified regression techniques to the analysis of high-
dimensional data. Penalised regression constrains the
magnitude of the estimated regression coefficients,
allowing their estimation when ordinary least squares
(OLS) estimates cannot be obtained. In a Bayesian con-
text, these techniques are equivalent to the specification
of a particular prior distribution on the coefficients. For
example, Lasso regression [10] constrains the sum of
the absolute value of the regression coefficients to be
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less than a constant. This is equivalent to imposing a
double exponential prior centred at zero on the coeffi-
cients. Lasso regression can estimate some coefficients
to be exactly zero, permitting dimension reduction in
the model. Hoggart, Whittaker, De Iorio & Balding [6]
considered a modified Lasso regression approach for
the identification of causal SNPs in genome-wide or
resequenced data, with the aim of identifying regions of
association whilst considering all SNPs simultaneously.
When SNPs are in high LD, their method offers
improvement over both single-SNP analysis and Lasso
regression in terms of the power to detect causal var-
iants, and a notable improvement over single-SNP ana-
lysis in terms of false-positive rate.
Ridge regression [11] is a another penalised regression

approach, in which a penalty is applied to the sum of the
squared parameter estimates. Ridge regression has been
used in a number of large-scale data analysis scenarios,
including marker-assisted selection [12], expression data
analysis [13], and genetic association studies when SNPs
are in high LD [14]. From a Bayesian viewpoint, ridge
regression can be considered as standard multiple regres-
sion with the coefficients estimates having a prior distri-
bution that is normal with mean zero and known
variance [15]. In genetic epidemiology, it is desirable to
estimate the strength of the association between a variant
and a phenotype. This is problematic when using ridge
regression which, unlike other penalised regression
approaches, does not reduce the number of parameters
in the model, nor estimate the significance of each fitted
coefficient.
A test of significance for coefficients estimated using

ridge regression, based on an approximation of their dis-
tribution under the null hypothesis, was proposed by
Halawa & El Bassiouni [16]. The test was originally
developed and evaluated for data with continuous out-
comes, when different methods were used to compute
the shrinkage parameter, l, which controls the degree of
shrinkage of the regression coefficients and hence their
distribution under the null hypothesis. Malo, Libiger &
Schork [9] used the same test in an evaluation of the
applicability of ridge regression as a means of accommo-
dating LD in association studies. They used the test in a
comparison of the performance of ridge regression, mul-
tiple regression and single-SNP analysis when SNPs are
in varying degrees of LD. They found that ridge regres-
sion identified different SNPs as associated with pheno-
type compared to single-SNP analysis or multiple
regression. However, they did not consider the perfor-
mance of the test itself.
In this paper, we evaluate the performance of a test of

significance for ridge regression coefficients. Our test is
based on the test proposed by Halawa & El Bassiouni
[16]. We extend the test, making it applicable in the

m > n scenario that is common in contemporary genetic
data sets. We evaluate the performance of the test in
simulation studies, using scenarios representative of rea-
listic high-desnity genetic marker data, considering a
range of data set dimensions and degrees of shrinkage.
Ridge regression has also been applied in the logistic

regression framework [17]. We extend the test proposed
by Halawa & El Bassiouni [16] to the logistic ridge
regression model, and again evaluate the test in a range
of simulation scenarios at different values of l.
In both linear and logistic ridge regression, we com-

pare the approximate test of significance to a permuta-
tion test. We view the permutation test as a benchmark
as it produces an estimate of the null distribution of the
parameter estimates. However, the permutation test is
computationally intensive and becomes more so when
data are high-dimensional. The test we propose makes it
feasible to estimate significance with a much lower com-
putational burden.
We introduce the p-value trace, a plot of the negative

logarithm of the p-values of the ridge regression coeffi-
cients with increasing shrinkage parameter. This plot
enables the visualisation of the relative change in signifi-
cance of each coefficient, and facilitates the identification
of predictors most affected by increased penalisation in
terms of significance.
We apply the approximate test of significance for logistic

ridge regression coefficients to a lung cancer data set,
demonstrating the utility of the test when correlation
exists among the predictors.
This paper is organised as follows. We first describe the

approximate test of significance and the permutation test
to which it is compared. We then describe the simulation
studies used in this paper. In the Results section we evalu-
ate the performance of the proposed test in a range of
simulation scenarios. Further, we apply the test to a lung
cancer case control data set. In the Discussion we discuss
the results and potential applications for the test.

