
SOFTWARE Open Access

Hierarchical Parallelization of Gene Differential
Association Analysis
Mark Needham1, Rui Hu2*, Sandhya Dwarkadas1 and Xing Qiu2

Abstract

Background: Microarray gene differential expression analysis is a widely used technique that deals with high
dimensional data and is computationally intensive for permutation-based procedures. Microarray gene differential
association analysis is even more computationally demanding and must take advantage of multicore computing
technology, which is the driving force behind increasing compute power in recent years. In this paper, we present
a two-layer hierarchical parallel implementation of gene differential association analysis. It takes advantage of both
fine- and coarse-grain (with granularity defined by the frequency of communication) parallelism in order to
effectively leverage the non-uniform nature of parallel processing available in the cutting-edge systems of today.

Results: Our results show that this hierarchical strategy matches data sharing behavior to the properties of the
underlying hardware, thereby reducing the memory and bandwidth needs of the application. The resulting
improved efficiency reduces computation time and allows the gene differential association analysis code to scale
its execution with the number of processors. The code and biological data used in this study are downloadable
from http://www.urmc.rochester.edu/biostat/people/faculty/hu.cfm.

Conclusions: The performance sweet spot occurs when using a number of threads per MPI process that allows
the working sets of the corresponding MPI processes running on the multicore to fit within the machine cache.
Hence, we suggest that practitioners follow this principle in selecting the appropriate number of MPI processes
and threads within each MPI process for their cluster configurations. We believe that the principles of this
hierarchical approach to parallelization can be utilized in the parallelization of other computationally demanding
kernels.

Background
Microarray gene differential expression analysis has been
widely used to uncover the underlying biological
mechanism. Researchers utilize this technology to iden-
tify potentially “interesting” genes. More specifically, a
statistical test is applied to each individual gene to
detect whether the mean expression level of this gene is
the same or not across different biological conditions or
phenotypes studied in an experiment. A chosen multiple
testing procedure (MTP) is then employed to control
certain per-family Type I errors. Genes work together to
fulfill certain biological functions and they are known to
be strongly correlated [1,2]. The structure of inter-gene
correlation contains rich information that cannot be

extracted from mean expression levels. Recent years
have seen more and more research focusing on gene
dependence structures. For example, some procedures,
such as gene set enrichment analysis [3,4], incorporate
existing biological gene sets information into statistical
procedures. Gene cluster analysis uses gene dependence
and similarity to group genes [5-11]. Gene network ana-
lysis, such as method based on Gaussian or Bayesian
networks, employs gene dependence to study gene
dynamics and reasoning [12-14]. Another approach is to
directly select genes based on the phenotypic differences
of their dependence structure [15-20]. In this paper, we
consider the very last approach and focus on a gene dif-
ferential association analysis (henceforth denoted as
GDAA) procedure proposed in [19]. Unlike traditional
differential gene expression analysis, GDAA is designed
to select genes that have different dependence structures
with other genes in two phenotypes. It complements the

* Correspondence: Rui_Hu@urmc.rochester.edu
2Department of Biostatistics and Computational Biology, University of
Rochester, 601 Elmwood Avenue Box 630, Rochester, New York 14642, USA
Full list of author information is available at the end of the article

Needham et al. BMC Bioinformatics 2011, 12:374
http://www.biomedcentral.com/1471-2105/12/374

© 2011 Needham et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://www.urmc.rochester.edu/biostat/people/faculty/hu.cfm.
mailto:Rui_Hu@urmc.rochester.edu
http://creativecommons.org/licenses/by/2.0


analysis of differentially expressed genes. Combining
both gene differential association analysis and gene dif-
ferential expression analysis provides a more compre-
hensive functional interpretation of the experimental
results. As an example, GDAA was applied in [20] to
two sets of Childhood Leukemia data (HYPERDIP and
TEL) [21] and selected differentially associated (DA)
genes that could not be detected by differential gene
expression analysis. Furthermore, the TEL group is dif-
ferentiated from other leukemia subtypes by the pre-
sence of t(12;21)(p13;q22) translocation,
generating the TEL-AML1 fusion gene. Through the
over-representation of DA genes, the chromosomal
band 21q22.3 containing the TEL-AML1 fusion gene
was identified. This chromosomal band was not identi-
fied by differential gene expression analysis.
A typical microarray data set reports expression levels

for tens of thousands of genes. For example, both sets of
Childhood Leukemia data HYPERDIP and TEL [21] have
expression levels for m = 7, 084 genes updated from the
original expression levels by using a custom CDF file to
produce values of gene expressions. The CDF files can be
found at http://brainarray.mbni.med.umich.edu. Please
see [19] for more details. Each slide is then represented
by an array reporting the logarithm (base 2) of expression
level on the set of 7,084 genes. For convenience, the
words “gene” and “gene expression” are used inter-
changeably to refer to these gene expressions in this
paper. Due to such a high dimensionality, the computa-
tion of traditional gene differential expression analysis is
considered to be more time consuming than many tradi-
tional statistical analyses in medical research. A gene
selection procedure based on gene dependence structures
has to be even more computationally intensive. This is
because the dependence structure is typically measured
by a pertinent association score, such as the Pearson cor-
relation coefficient for all gene pairs, of which the multi-

