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Abstract

Background: The speed at which biological datasets are being accumulated stands in contrast to our ability to
integrate them meaningfully. Large-scale biological databases containing datasets of genes, proteins, cells, organs,
and diseases are being created but they are not connected. Integration of these vast but heterogeneous sources
of information will allow the systematic and comprehensive analysis of molecular and clinical datasets, spanning
hundreds of dimensions and thousands of individuals. This integration is essential to capitalize on the value of
current and future molecular- and cellular-level data on humans to gain novel insights about health and disease.

Results: We describe a new open-source Cytoscape plugin named iCTNet (integrated Complex Traits Networks).
iCTNet integrates several data sources to allow automated and systematic creation of networks with up to five
layers of omics information: phenotype-SNP association, protein-protein interaction, disease-tissue, tissue-gene, and
drug-gene relationships. It facilitates the generation of general or specific network views with diverse options for
more than 200 diseases. Built-in tools are provided to prioritize candidate genes and create modules of specific
phenotypes.

Conclusions: iCTNet provides a user-friendly interface to search, integrate, visualize, and analyze genome-scale
biological networks for human complex traits. We argue this tool is a key instrument that facilitates systematic
integration of disparate large-scale data through network visualization, ultimately allowing the identification of
disease similarities and the design of novel therapeutic approaches.
The online database and Cytoscape plugin are freely available for academic use at: http://www.cs.queensu.ca/ictnet

Background
In recent years, the availability of high throughput data-
sets from a variety of biological sources has prompted
the creation of a multitude of databases that significantly
facilitate biomedical research. In parallel, network biol-
ogy has emerged as a powerful paradigm to visualize
and analyze large data ensembles in novel ways with
unparalleled flexibility [1]. More recent applications of
this approach have enabled a detailed look at the genetic
landscape of complex human phenotypes [2]. In 2007,
Goh et al. reported the first human disease network and
provided a novel view of the genetic relationship among
diseases [3]. Subsequently, more complex approaches
that included the integration of quantitative trait loci,
gene expression, and clinical phenotypic data were used

to construct disease similarity networks [4,5]. Another
pioneering study summarized the application of protein
networks for network-based classification of diseases [2]
and integration of drug targets and disease gene pro-
ducts led to the field of systems pharmacology [6,7].
Overall, the availability of large-scale datasets has
prompted efforts to integrate data with the ultimate goal
of providing systematic insights into complex traits.
Recently, multiple databases were elegantly combined

to explore gene-disease associations [8]. While this is a
useful tool to visualize relationships among phenotypes
and study disease-related genes, the obtained networks
are limited to only this type of interaction. Here we pre-
sent iCTNet (integrated Complex Traits Networks), a
tool to create and analyze human complex traits net-
works that assembles and integrates information from
genome-wide association studies, protein-protein inter-
actions, tissue expression, and drug targets with the goal
of identifying novel relationships across several domains
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that may assist in elucidating a new classification, patho-
genic mechanism, or treatment for common human
traits. To the best of our knowledge, iCTNet constitutes
the first effort to integrate multiple layers of information
as multi-partite networks thus enabling systematic ana-
lysis of human complex traits.

Implementation
The software Cytoscape is a popular open source plat-
form for complex network analysis and visualization that
allows for a wide variety of applications through the
development of task-specific plugins [9]. iCTNet is
implemented in Java as a Cytoscape plugin and provides
a user-friendly interface to search, view, and analyze gen-
ome-scale biological networks for more than 200 com-
mon human diseases and traits. Integration of these data
sources results in four types of nodes (i.e. protein/gene/
SNP, trait, tissue, and drug), and five types of edges con-
necting these nodes (i.e. phenotype-SNP, protein-protein,
phenotype-tissue, tissue-gene, and drug-gene). In iCT-
Net, the basic level of analysis is the disease-gene rela-
tionships. Once those edges are specified (at any valid p-
value threshold) any additional relationship can be incor-
porated. We use the terms SNP/gene/protein interchange-
ably because of the correspondence between SNPs and
genes – more specifically, the most significantly associated
SNPs define a gene-trait edge and gene products (proteins)
are used in the interaction networks. Data sources and
their integration (Table 1) are described in the following
subsections. Once installed, iCTNet is available from the
plugin directory of Cytoscape. Through this plugin the
user can connect to the database and fetch multiple
sources of data for subsequent analysis within the plugin
itself or the Cytoscape environment. For example, we
have implemented two published algorithms (random
walk with restarts and PRINCE) that use network topolo-
gical characteristics in the protein interaction network to
prioritize candidate genes. In essence, the core of both
algorithms is similar (i.e. a random walker). The main
difference is the type of input data and the type of con-
nections each algorithm can analyze. Random walk with
restarts is implemented to work with protein-protein
interaction networks only while PRINCE has been
extended to work over the entire network with up to 5
different types of connections.