Methods
Significance testing in linear ridge regression

Ridge regression replaces the OLS estimator β̂ (equa-

tion (2)) with the ridge regression estimator [11]:

β̂
λ
= (X’X + λI)−1X’Y (4)

Where collinearity exists in X, the OLS estimates of b
can be unstable, having large variance. Hoerl & Kennard
[11] demonstrate that there exists a value of l for which

the ridge regression estimates β̂
λ have smaller mean

square error (MSE) than the OLS estimates. Where m >
n, OLS estimates of b cannot be obtained because the
matrix X’X is singular. The addition of the constant l
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to the diagonal of the X’X matrix makes it invertible, so
ridge regression estimates can be obtained.
Halawa & El Bassiouni [16] use simulation studies to

investigate applications of a ‘non-exact’ t-type test for
the individual coefficients of a linear regression model
fitted using ridge regression, based on the t-test above.
The test statistic is

Tλ =
β̂λ
j

se(β̂λ
j )

where β̂λ
j is the estimate of the jth regression coeffi-

cient under the ridge regression model, and se( β̂λ
j ) is an

estimate of the standard error.
Estimates of the standard error of the jth element of

β̂
λ are obtained as the square root of the jth element of

the diagonal of the covariance matrix

Var (β̂
λ
) = σ 2(X’X + λI)−1X’X(X’X + λI)−1

In practise, s2 is replaced by its estimate, given by the
residual mean square of the ridge model:

σ̂ 2 =
(Y − Xβ̂)′(Y − Xβ̂)

ν
(5)

ν is the residual effective degrees of freedom. Halawa &
El Bassiouni [16] use ν = n - m. However, when m > n
this gives a negative estimate of the residual mean square.
Instead, we use the definition of residual effective degrees
of freedom given in Hastie & Tibshirani [18], which
makes use of the “hat matrix”, H:

Ŷ = X
(
X’X + λI

)−1X’Y (6)

= HY (7)

H is termed the ‘hat matrix’, because it ‘puts the hat
on’ Y, transforming it to Ŷ. Degrees of freedom for
error are defined as

ν = n − tr(2H − HH’) (8)

In linear regression, the hat matrix reduces to H = X
(X’X)-1 X’ and n - tr (2H - HH’) reduces to n - m. The
test statistic Tl is assumed to follow a Student t distri-
bution as in standard multiple linear regression. How-
ever, the effective number of parameters of the
penalised regression fit is smaller than m. Hastie and
Tibshirani define tr (H) as the degrees of freedom taken
up by the penalised regression fit [18].tr (H) reduces to
n - m in ordinary linear regression. Then, Tl is assumed
to follow a Student t distribution with n - tr (H) degrees
of freedom.

In the case of large sample size, as is typically the case
in genetic data, the distribution of the test statistic is
asymptotically normal, as noted by Halawa & El Bas-
siouni [16]. We compared the significance levels of the
approximate test assuming both a normal and a Student
t-distribution of the test statistic and found that the
results were substantially identical. Therefore we assume
that under H0, Tλ ∼ N (0, 1) and use the normal distri-
bution to test the significance of ridge regression coeffi-
cients. The results from the corresponding tests
assuming that under H0, Tl ~ tn - tr(H) are provided in an
Additional File. See Additional File 1, Tables S1 and S2.

Significance testing in ridge logistic regression
Ridge regression has been applied to the logistic regres-
sion model [17,19]. Cessie & van Houwelingen [17]
show how ridge regression can be used to improve the
parameter estimates in logistic regression when the
number of predictors is relatively large or highly corre-
lated. They discuss different ways of choosing the
shrinkage parameter to minimize prediction error. Vago
& Kennedy [19] apply ridge logistic regression to a clini-
cal data set.
In logistic ridge regression, the log-likelihood function

is penalised with the penalty applied to the L2 norm of
b [19]. Maximum likelihood estimates of b are obtained
by maximising the logarithm of the likelihood function
[19], typically using the Newton-Raphson algorithm.
The approximate test statistic is

Tλ =
β̂λ
j

se(β̂λ
j )

Standard errors of the coefficient estimates are
obtained as the square roots of the jth element of the
diagonal of the covariance matrix. This matrix is esti-
mated from the final Newton-Raphson iteration:

Var
(
β̂

λ
)
= Var

[(
X’WX + 2λI

)−1X’Wz
]

=
(

∂2�

∂β∂β ′

)−1

I (β)

(
∂2�

∂β∂β ′

)−1

=
(
X’WX + 2λI

)−1 (
X’WX

) (
X’WX + 2λI

)−1

where I (b) is the observed information matrix, ℓ is
the (penalised) log-likelihood, and W is the weight
matrix:

W = diag
[
p̂i(1 − p̂i)

]
p̂i =

exiβ̂
λ

1 + exiβ̂λ
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z is an n × 1 column vector with elements

zi = logit
[
p̂i

]
+

Yi − p̂i
p̂
(
1 − p̂i

)
Again we assume that under H0, Tλ ∼ N (0, 1) and

use the normal distribution to test the significance of
ridge regression coefficients.