plicity (dimensionality) is m(m−1)
2

instead of m. It is

therefore more computationally intensive to detect the
differences hidden in the correlation matrix. In particular,
for the procedure proposed in [19], the length of the
computation is O(m × m × n × K), where m = 7, 084 is
the number of genes, n = 79 is the number of subjects in
each phenotypic group, and K = 10, 000 is the number of
permutations for approximating the statistical null distri-
bution. Such large number of permutations is necessary
because statistical inference for microarray analysis is
based on multiple testing adjusted p-values, which
demands much finer estimation of unadjusted p-values
compared to regular permutation tests. With a large
number of genes and a medium sample size, running
GDAA can take several days or even a month. For exam-
ple, a sequential implementation of the procedure in [19]

took nearly two months to complete the calculation on a
computer with a 2 GHz AMD Opteron processor and
2GB SDRAM. Until about 2003, processor designers
were able to leverage technology advances that allowed
increasing numbers of smaller and faster transistors on a
single chip in order to improve the performance of
sequential computation. Hence, it was possible for com-
putational scientists who wanted their codes to run faster
to simply wait for the next generation of machines. How-
ever, the reality is that around 2003, chipmakers discov-
ered that they were no longer able to sustain faster
sequential execution due to the inability to dissipate the
heat generated by the computation [22]. Consequently,
designers turned to using the increasing transistor counts
to add more processors, each of which execute indepen-
dent sequential computation. The processors typically
share access to the memory subsystem and off-chip
bandwidth. These multicore chips now dominate the
desktop market and are used to put together multipro-
cessor servers consisting of multiple processor chips, as
well as networked clusters of such servers for high-end
computation. Parallel computing (utilizing multiple com-
pute resources simultaneously for the same application)
that effectively leverages these increasingly multicore
clusters of multiprocessors is thus even more critical
than in the past in order to obtain results in a timely
manner.
In this paper, we propose a new parallel design for the

gene differential association analysis procedure in [19].
The key to our parallelization strategy is that it takes
advantage of both fine and coarse-grain parallelism (the
granularity representing the frequency of sharing/com-
munication in the concurrent computation). The hard-
ware-based memory sharing within a multicore is
utilized for the fine-grain parallelism (with higher need
for sharing/communication). Sharing memory in hard-
ware avoids the need for data replication. Since GDAA
utilizes a multivariate nonparametric test, it has more
memory needs than a comparable gene differential
expression analysis. Therefore, the memory sharing fea-
ture in our strategy is also critical to reducing the band-
width demands of the GDAA procedure. The results
show that our strategy leverages GDAA’s characteristics
to reduce the memory and bandwidth needs of the
application, thereby improving computational efficiency.

Implementation
Gene Differential Association Analysis Procedure
We outline the related GDAA procedure below. More
details can be found in [19].
Statistical Hypothesis Testing
Assume there are two biological conditions or pheno-
types A and B. Under each condition n subjects are

Needham et al. BMC Bioinformatics 2011, 12:374
http://www.biomedcentral.com/1471-2105/12/374

Page 2 of 12

http://brainarray.mbni.med.umich.edu


sampled, each measured with m gene expression
levels.
We denote these gene expressions by {xij}, 1 ≤ i ≤ m

and 1 ≤ j ≤ n. For the ith gene, we first compute an (m
- 1)-dimensional random vector ri = (ri1, ..., ri,i-1, ri,i+1,
..., rim). Here rik is the Pearson correlation coefficient
between the ith and the kth gene, i.e.,

rik =
n

∑n
l=1 xilxkl −

∑n
l=1 xil

∑n
l=1 xkl√

n
∑n

l=1 x
2
il − (

∑n
l=1 xil)

2
√
n

∑n
l=1 x

2
kl − (

∑n
l=1 xkl)

2
.

Fisher transformation is then applied to these correla-
tion coefficients:

wik =
1
2
log

1 + rik
1 − rik

,

where k = 1, ..., i - 1, i + 1, ..., m. We denote the cor-
relation vectors (wi1, ..., wi,i-1, wi,i+1, ..., wim) by wi. This
vector represents the relationship between the ith gene
and all other genes.
For the ith gene, its correlation vectors under condi-

tions A and B are denoted by wi(A) and wi(B), respec-
tively. We test the null hypotheses

Hi : Fwi(A)(x) = Fwi(B)(x), 1 ≤ i ≤ m.

where Fwi(A)(x) and Fwi(B)(x) are the joint distribution
functions of wi(A) and wi(B), respectively. If Hi is
rejected, we declare the ith gene to be a differentially
associated gene.
The N-statistic
In order to test Hi, we need to create samples of corre-
lation vectors to mimic the joint distributions Fwi(A)(x)
and Fwi(B)(x), respectively. We divide the dataset under
condition A intoG(1 ≤ G ≤ n

2) subgroups, each sub-
group containing n

G subjects. In order to compute corre-
lation coefficients, every subgroup must contain at least
two subjects. Sample sizes of subgroups do not have to
be equal. When G does not divide n, the last few sub-
groups can have a slightly larger or smaller sample size.
That being said, an approximately even partition of sub-
groups is still desirable because it leads to better statisti-
cal power than unbalanced partitions.
From these subgroups, we compute a sample of size G

correlation vectors for the ith gene, denoted by wi(A, k),
1 ≤ k ≤ G. Similarly, we have a sample of size G correla-
tion vectors for the ith gene under condition B, denoted
by wi(B, k), 1 ≤ k ≤ G.
Next, Hi is tested by a multivariate nonparametric test

based on the N-statistic. This statistic has been success-
fully used to select differentially expressed genes and
gene combinations in microarray data analysis [23-26].
The N-statistic is defined as follows:

Ni =
2
G2

G∑
k=1

G∑
l=1

L(wi(A, k),wi(B, l))

− 1
G2

G∑
k=1

G∑
l=1

L(wi(A, k),wi(A, l))

− 1
G2

G∑
k=1

G∑
l=1

L(wi(B, k),wi(B, l)),

(1)

where L is the kernel defined by Euclidean distance, i.
e.,

L(wi(·, k),wi(·, l)) =‖ wi(·, k) − wi(·, l) ‖

=
√ ∑

1≤j≤m,j�=i
(wij(·, k) − wij(·, l))2.

The N-statistic can serve as a measurement of how
much the inter-gene correlation structure of the ith
gene has changed from condition A to condition B.
Permutation-based Null Distribution and p-value
Denote N∗

i as the N-statistic associated with the ith
gene. To determine the statistical significance of N∗

i ,
which is represented by a p-value, we need to model the
null distribution of this statistic. This can be done by
the following resampling method. First, we combine the
gene expression data under both conditions and ran-
domly permute subjects. Then we divide them into two
groups of equal size, mimicking two biological condi-
tions without differentially associated genes. By applying
formula (1), we get a permutation based N-statistic for
the ith gene, which can be considered as an observation
from the null distribution of Ni, i.e., the distribution of
Ni when Hi holds. Repeating this permutation process K
times produces K permutation based N-statistics for the
ith gene, denoted by Nik, 1 ≤ k ≤ K.
pi, the permutation based p-value for testing Hi, is

computed as the proportion of Nik that is greater than
or equal to N∗

i :

pi =
#(Nik ≥ N∗

i )

K
. (2)

To control per-family error rate (PFER), we apply the
extended Bonferroni adjustment [27] to the above p-
values to obtain the adjusted p-values

p̃i = pi × m. (3)

The smaller p̃i is, the more likely wi(A) is different
from wi(B), i.e., the ith gene changes its relationship
with all other genes across conditions A and B. If p̃i is
less than a pre-defined threshold, we reject Hi and
declare the ith gene to be a differentially associated
gene.

Needham et al. BMC Bioinformatics 2011, 12:374
http://www.biomedcentral.com/1471-2105/12/374

Page 3 of 12



Summary of the GDAA Procedure
The above GDAA procedure can be summarized as fol-
lows:

1. Divide the subjects (slides) under each condition
(A or B) into G subgroups such that there are
approximately n

G subjects for each subgroup.
2. For each gene, compute its correlation vectors
from all subgroups. This step produces G correlation
vectors for one gene in each condition.
3. Compute the N-statistic for the ith gene from
these 2 × G samples using Equation(1) and record it
as N∗

i .
4. Pool the subjects in both conditions together.
Randomly shuffle the subjects, and then split them
into two groups of equal size.
5. Divide the subjects in each group into G sub-
groups and compute G correlation vectors in each
subgroup for each gene.
6. Compute the N-statistics for each gene based on
these 2 × G correlation vectors.
7. Repeat steps 4 to 6 K times and record the permuta-
tion-based N-statistics as Nik, i = 1, ..., m, k = 1, ..., K.
8. Obtain the permutation-based p-value, pi, using
Equation(2).
9. Adjust p-value by using Equation(3). Select differ-
entially associated genes based on the adjusted p-
values and a pre-specified PFER level.

Computation
Our parallel design is implemented using Python and C++.
Python is in charge of initializing data and all communica-
tion between the master process and any slave processes –
sending out computation jobs and collecting results. C++
is used to perform the actual computation within each
independent process. A high-level language such as
Python provides ease of use and flexibility, especially for
data initialization and coordination, but at the cost of per-
formance. By limiting the use of Python to the initializa-
tion and coordination with the slaves (where the program
spends a very small percentage of its overall time) and
using C++ for the computationally intensive portions of
the program, we get the best of both worlds: the flexibility
of Python and the performance of C++. The use of other
languages such as R instead of Python is also possible. The
execution proceeds as follows:

1. Read in and initialize data (performed in Python
on the master process).
2. Calculate N∗

i , 1 ≤ i ≤ m, for the unpermuted data-
set using a single core (C++ code) on the master
process.

3. Create K permutations of the original dataset; dis-
tribute the permutations k (1 ≤ k ≤ K) to indepen-
dent slave processes (performed in Python) using
MPI [28]. Work is distributed at the granularity of a
single permutation – when a process completes the
computation for one permutation, it requests the
next permutation.
4. Each worker/slave receives a permutation (using
Python), permutes its local copy of the data, and
then computes the vector of N-statistics using C++,
parallelized using the Pthreads [29] package. A
total number of P threads are created and the per-
gene computation is distributed among threads so
that each thread performs the N-statistic computa-
tion for m

P genes. When m is not divisible by P,
each thread receives a slightly different number of
genes.
5. Once an MPI process has determined that its
threads have computed all N-statistics (Nik, 1 ≤ i ≤
m) for the kth permutation it was assigned, it then
returns them to the master MPI process.
6. The master MPI process collects all the Nik to cal-
culate p-values pi (performed in Python).

Steps 1 and 2 of the algorithm are performed sequen-
tially. To parallelize the remaining steps, we use a two-
tiered approach. At the first level, we distribute the
work by spawning processes from Python using MPI.
One MPI process, the “master” process, is responsible
for distributing different permutations to the other
“slave” processes. Each slave independently permutes
the gene data according to the permutation indices
received from the master process and computes the N-
statistics for the permuted data (this code is optimized
C++ code). The computed values (the vector of N-statis-
tics) are then returned to the master using an MPI mes-
sage, where the Python code calculates the p-value. The
key to this implementation is that the core computation
is performed in optimized C++ code.
The second level of parallelization occurs within the

slaves. When computing the N-statistics, each slave
(MPI process) forks off a specified number of threads,
each of which computes the permutation’s N-statistics
for a subset of genes. This allows us to vary the paralle-
lization between MPI processes (which split the work by
permutations) and threads (which divide the work by
genes). For example, with one quad-core processor on a
shared memory architecture, we can run one slave MPI
process with four threads, 2 MPI processes each with
two threads, or four MPI processes each running a sin-
gle thread. Splitting the work between MPI processes
versus threads has implications for performance and
memory usage, which we will highlight in the evaluation

Needham et al. BMC Bioinformatics 2011, 12:374
http://www.biomedcentral.com/1471-2105/12/374

Page 4 of 12



section. This hierarchical design is also illustrated in the
flowchart of Figure 1.

Data Sharing
Gene expression level data in each biological condition
is represented using a dynamically allocated (m × n)-
dimensional array, where n is the number of subjects
and m is the number of genes. This two-dimensional
array is read-shared within each MPI process and its
size grows as a product of m and n. There are two
other dynamically allocated two-dimensional arrays cre-
ated for each MPI process. These two arrays with sizes
proportional to (m × G) are used for temporary storage
of the correlation computation. One stores the sums of

the expression levels within subgroups so that its entry

in row i and column j is
∑

l∈Subgroup j x
(k)
il . Here x(k)il

is

the expression level for gene i and subject l in the kth
permutation. The other stores the sums of squares of
the expression levels within subgroups so that its entry

in row i and column j is
∑

l∈Subgroup j (x
(k)
il )2. They are

also read shared within the MPI process. Another two-
dimensional dynamically allocated array with size pro-
portional to O(m × G) is created for each thread, storing
the correlation vectors for each gene. This array is both
read and written by the thread. The N-statistic, which is
a vector with the size of the number of genes m, is also
shared across all threads within each MPI process. Each

Begin

Data read in

and initializations

Calculate unpermuted N-statistic

Send permutations

to idle slave MPI processes

Within each slave MPI process,

distribute genes to p-threads

Within each slave MPI process,

collect N-statistics from all threads

Return N-statistics

from slave MPI processes

to master MPI process

Finish K permutations?

Calculate p-values

End

Yes

No

Figure 1 Flowchart of hierarchical parallelization design.

Needham et al. BMC Bioinformatics 2011, 12:374
http://www.biomedcentral.com/1471-2105/12/374

Page 5 of 12



thread writes to independent regions of this vector
based on the genes allocated to it.

Results
Our evaluation is conducted on a cluster of five machines,
each with 16 GBytes of memory and two 3.0 GHz quad-
core Intel Xeon 5450 processors, for a total of 40 proces-
sors. The machines are interconnected using Gigabit
ethernet. Each quad-core processor chip has 6 MBytes of
last-level cache per pair of cores. Each machine runs
Linux version 2.6.16.60-0.21-smp. The application was
compiled using Python version 2.4.2, Pypar version 2.1.0,
and gcc version 4.1.2 at the -O2 optimization level.

Simulation Data
To gain better insight into the effects of different config-
urations on performance, we simulate several sets of

data. Each set has two groups of n = 100 slides repre-
senting 100 subjects in each biological conditions.
Each array has m genes, where m takes on values in

{1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000,
10000}. The slides in each group are divided into G =
10 subgroups to calculate correlation vector samples. K
= 100 permutations of the subjects in the two groups
are created in order to generate the null distributions of
N-statistics.

Performance Analysis
Figures 2 and 3 present the execution time (measured
from the time after calculation of the unpermuted statis-
tic) as a function of the number of genes in the dataset,
with the operating system default scheduling (Figure 2)
and with each thread/process pinned (more detailed
explanation to follow) so it executes only on one specific

●
●

●

●

●

●

●

●

●

●

0
50

0
10

00
15

00
20

00

1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of genes

C
om

pu
tin

g 
tim

e 
(s

ec
on

ds
)

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● 1 thread
2 threads
4 threads
8 threads

Figure 2 Execution time with default OS scheduling. Number of slides in each condition: 100. Number of permutations: 100. Numbers of MPI
processes × threads: 32 × 1 (solid), 16 × 2 (dash), 8 × 4 (dot), and 4 × 8 (dash-dot).