Permutation test
To evaluate the proposed test, we compare its perfor-
mance to that of a permutation test, which we view as a
benchmark. In the permutation test, to obtain a null dis-
tribution of the regression coefficients, the elements of
the outcome vector Y are randomly permuted. The ridge
regression model is fitted using the permuted observa-
tions, to obtain ridge regression coefficients. By perform-
ing 1000 such permutations, a null distribution of the
regression coefficients is generated. The permutation test
p-value is calculated as the proportion of regression coef-
ficients from the null distribution greater than or equal
in absolute value to the absolute value of the coefficient
fitted to the true (non-permuted) data.

Choice of shrinkage parameter
Hoerl & Kennard [11] present an existence theorem for
ridge regression. They demonstrate the existence of a
value of the shrinkage parameter l in equation (4)

which will give estimates β̂
λ with smaller mean squared

error than the OLS estimates β̂ given in (2).

However, to date no analytical method to find the
‘best’ value of l in terms of minimising MSE has been
determined. A number of data-driven methods have
been proposed. These methods aim to determine a
value of l based on the data that will result in estimates

of β̂
λ with improved mean squared error properties. For

example, Hoerl, Kennard & Baldwin [20] propose the

following as an estimate of l, with σ̂ 2 and β̂ taken

from the OLS estimates:

λHKB =
mσ̂ 2

β̂
′
β̂

An alternative estimate was suggested by Lawless &
Wang [21], based on the adoption of the Bayesian per-
spective mentioned above. Cross-validation based meth-
ods have also been proposed in the literature [22].
Hoerl & Kennard [11] introduce the ridge trace, a plot

of the estimates β̂
λ as l increases from zero - see for

example Figure 1. They propose choosing l correspond-
ing to the region on the ridge trace at which estimates of

β̂
λ no longer change significantly as l increases further.

Following the ridge trace of Hoerl & Kennard [11], we
introduce a plot of p-values of the regression coefficients
against l as l increases from zero (Figure 2). We refer
to this plot as a ‘p-value trace’. This p-value trace
enables the visualisation of the change in p-values of the
regression coefficients with increasing shrinkage.

Simulation study
The proposed test was evaluated using simulated geno-
type data. FREGENE software [23,24] was used to simu-
late a population of haplotypes. FREGENE simulates the
forwards-in-time evolution of sequence-like genetic
data. The forward-in-time simulation allows demo-
graphic and selection scenarios to be implemented and
recombination to be modelled. Haplotypes used in this
study are taken from a simulation representing the neu-
tral evolution of 10,500 individuals over 200,000 genera-
tions, with recombination parameters that realistically
model recombination in humans. This results in a popu-
lation of 21,000 haplotypes. The simulated haplotypes,
together with details of the simulation, are available to
download from http://www.ebi.ac.uk/projects/BARGEN/
[25].
Based on these haplotypes, genotypes and correspond-

ing phenotypes were generated as follows. A range of
scenarios were considered, comprising n individuals at
m SNPs.
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Figure 1 Ridge trace - Lung cancer data . Change in ridge
regression coefficients with increasing shrinkage parameter. The
three SNPs that have previously been shown to be associated with
lung cancer risk, rs8034191, rs16969968 and rs402710, are shown in
bold. Other SNPs are represented by dotted lines. The vertical line is
at l = 150, where the ridge estimates stabilise.
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1. Designate one SNP as the causal SNP, selected at
random from those with population minor allele fre-
quency in the range 0.10 - 0.15. A subregion of m
SNPs from the 1 Mb region, containing this causal
SNP, is used for the genotype simulation. The subre-
gion is selected at random to be of length m and to
contain the designated causal SNP. Thus the correla-
tion structure among the subregion depends on the
correlation structure of the haplotype region at that
point. In the resultant sample, correlation with the
causal SNP ranges from low to perfect (r2 = 1).
2. Sample two haplotypes (with replacement) from
the population of 21,000 haplotypes. Sum the minor
allele count at each SNP to form a genotype.
3. Simulate the phenotype for this individual.
Continuous phenotypes were generated as
Yi ∼ N (μ, σ 2) .
Case-control phenotypes were generated following
the liability model used by [26]. The penetrance func-
tion, fk, is the probability of being a case, Pr (Yi = 1)
given having k copies of the minor allele at the causal
SNP. The genotype relative risk, r, is f1 /f0 and K is
the population prevalence. Then, with the population
frequency of the minor allele of the causal SNP as p,
under an additive genetic model, f0 = K/(1 - 2p +
2pr), f1 = rf0 and f2 = 2r f0 - f0. A sample of n/2 cases
and n/2 controls was generated by generating an indi-
vidual genotype as described above, then assigning

the individual to be a case with probability fk and a
control otherwise. This process is repeated until n/2
cases and n/2 controls are obtained.
4. Record the minor allele count (0, 1, 2) at the m
SNPs for the ith individual, giving rise to an n × m
matrix of minor allele counts.

Ridge regression coefficients were fitted to data with
continuous outcomes using lm.ridge from the pack-
age MASS in R [27] for both the simulated data and the
permutation test.
Estimates of regression coefficients under logistic ridge

regression models were computed using the Newton-
Raphson algorithm.
In the case of both continuous and binary outcomes,

SNPs that were invariant in the sampled genotypes were
removed from the data, and genotypes were standar-
dised, prior to analysis.
The two tests were evaluated using the true positive rate

(TPR) and false positive rate (FPR), averaged over all the
replicates for each simulation scenario. We define TPR to
be the proportion of causal SNPs, as designated in the
data simulation, significantly associated with phenotype at
the nominal threshold a = 0.05. TPR is not reported for
the null simulations, as there is no causal SNP associated
with phenotype in these data. We define FPR to be the
proportion of non-causal SNPs significantly associated
with phenotype at the same significance threshold.

Approximate test
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Figure 2 p-value traces - Lung cancer data. Change in p-values of ridge regression coefficients in lung cancer data with increasing shrinkage
parameter. p-values are plotted on the - log scale. The three SNPs that have previously been shown to be associated with lung cancer risk,
rs8034191, rs16969968 and rs402710, are shown in bold. Other SNPs are represented by dotted lines. The vertical line is at l = 150, where the
ridge estimates stabilise. a approximate p-values, b permutation test p-values.
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Results and Discussion
Null Simulation
Genotypes and corresponding phenotypes were gener-
ated in two different sized data sets: (1) n = 500, m = 20
and (2) n = 1000, m = 1000. In generating the null data,
no SNP was designated the causal SNP. Continuous
phenotypes were generated as Yi ∼ N (0, 1) ; binary phe-
notypes were generated as Yi ~ Binom(1, 0.5). False
positive rates are reported at the nominal significance
threshold a = 0.05. Four values of the ridge parameter l
were used.
Results of the null simulations are shown in Table 1.

We find that approximate test gives similar results to
the permutation test in terms of false positive rate, espe-
cially in the case of continuous outcomes.

Continuous Phenotypes
Genotypes and corresponding phenotypes were gener-
ated as described above, for a range of data sets dimen-
sions: n = 500, 1000, 5000 and m = 20, 100, 1000 and all
SNPs in the 1 Mb region (approximately 10,000 SNPs).
Phenotypes were generated as Yi ∼ N (1 + 2k, 1) with k
being the minor allele count at the causal SNP. A range
of values of the shrinkage parameter l were used: l =
0.1, 1, 10, 100. In Figure 3, the left column shows the null
distributions, generated in a permutation test, used to
estimate the significance of a ridge regression coefficient
for a significant SNP (top row) and for a SNP that is not
associated with phenotype (bottom row). The coefficient
fitted to the original data is indicated. In the right col-
umn, the null distribution of the test statistic used in the
approximate test is shown, with the test statistic of the
fitted coefficient indicated. Ridge regression models were
fitted using the shrinkage parameter l = 1. These results
are examples taken from a single simulation, and above
each plot the p-value according to the permutation test
(left) or the approximate test (right) is shown.
Table 2 compares the performance of the approximate

and permutation tests in different simulation scenarios
and at different values of the shrinkage parameter. We
see that the approximate test performs well compared

to the permutation test in terms of power (true positive
rate) and that it has a slightly higher false positive rate.
When ranking the SNPs in order of significance, the

approximate test and the permutation test ranked the
SNPs identically or nearly so (results not shown).
Figure 4 shows a Bland-Altman plot [28] of difference

(permutation test p-value - z-type test p-value) against
mean for the p-values of 1000 SNPs in 5000 individuals.
p-values are plotted on the -log scale. We see that the
bias is towards smaller p-values from the approximate
test, which is congruous with the higher false positive
rate for the approximate test shown in Table 2.

Continuous Phenotypes with Multiple Causal SNPs
For complex diseases, multiple causal SNPs are likely to
affect the phenotype. We investigated the performance of
the test when more than one SNP is associated with phe-
notype. We simulated data from two different scenarios:
n = 500, m = 100 and n = 500, m = 1000. In each region
of m simulated genotypes, ten SNPs with minor allele fre-
quency 0.10 - 0.15 were designated causal and given
effect size 1; the non-causal SNPs had effect size 0. Phe-
notypes were simulated as Y = Xb + ε, ε ∼ N (0, σ 2I),
s2 = 1 where b is the vector of effect sizes.
Results are presented in Table 3. We see that the con-

clusions drawn about the test, of adequate power at the
cost of a slightly higher false positive rate, are equally
valid when multiple SNPs in the data are associated
with phenotype.