Needham et al. BMC Bioinformatics 2011, 12:374
http://www.biomedcentral.com/1471-2105/12/374

Page 6 of 12



processor/core (Figure 3). While we report three times
in the figures to show the variation in the results, we
repeated the timing-based execution several times to
ensure consistency of the results. The quad-core proces-
sor running the Python script is not used for parallel
computation. The number of MPI processes forked, and
correspondingly the number of threads used per MPI
process, is varied. More specifically, the four sets of
curves represent 32 single-threaded MPI processes, 16
dual-threaded MPI processes, 8 4-threaded MPI pro-
cesses, and 4 8-threaded MPI processes, respectively.
We also applied 1, 2, 4, and 8 threaded strategies to a
dataset of 7000 genes while varying the number of cores
(or quad-core processors) used. Figures 4 and 5 present
the speedup (execution time on a single core/using a
single thread divided by the execution time of the

parallel implementation with the specified number of
cores/threads) as the number of cores (or quad-core
processors) is varied, using the operating system default
scheduling (Figure 4) and with each thread/process
pinned so it executes only on one specific processor/
core (Figure 5).
As shown in Figures 2 and 3, using multiple threads

per MPI process outperforms the 1 thread strategy sub-
stantially. As an example, according to Figure 3, when
the number of genes m = 10, 000, the average execution
time for the 2 threaded strategy is 1211 seconds, which
represents about 70% performance gain compared to
the 1 threaded strategy (2077 seconds). When using
only MPI processes (1 threaded strategy), there is no
data sharing among the processes. All communication is
strictly via messages. As the number of threads

●
●

●

●

●

●

●

●

●

●
0

50
0

10
00

15
00

20
00

1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of genes

C
om

pu
tin

g 
tim

e 
(s

ec
on

ds
)

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● 1 thread
2 threads
4 threads
8 threads

Figure 3 Execution time with pinned processes. Number of slides in each condition: 100. Number of permutations: 100. Numbers of MPI
processes × threads: 32 × 1 (solid), 16 × 2 (dash), 8 × 4 (dot), and 4 × 8 (dash-dot).

Needham et al. BMC Bioinformatics 2011, 12:374
http://www.biomedcentral.com/1471-2105/12/374

Page 7 of 12



increases, Figure 6 shows that the total amount of mem-
ory required per machine goes down as the number of
MPI processes decreases and the number of threads per
MPI process increases. This is a result of the data shar-
ing in the parallel threaded implementation, as described
in the Data Sharing section. Parallelizing purely at the
MPI level results in multiple copies of the data struc-
tures being created and exerts more pressure on the
memory as well as any shared cache in the system. On
our experimental platform, the last-level cache has a
size of 6 MBytes, which is shared between two cores in
a physical package (quad-core processor). When the
working set of the processes/threads executing on these
cores exceeds the capacity of the 6 MByte shared cache,
some performance will be lost. Using threads allows the
cores to share space in the cache more effectively and

has the added benefit of reducing memory latency due
to the prefetching effect of 1 core on the other. In addi-
tion, reducing the number of permutations (MPI pro-
cesses) computed on at the same time reduces the
pressure on the communication link with the master
process, which must coordinate and communicate with
each MPI process and can therefore result in a bottle-
neck. Any coarse-grain load imbalance at the permuta-
tion level is also mitigated. On our platform, we also
observe some anomalies in behavior – faster perfor-
mance was observed using 2 threads per slave MPI pro-
cess rather than with 4 threads (see Figure 2 and 4). In
addition, the variance in performance across runs is
high, especially in the 2 threaded runs. The 2 threaded
strategy represents the sweet spot in terms of leveraging
shared resources on this architecture (a 6 MByte cache

● ●

●
●

● ●

● ●

0
5

10
15

20
25

30

4 8 12 16 20 24 28 32

Number of cores

S
pe

ed
up

● ●

●
●

● ●

● ●

● ●

●
●

● ●

● ●

● ●

●
●

● ●

●
●

● 1 thread
2 threads
4 threads
8 threads

Figure 4 Speedup with default OS scheduling. Number of genes: 7000. Number of slides in each condition: 100. Number of permutations:
100. Numbers of MPI processes × threads: (number of cores) × 1 (solid), (number of cores/2) × 2 (dash), (number of cores/4) × 4 (dot), and
(number of cores/8) × 8 (dash-dot).

Needham et al. BMC Bioinformatics 2011, 12:374
http://www.biomedcentral.com/1471-2105/12/374

Page 8 of 12



shared by 2 cores), presuming that the 2 threads strat-
egy execute on cores that share a cache. Our hypothesis
is that the default operating system scheduling of the
threads does not ensure this affinity. To confirm our
hypothesis, we add code to force thread affinity – each
thread is pinned to a particular core while ensuring that
threads within a process share a cache and remain
within a single chip when possible. The resulting perfor-
mance, shown in Figure 3 and 5, corroborates our
hypothesis. The variance in performance is no longer
observed. Most of the efficiency gains from sharing
across threads is observed when using 2 threads, i.e.,
when the parallelization matches the underlying physical
characteristics of the machine and leverages the shared
cache between 2 cores. Additional performance benefits

beyond 2 threads are small. More specifically, the 2, 4,
and 8 threaded strategies show only small differences in
performance once the threads are pinned to ensure
cache sharing. In Figure 3, the 8 threaded strategy is a
little better if the number of genes is between 3000 and
7000. Otherwise, the 4 threaded strategy shows slightly
better performance. These variations across different
numbers of threads come from differences in load bal-
ance at the Pthread and MPI parallelization levels.
In Figures 4 and 5, we notice that the speedup curves

are not very smooth. This step function can be attribu-
ted to several causes. The first is load imbalance due to
the granularity of workload distribution – permutations
at the MPI parallelization level and genes at the Pthread
parallelization level. When using 1 thread per MPI

●

●

●

●

●
●

●

●

0
5

10
15

20
25

30

1 2 3 4 5 6 7 8

Number of quad−core processors

S
pe

ed
up

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● 1 thread
2 threads
4 threads
8 threads

Figure 5 Speedup with pinned processes. Number of genes: 7000. Number of slides in each condition: 100. Number of permutations: 100.
Numbers of MPI processes × threads: (number of cores) × 1 (solid), (number of cores/2) × 2 (dash), (number of cores/4) × 4 (dot), and (number
of cores/8) × 8 (dash-dot).

Needham et al. BMC Bioinformatics 2011, 12:374
http://www.biomedcentral.com/1471-2105/12/374

Page 9 of 12



process to conduct 100 permutations, as one example,
with 5 processors (20 cores), each core runs 5 permuta-
tions (⌈100/20⌉). If we increase the number of proces-
sors to 6 (24 cores), some cores will still execute 5
permutations while others execute 4, so that execution
time remains proportional to ⌈100/24⌉ = 5, resulting in
practically no increase in speedup. As the number of
permutations executed per MPI process decreases (with
an increasing number of cores), the fraction of idle/
wasted time on the cores with one less permutation to
execute increases, resulting in lower efficiency. In the
case of Figure 4, the increased scheduling variability and
poor choice of scheduling when adding a quad-core pro-
cessor within a machine also contributes to the step
function in the 2 and 4 threaded curves. Once the sche-
duling is made both deterministic and ensures

appropriate cache sharing, the step function is less pro-
nounced in the multi-threaded runs in Figure 5 due to
their reduced memory bandwidth demands and
smoother load function at the MPI level.

Conclusions
Microarray technology has made it possible for medical
researchers to measure and study the behavior of thou-
sands of genes at once. Technology advances have been
on a fast track in recent years, making it possible to
conduct microarray experiments much faster and less
expensive than in the past. This trend has been lever-
aged with the availability of larger and larger datasets.
Turning so much raw information into knowledge pre-
sents a major challenge for both statistical analysis and
computation. As of now, microarray data are used for

●

●

●

●

●

●

●

●

●

●

0
50

10
0

15
0

20
0

25
0

1000 2000 3000 4000 5000 6000 7000 8000 9000

Number of genes

M
em

or
y 

us
ag

e 
pe

r m
ac

hi
ne

 (M
B

)
● 1 thread

2 threads
4 threads
8 threads

Figure 6 Memory usage. Number of slides in each condition: 100. Number of permutations: 100. Numbers of MPI processes × threads: 32 × 1
(solid), 16 × 2 (dash), 8 × 4 (dot), and 4 × 8 (dash-dot).

Needham et al. BMC Bioinformatics 2011, 12:374
http://www.biomedcentral.com/1471-2105/12/374

Page 10 of 12



crude screening of differentially expressed genes.
Exploiting the rich information contained in the inter-
gene dependence structure has not become a routine,
despite the availability of several gene association analy-
sis procedures. This is largely due to the computing
bottleneck.
In this paper, we present a parallelized implementa-

tion of gene differential association analysis that is
designed to leverage the features of today’s multicore
platforms in which resources are shared among proces-
sors at a much finer granularity than in the past. We
apply the conventional wisdom of parallelizing at the
coarsest granularity to distribute permutations among
the nodes in a cluster, using MPI for communication. In
addition, we parallelize at the finer granularity of per-
gene computation within a single dual quad-core
machine using shared memory (Pthreads). Sharing
memory across threads helps reduce demand for the
shared last-level cache capacity on the chip by allowing
independent threads to share a single copy of the gene
expression data. Our results show that this strategy uti-
lizes the multicore cluster platform much more effec-
tively. In general, the performance sweet spot occurs
when using a number of threads that allows the working
sets of the corresponding MPI processes to fit within
the machine’s shared cache. We suggest that practi-
tioners follow the principle of determining what
resources are shared when making decisions on how to
allocate compute resources among MPI processes and
threads for their cluster machines. We believe that the
principles of this hierarchical approach to parallelization
can be utilized in the parallelization of other computa-
tionally demanding kernels.

Availability and Requirements
• Project name: Hierarchical Parallelization of Gene
Differential Association Analysis;
• Project home page: http://www.urmc.rochester.
edu/biostat/people/faculty/hu.cfm;
• Operating system: Linux;
• Programming language: Python and C++;
• Other requirements: MPI (MPICH2 or Open MPI),
Python, C++ Compilation tools, SWIG, Numpy,
Pypar;
• Licence: GNU GENERAL PUBLIC LICENSE, Ver-
sion 2, June 1991;
• No restrictions to use by non-academics.