Computational performance comparison
Using an example simulation, we compared the computa-
tional time required to compute the approximate and the
permutation tests. A data set with dimensions n = 1000, m
= 1000 and l = 1 was used. Approximate test and permu-
tation test p - values were computed and the time taken to
arrive at the p-values was recorded. Calculations were
done using R version 2.12.0 [27] on an iMac running Mac
OS X Version 10.6.7, fitted with an 2.8 Ghz Intel Core i7
processor and 16 GB 1067 MHz DDr3 RAM. Computa-
tional times are compared in Table 4. We see that the

Table 1 Performance comparison in null simulation

Shrinkage Parameter

Approximate test Permutation test

0.1 1 10 100 0.1 1 10 100

Individuals SNPs Outcome

500 20 Continuous 0.066 0.066 0.066 0.075 0.066 0.066 0.066 0.075

Binary 0.021 0.021 0.041 0.067 0.027 0.027 0.033 0.052

1000 1000 Continuous 0.050 0.049 0.050 0.046 0.051 0.052 0.050 0.046

Binary 0.118 0.092 0.066 0.053 0.054 0.056 0.053 0.051

False positive rates at the nominal significance threshold a = 0.05 in null datasets. In each scenario, results are averaged over ten replicates

Cule et al. BMC Bioinformatics 2011, 12:372
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permutation test takes approximately 500 times longer to
compute than the approximate test.

Binary phenotypes
Genotypes and corresponding binary phenotypes were
generated for nine different data set dimensions: n =
500, 5000 and m = 20, 100, 1000, 2000, and n = 500,

m = all SNPs in the 1 Mb region (approximately 10,000
SNPs). The genotype relative risk, r, was specified as 2.
For the largest data dimensions (n = 500, m ≈ 10, 000),
results are not shown for the permutation test, due to
the computational time required to fit ridge regression
models on data of this size. Similarly, results are not
shown when n = 5000 and m ≈ 10, 000.
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Figure 3 Null distributions of the regression coefficients and tests statistics in the ridge regression model for data with continuous
outcomes. Left column - histogram of fitted coefficients obtained from the permutation test, with the coefficient fitted to the original data
indicated by a vertical line. Right column - Null distribution of the test statistic used in the approximate test (a standard normal distribution),
with the test statistic of the fitted coefficient indicated by a vertical line. Top row, a SNP associated with phenotype; bottom row, a SNP not
associated with phenotype. The causal and non-causal SNPs are from the same replicate in the simulation study where n = 500, m = 20, l = 1.
p-values are shown above each plot.
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In Figure 5, the left column shows the null distributions,
generated in a permutation test, used to estimate the sig-
nificance of a ridge regression coefficient for a significant
SNP (top row) and for a SNP that is not associated with
(bottom row) in data with binary outcomes. The coeffi-
cient fitted to the original data is indicated. In the right
column, the null distribution of the test statistic used in
the approximate test is shown, with the test statistic of the
fitted coefficient indicated. Ridge regression models were

fitted using the shrinkage parameter l = 1. These results
are examples taken from a single simulation, and above
each plot the p-value according to the permutation test
(left) or the approximate test (right) is shown.
Figure 6 compares the ranking of the SNPs from most

significant (rank = 1) to least significant. Only twelve
SNPs are shown because the SNPs that were invariant in
the data were removed before analysis. The SNPs were
ranked according to both the approximate test and the