Abbreviations
GDAA: Gene Differential Association Analysis; MTP: Multiple Testing
Procedure; MPI: Message Passing Interface; Pthreads: POSIX Threads.

Acknowledgements
This work was supported in part by NSF grants CCF-0702505, CNS-0411127,
CNS-0615139, CNS-0834451, CNS-0509270, and CCF-1016902; and NIH grants

5 R21 GM079259-02, 1 R21 HG004648-01, and NCRR UL1 RR024160. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views
of the above-named organizations. In addition, we would like to thank Ms.
Christine Brower for her technical assistance with computing and Ms. Malora
Zavaglia for her proofreading effort. Finally we are grateful to the associated
editor and two anonymous reviewers for their constructive comments which
helped us improve the manuscript.

Author details
1Department of Computer Science, University of Rochester, PO Box 270226,
Rochester, New York 14627, USA. 2Department of Biostatistics and
Computational Biology, University of Rochester, 601 Elmwood Avenue Box
630, Rochester, New York 14642, USA.

Authors’ contributions
The basic idea was first proposed by RH, SD, and XQ. The detailed study
design was developed by all members of the research team. MN carried out
the needed computations and simulations and the majority of the software
development. All authors have read and approved the final manuscript.

Received: 28 January 2011 Accepted: 21 September 2011
Published: 21 September 2011

References
1. Klebanov L, Jordan C, Yakovlev A: A new type of stochastic dependence

revealed in gene expression data. Stat Appl Genet Mol Biol 2006, 5:Article7
[http://dx.doi.org/10.2202/1544-6115.1189].

2. Bhardwaj N, Lu H: Correlation between gene expression profiles and
protein-protein interactions within and across genomes. Bioinformatics
2005, 21(11):2730-2738[http://dx.doi.org/10.1093/bioinformatics/bti398].

3. Mootha V, Lindgren C, Eriksson K, Subramanian A, Sihag S, Lehar J,
Puigserver P, Carlsson E, Ridderstråle M, Laurila E, et al: PGC-1 α-responsive
genes involved in oxidative phosphorylation are coordinately
downregulated in human diabetes. Nature genetics 2003, 34(3):267-273.

4. Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M,
Paulovich A, Pomeroy S, Golub T, Lander E, et al: Gene set enrichment
analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proceedings of the National Academy of Sciences 2005,
102(43):15545-15550.

5. Raychaudhuri S, Stuart J, Altman R: Principal components analysis to
summarize microarray experiments: application to sporulation time
series. Pac Symp Biocomput 2000, 5:455-466.

6. Liu A, Zhang Y, Gehan E, Clarke R: Block principal component analysis
with application to gene microarray data classification. Statistics in
medicine 2002, 21(22).

7. Wang A, Gehan E: Gene selection for microarray data analysis using
principal component analysis. Statistics in medicine 2005, 24(13).

8. Eisen M, Spellman P, Brown P, Botstein D: Cluster analysis and display of
genome-wide expression patterns. Proceedings of the National Academy of
Sciences 1998, 95(25):14863-14868.

9. Törönen P, Kolehmainen M, Wong G, Castrén E: Analysis of gene
expression data using self-organizing maps. FEBS letters 1999,
451(2):142-146.

10. Furey T, Cristianini N, Duffy N, Bednarski D, Schummer M, Haussler D:
Support vector machine classification and validation of cancer tissue
samples using microarray expression data. 2000.

11. Brown M, Grundy W, Lin D, Cristianini N, Sugnet C, Furey T, Ares M,
Haussler D: Knowledge-based analysis of microarray gene expression
data by using support vector machines. Proceedings of the National
Academy of Sciences 2000, 97:262-267.

12. Bahar I, Atilgan AR, Erman B: Direct evaluation of thermal fluctuations in
proteins using a single-parameter harmonic potential. Fold Des 1997,
2(3):173-181.

13. Friedman N: Inferring cellular networks using probabilistic graphical
models. Science 2004, 303(5659):799-805[http://dx.doi.org/10.1126/
science.1094068].

14. Opgen-Rhein R, Strimmer K: From correlation to causation networks: a
simple approximate learning algorithm and its application to high-
dimensional plant gene expression data. BMC Syst Biol 2007, 1:37[http://
dx.doi.org/10.1186/1752-0509-1-37].

Needham et al. BMC Bioinformatics 2011, 12:374
http://www.biomedcentral.com/1471-2105/12/374

Page 11 of 12

http://www.urmc.rochester.edu/biostat/people/faculty/hu.cfm
http://www.urmc.rochester.edu/biostat/people/faculty/hu.cfm
http://www.ncbi.nlm.nih.gov/pubmed/16646871?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646871?dopt=Abstract
http://dx.doi.org/10.2202/1544-6115.1189
http://www.ncbi.nlm.nih.gov/pubmed/15797912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15797912?dopt=Abstract
http://dx.doi.org/10.1093/bioinformatics/bti398
http://www.ncbi.nlm.nih.gov/pubmed/12808457?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12808457?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12808457?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10371154?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10371154?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9218955?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9218955?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14764868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14764868?dopt=Abstract
http://dx.doi.org/10.1126/science.1094068
http://dx.doi.org/10.1126/science.1094068
http://www.ncbi.nlm.nih.gov/pubmed/17683609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17683609?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17683609?dopt=Abstract
http://dx.doi.org/10.1186/1752-0509-1-37
http://dx.doi.org/10.1186/1752-0509-1-37


15. Li K: Genome-wide coexpression dynamics: theory and application.
Proceedings of the National Academy of Sciences 2002, 99(26):16875-16880.