Table 2 Performance comparison in simulated data with continuous outcomes

Shrinkage Parameter

Approximate test Permutation test

0.1 1 10 100 0.1 1 10 100

Individuals SNPs

500 20

TPR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

FPR 0.045 0.045 0.061 0.133 0.015 0.015 0.017 0.095

100

TPR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

FPR 0.056 0.054 0.071 0.141 0.015 0.018 0.024 0.074

1000

TPR 0.100 0.500 0.900 1.000 0.000 0.200 0.800 1.000

FPR 0.038 0.045 0.049 0.080 0.007 0.006 0.010 0.029

ALL

TPR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

FPR 0.318 0.071 0.068 0.069 0.019 0.019 0.020 0.020

1000 20

TPR 0.900 1.000 1.000 1.000 0.900 1.000 1.000 1.000

FPR 0.043 0.043 0.087 0.137 0.013 0.013 0.034 0.096

100

TPR 0.900 1.000 1.000 1.000 0.900 0.900 1.000 1.000

FPR 0.051 0.052 0.060 0.108 0.023 0.023 0.019 0.062

1000

TPR 0.700 0.700 1.000 1.000 0.400 0.500 0.900 1.000

FPR 0.060 0.058 0.055 0.076 0.007 0.008 0.010 0.020

ALL

TPR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

FPR 0.166 0.155 0.110 0.071 0.015 0.015 0.015 0.017

5000 20

TPR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

FPR 0.048 0.048 0.048 0.113 0.006 0.006 0.006 0.053

100

TPR 0.900 0.900 1.000 1.000 0.800 0.900 1.000 1.000

FPR 0.055 0.052 0.062 0.100 0.003 0.001 0.007 0.055

1000

TPR 0.700 0.700 1.000 1.000 0.700 0.700 0.900 1.000

FPR 0.046 0.046 0.045 0.060 0.006 0.007 0.008 0.014

ALL

TPR 0.400 0.500 0.900 1.000 0.300 0.900 0.900 1.000

FPR 0.026 0.027 0.029 0.042 0.007 0.007 0.007 0.009

Performance comparison between a permutation test and the approximate test. Data are simulated genotype data with continuous phenotypes. Reported are
proportion of true positive and false positive results at significance threshold a = 0.05. TPR = True Positive Rate, FPR = False positive rate. Results for each
simulation scenario are averaged over ten replicates.
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permutation test. From Figure 6 we see that whilst the
ranking of the SNPs was not identical, the most strongly
associated SNPs are ranked as such by both tests.
Table 5 compares the performance of the approximate

test and a permutation test of significance for different
sized data sets and at different values of the shrinkage para-
meter: l = 0.1, 1, 10, 100. For most data set dimensions and
values of l, the z-type test is more conservative than the
permutation test, with lower true positive and false positive
rates. This is in contrast to the linear regression case.

Comparison with univariate tests of significance
The performance of tests of significance of ridge regres-
sion coefficients, in terms of true and false positive

rates, was compared to the performance of univariate
tests. Comparisons were made in each of the simulation
settings: the null simulation, and the simulations with
continuous and with binary outcomes. The results are
shown in Additional File 1, tables S3, S4 and S5. As
would be expected when using a penalised regression
approach such as ridge regression, the performance of
the corresponding significance test depends on the
degree of shrinkage, which is controlled by the shrink-
age parameter l. The performance of the approximate
test is comparable to that of a permutation test, with
the advantage of a much-reduced computational burden.
Further, ridge regression has the advantage over univari-
ate tests of significance that it results in a much lower
false positive rate. These advantages of ridge regression
compared to univariate methods are further illustrated
in the study of lung cancer data which follows.

Lung cancer data
Genome-wide association studies have identified SNPs
associated with lung cancer disease status. SNPs have
been identified at chromosomal locations 15q25 [29,30],
5p15 [31] and 6p21 [32]. The associations at 15q25 and
5p15 have been replicated in white populations, but the
association at 6p21 has not [33]. Not all studies success-
fully replicated the associations at 15q25 and 5p15 [34].
Here, we use ridge regression to re-evaluate a set of 35

SNPs for association with lung cancer disease status.
Whilst these data are not as high-dimensional as those
from a genome-wide study, they allow us to illustrate the
features of using ridge regression for genetic data. We
show that ridge regression is a useful technique when
data are correlated, and illustrate that multivariate meth-
ods have advantages over univariate tests of significance.
Data consist of genotypes and non-genetic predictors

from approximately 4000 individuals in the European
Prospective Investigation into Cancer and Nutrition
(EPIC, [35]). Missing genotypes were imputed using
mean imputation. Gender, smoking status and age were
included as unconstrained parameters in the model.
For the purpose of comparison, univariate (SNP-by-

SNP) p-values were calculated. Univariate p-values were
calculated by fitting a logistic regression model for each
SNP independently, with gender, smoking status and
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Figure 4 Bland-Altman plot of mean versus difference for
p-values computed using both tests. p-values were computed
using both the approximate test and a the permutation test for
data with continuous outcomes, and are plotted on the -log scale.
n = 5000, m = 1000, l = 0.1.

Table 3 Multiple causal phenotypes

Approximate test Permutation Test

0.1 1 10 100 0.1 1 10 100

SNPs

100 TPR 0.624 0.717 0.939 1.000 0.252 0.312 0.517 0.910

FPR 0.064 0.061 0.091 0.250 0.001 0.001 0.004 0.078

1000 TPR 0.210 0.250 0.670 0.970 0.020 0.070 0.170 0.770

FPR 0.074 0.058 0.060 0.100 0.000 0.000 0.001 0.011

Performance comparison between a permutation test and the approximate
test in simulated genotype data with continuous phenotypes and multiple
causal SNPs. Reported are proportion of true positive and false positive results
at significance threshold a = 0.05. n = 500 and in each scenario ten SNPs are
with MAF 0.10 - 0.15 are designated causal with effect size 1; the rest of the
SNPs have 0 effect size. TPR = True Positive Rate, FPR = False positive rate.
Results for each simulation scenario are averaged over ten replicates.

Table 4 Comparison of computational performance

Approximate test Permutation test

time (seconds) 1.936 1043.604

Comparison of computation performance of approximate test and
permutation test. n = 1000, m = 1000 and l = 1. Approximate test and
permutation test p - values were computed and the time taken to arrive at
the p-values was recorded. Calculations were done using R version 2.12.0 [27]
on an iMac running Mac OS X Version 10.6.7, fitted with an 2.8 Ghz Intel Core
i7 processor and 16 GB 1067 MHz DDr3 RAM.
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age included in the model. A Wald test was then used
to estimate the significance of the coefficient.
In this example, m < n and (unpenalised) multivariate

regression does give rise to unique parameter estimates.
Multivariate p-values (equivalent to p-values from the z-
type test for ridge regression coefficients with a ridge
penalty of zero) are also reported here.
In a data set of this size, it is computationally feasible to

fit a ridge regression model with a range of values of l.
The ridge trace (Figure 1) is a plot of parameter estimates
against l [11]. The ridge trace typically suggests a range
of values of l rather than a single best value. In Figure 1,

l = 150 seems to be the point at which the ridge esti-
mates stabilise, and Table 6 reports the corresponding
approximate p-values.
Figure 1 shows the ridge trace, and Figure 2 shows a plot

of p-values with increasing l. Due to low LD between
most of the SNPs, most coefficient estimates do not change
significantly with increasing l and nor do estimates of their
significance. SNPs rs8034191 and rs16969968 are both
located at 15q25 and are in high LD (r2 = 0.961 in HapMap
CEU population, r2 = 0.81 in our data). In contrast to most
of the SNPs, coefficient estimates for these two SNPs do
change rapidly with change in the shrinkage parameter.
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Figure 5 Null distributions of the regression coefficients and tests statistics in the ridge regression model for data with binary
outcomes. Left column - histogram of fitted coefficients in the permutation test, with the coefficient fitted to the original data indicated by a
vertical line. Right column - Null distribution of the test statistic used in the approximate test (a standard normal distribution) with the test
statistic of the fitted coefficient indicated by a vertical line. Top row, a SNP associated with phenotype; bottom row, a SNP not associated with
phenotype. The causal and non-causal SNPs are from the same replicate in the simulation study where n = 500, m = 20, l = 1. p-values are
shown above each plot.
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Further, with increasing shrinkage and stabilisation of
the estimates, the approximate p-values for these SNPs
become significant (Figure 2). rs402710, which is not in
LD with other SNPs in the data, is significant in a multi-
ple logistic regression model even when no penalty is
included in the model (l = 0). A further SNP, rs671330,
in chromosome 6, has a nominally significant p-value in
the approximate test (ranging from 0.048 to 0.040 with
increased shrinkage), but again this SNP has not pre-
viously been shown to be associated with lung cancer
risk.
The p-value trace using permutation test p-values

(Figure 2b) shows good agreement with the approximate
p-value trace (Figure 2a). Figure 2b is much more com-
putationally expensive to produce than Figure 2a, thus
the use of the approximate test makes the plotting of a
p-value trace for a range of values of l more feasible.
Table 6 presents the univariate, multivariate, approxi-

mate and permutation test p-values at l = 150 for four
SNPs from the regions which have previously been
shown to be associated with lung cancer disease status.
Using ridge regression, we replicate the previously found
associations at 15q25 and 5p15, but fail to replicate the
association at 6p21. Using the univariate test, a further
SNP, rs6746834 (on chromosome 2) was nominally sig-
nificant at the 0.05 level (p = 0.049), but association at
this region has not previously been shown. This SNP

was not found to be significantly associated with lung
cancer disease status by the approximate test. We inter-
pret this as a false positive that arises when univariate
tests are used.
The results in Table 6 demonstrate the advantage of

multivariate tests, and specifically of ridge regression,
over univariate tests of significance. SNP rs402710,
which has previously been shown to be associated with
lung cancer disease status [31], was not found to be sig-
nificant using the univariate test but was found as such
by the multivariate methods. The two SNPs that are
correlated, rs8034191 and rs16969968, were not signifi-
cant in multiple regression but were significant in ridge
regression, demonstrating the advantage of using ridge
regression when SNPs are correlated.
These results demonstrate that this approximate test of

significance for coefficients fitted using logistic ridge
regression reproduces previously ascertained associations,
at reduced computational cost compared to a permutation
test, even when SNPs are highly correlated.