16. Lai Y, Wu B, Chen L, Zhao H: A statistical method for identifying
differential gene-gene co-expression patterns. Bioinformatics 2004,
20(17):3146-3155[http://dx.doi.org/10.1093/bioinformatics/bth379].

17. Shedden K, Taylor J: Differential correlation detects complex associations
between gene expression and clinical outcomes in lung
adenocarcinomas. Methods of Microarray Data Analysis IV 2005, 121-131.

18. Choi J, Yu U, Yoo O, Kim S: Differential coexpression analysis using
microarray data and its application to human cancer. Bioinformatics 2005,
21(24):4348-4355.

19. Hu R, Qiu X, Glazko G, Klebanov L, Yakovlev A: Detecting intergene
correlation changes in microarray analysis: a new approach to gene
selection. BMC Bioinformatics 2009, 10:20[http://dx.doi.org/10.1186/1471-
2105-10-20].

20. Hu R, Qiu X, Glazko G: A new gene selection procedure based on the
covariance distance. Bioinformatics 2010, 26(3):348-354[http://dx.doi.org/
10.1093/bioinformatics/btp672].

21. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, Behm FG,
Raimondi SC, Relling MV, Patel A, Cheng C, Campana D, Wilkins D, Zhou X,
Li J, Liu H, Pui CH, Evans WE, Naeve C, Wong L, Downing JR: Classification,
subtype discovery, and prediction of outcome in pediatric acute
lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002,
1(2):133-143.

22. Patterson D: The Trouble with Multicore Microprocessors. IEEE Spectrum
2010, 28-32.

23. Szabo A, Boucher K, Carroll W, Klebanov L, Tsodikov A, Yakovlev A: Variable
selection and pattern recognition with gene expression data generated
by the microarray technology. Mathematical Biosciences 2002, 176:71-98.

24. Szabo A, Boucher K, Jones D, Tsodikov AD, Klebanov LB, Yakovlev AY:
Multivariate exploratory tools for microarray data analysis. Biostatistics
2003, 4(4):555-567[http://dx.doi.org/10.1093/biostatistics/4.4.555].

25. Xiao Y, Frisina R, Gordon A, Klebanov L, Yakovlev A: Multivariate search for
differentially expressed gene combinations. BMC Bioinformatics 2004,
5:164[http://dx.doi.org/10.1186/1471-2105-5-164].

26. Klebanov L, Gordon A, Xiao Y, Land H, Yakovlev A: A permutation test
motivated by microarray data analysis. Computational Statistics and Data
Analysis 2005.

27. Gordon A, Glazko G, Qiu X, Yakovlev A: Control of the Mean Number of
False Discoveries, Bonferroni, and Stability of Multiple Testing. The
Annals of Applied Statistics 2007, 1:179-190[http://projecteuclid.org/euclid.
aoas/1183143734].

28. Message Passing Interface Forum: MPI: A Message-Passing Interface
Standard, Version 2.2. 2009 [http://www.mpi-forum.org/docs/].

29. Barney B: POSIX Threads Programming. 2011 [https://computing.llnl.gov/
tutorials/pthreads/].

doi:10.1186/1471-2105-12-374
Cite this article as: Needham et al.: Hierarchical Parallelization of Gene
Differential Association Analysis. BMC Bioinformatics 2011 12:374.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Needham et al. BMC Bioinformatics 2011, 12:374
http://www.biomedcentral.com/1471-2105/12/374

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/15231528?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15231528?dopt=Abstract
http://dx.doi.org/10.1093/bioinformatics/bth379
http://www.ncbi.nlm.nih.gov/pubmed/16234317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16234317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19146700?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19146700?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19146700?dopt=Abstract
http://dx.doi.org/10.1186/1471-2105-10-20
http://dx.doi.org/10.1186/1471-2105-10-20
http://www.ncbi.nlm.nih.gov/pubmed/19996162?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19996162?dopt=Abstract
http://dx.doi.org/10.1093/bioinformatics/btp672
http://dx.doi.org/10.1093/bioinformatics/btp672
http://www.ncbi.nlm.nih.gov/pubmed/12086872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12086872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12086872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11867085?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11867085?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11867085?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14557111?dopt=Abstract
http://dx.doi.org/10.1093/biostatistics/4.4.555
http://www.ncbi.nlm.nih.gov/pubmed/15507138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15507138?dopt=Abstract
http://dx.doi.org/10.1186/1471-2105-5-164
http://projecteuclid.org/euclid.aoas/1183143734
http://projecteuclid.org/euclid.aoas/1183143734
http://www.mpi-forum.org/docs/
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Gene Differential Association Analysis Procedure
	Statistical Hypothesis Testing
	The N-statistic
	Permutation-based Null Distribution and p-value
	Summary of the GDAA Procedure


	Computation
	Data Sharing

	Results
	Simulation Data
	Performance Analysis

	Conclusions
	Availability and Requirements
	Acknowledgements
	Author details
	Authors' contributions
	References