Conclusions
We present and evaluate the performance of a test of
significance for coefficients estimated using ridge regres-
sion. We evaluate the test as applied to both linear and
logistic ridge regression models. Our evaluation is by
means of simulation studies across a range of scenarios
representative of genetic data. We evaluate the test by
comparing its performance to that of a permutation
test.
We evaluate the performance of the test when it is

applied to a real data set. The data set comprises lifestyle
data and genotypes together with lung cancer case-control
status. Using the proposed test, we successfully replicate
previously found associations at much reduced computa-
tional cost compared to a permutation test. This demon-
strates the utility of the test for detecting significant
variables when predictor variables are highly correlated, as
were two significant SNPs in the lung cancer data.
Stability selection [36] is a method for variable selec-

tion that has received attention in the literature in recent
years. It combines subsampling of the data with a dimen-
sion reduction technique, with the aim of finding consis-
tently significant variables. Penalised regression methods
that perform variable selection, such as the Lasso [10]
and the Elastic Net [37], have been used in stability selec-
tion. To use ridge regression with stability selection, a
way of determining which variables to select in each sub-
sample of the data is required. A permutation test would
be computationally expensive in this context, rapidly
becoming infeasible if for large n, if the guidelines of 100
subsamples of size n/2 given by Meinshausen & Bühl-
mann [36] were followed. The test of significance pro-
posed here, being much less computationally expensive
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than a permutation test, makes the combination of ridge
regression and stability selection a feasible possibility.
The choice of shrinkage parameter in ridge regression is

discussed in the literature, but no consensus method pro-
vides an universally optimum choice. The proposed test
performs well over a range of values of l. We introduce
the p-value trace, a plot of the change in the negative

logarithm of the p-value of the regression coefficients as
the shrinkage parameter increases from zero. This trace
can be used in combination with the ridge trace of [11] to
visualise how the significance of the regression parameters,
as well as their value, changes with increasing shrinkage.
Such a plot could aid the identification of significant coef-
ficients in the ridge model.

Table 5 Performance comparison in simulated data with binary outcomes

Shrinkage Parameter

Approximate test Permutation test

0.1 1 10 100 0.1 1 10 100

Individuals SNPs

500 20

TPR 0.300 0.500 0.900 0.900 0.400 0.600 0.900 0.900

FPR 0.023 0.036 0.068 0.142 0.078 0.078 0.099 0.174

100

TPR 0.100 0.100 0.500 0.900 0.200 0.200 0.400 0.900

FPR 0.024 0.037 0.046 0.087 0.050 0.052 0.058 0.115

1000

TPR 0.200 0.300 0.500 0.700 0.100 0.100 0.400 0.700

FPR 0.103 0.096 0.071 0.054 0.046 0.045 0.047 0.056

2000

TPR 0.000 0.300 0.500 0.700 0.200 0.300 0.300 0.700

FPR 0.008 0.056 0.081 0.063 0.052 0.049 0.048 0.055

ALL

TPR 0.000 0.000 0.600 0.900 - - - -

FPR 0.000 0.000 0.014 0.068 - - - -

5000 20

TPR 0.700 0.800 1.000 1.000 0.700 0.800 1.000 1.000

FPR 0.024 0.024 0.030 0.096 0.090 0.083 0.089 0.154

100

TPR 0.400 0.400 0.900 1.000 0.200 0.300 0.900 1.000

FPR 0.027 0.028 0.041 0.078 0.071 0.067 0.078 0.110

1000

TPR 0.200 0.300 0.600 1.000 0.100 0.200 0.600 1.000

FPR 0.047 0.046 0.041 0.053 0.053 0.052 0.052 0.062

2000

TPR 0.000 0.200 0.500 1.000 0.000 0.100 0.400 1.000

FPR 0.074 0.067 0.056 0.057 0.053 0.052 0.053 0.058

Performance comparison between a permutation test and the approximate test in simulated genotype data with case-control phenotypes. Reported are
proportion of true positive and false positive results at significance threshold a = 0.05. TPR = True Positive Rate, FPR = False positive rate. Results for each
simulation scenario are averaged over ten replicates.

Table 6 Lung cancer data

SNP (chromosome) Univariate p-value Multivariate p-value unpenalised Approximate p-value
l = 150

Permutation p-value
l = 150

rs8034191 (15q25) 0.009 0.603 0.007 0.006

rs16969968 (15q25) 0.001 0.183 0.001 0.000

rs402710 (5p15) 0.213 0.012 0.011 0.004

rs4324798 (6p21) 0.513 0.231 0.248 0.251

Of the 35 SNPs in the lung cancer data set, four have been previously reported to be associated with lung cancer disease status. For these four SNPs, this table
reports univariate, multivariate, approximate and permutation test p-values.
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Additional material

Additional file 1: Table S1 - Performance comparison in null
simulation using t-type test. Table S2 - Performance comparison in
simulated data with continuous outcomes using t-type test. Table S3 -
Performance comparison in null simulation including comparison to
univariate tests of significance. Table S4 - Performance comparison with
continuous outcomes including comparison to univariate tests of
significance. Table S5 - Performance comparison with binary outcomes
including comparison to univariate tests of significance.
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