Data sources
Phenotype-SNP association
Phenotype-SNP associations were collected from pub-
lished GWAS articles and mapped to the closest gene
using build 37 of the human genome reference. Our
database also contains results from 118 GWAS pub-
lished before March 1, 2008 [10], and data from the
GWAS catalog [11] (Jan 2011). While data from the
GWAS catalog only contains associations at a p-value of
10-6 or better, Johnson et al. compiled all available
results as reported by each author (hence, p-values of
up to 0.05 are reported). An advantage of using GWAS
data is the availability of p-values, a measure of confi-
dence for each reported association. Fisher’s meta p-
value [12] was calculated when the same phenotype-
SNP association was reported in different studies. iCT-
Net contains more than 6,000 trait-SNP associations at
a significance level of 10-4, and more than 2,000 at 10-8

(Table 2).
Protein interactions
More than 33,000 interactions among 12,000 proteins
were downloaded from the human protein reference
database (HPRD, R.8) [13]. In addition, protein (TF)
-DNA interactions were incorporated by extracting tran-
scription factor binding sites (TFBS) information from
the UCSC Genome Browser v.18 [14]. Protein-DNA
interactions were defined as directed edges linking TF
and their target genes. Edges were derived from high
confidence TFBS (ZScore > 4.0) located within 5,000 bp
of the transcriptional start site of the nearest gene.
Tissue information
To refine phenotype-SNP association, we incorporated
information on genes expressed in specific tissues. This
information was downloaded from HPRD and included
13,337 genes, 579 tissues and 10,486 tissue-gene con-
nections. We curated and pooled the tissues into 38
categories to standardize the naming conventions in var-
ious sources, and filtered “unknown” gene symbols,
resulting in 7,260 genes and 43,206 tissue-gene edges.
We also manually curated the disease-tissue association
for the phenotypes present in iCTNet. The final disease-

Table 1 Data sources and distribution

Genes (proteins) Diseases Drugs Tissues

Genes (proteins) 39,137a 12,539b 6,053c 73,131d

Diseases 12,539b NA NA 285e

Drugs 6,053c NA NA NA

Tissues 73,131d 285e NA NA
a HPRD/UCSD;b GWAS Catalog;c DrugBank;d Unigene;e manual curation.

Table 2 Number of disease-gene associations at different
GWAS cutoff values

Cutoff Disease-gene associations

No filter 12,539

10-4 6,284

10-5 4,626

10-6 3,163

10-7 2,459

10-8 2,026

10-9 1,696

10-10 1,489
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tissue subnetwork has 27 pooled tissues, 247 phenotypes
and 281 edges.
Drug-gene interactions
Drug-target information was obtained from DrugBank
v.2.5 [15]. Gene symbols in DrugBank were matched to
UCSC nomenclature [14]. This layer has 2,402 drugs
and 1,739 gene nodes, linked by 5,989 edges.

Candidate gene prioritization
Two prioritization algorithms were implemented in iCT-
Net whose core computation is based on the flow of
information across the protein interaction network: i)
random walk with restarts [16] and ii) network propaga-
tion (PRINCE) [17]. The core of both implemented
algorithms is similar (they are both random walk meth-
ods). As explained in the original manuscripts [16,17],
these methods are implemented and based on the fol-
lowing equation:

pt+1 = (1− r)Wpt + rp0

where an iterative walker’s transition in the network is
explained and where pt+1 is the vector holding the
scores of the nodes at time step t + 1, W is the normal-
ized adjacency matrix of the network, pt is a vector
holding the score of the nodes at the previous time step
t, and r is the restart rate ranging from 0 to 1. In both
methods, the walker begins with starting nodes and
extends to randomly selected neighbors in the network.
The restart ratio represents the probability of the transi-
tion to jump back to starting nodes at every time step.
In other words, the transition will reach farther nodes in
the network with small restart ratio; otherwise, the
walker will be trapped at starting nodes if the restart
ratio is 1.
The main difference between PRINCE [17] and the

random walk method [16] is the input data p0 and the
adjacency matrix W. In random walk with restarts, the
initial vector p0 was constructed such that equal prob-
abilities were assigned to the starting nodes. Next, all
genes with GWAS p-values are classified as either “asso-
ciated” or “candidate” based on a user-selected thresh-
old. This algorithm measures the closeness of
potentially associated (candidates) to confirmed (asso-
ciated) genes within the global protein network, and
ranks candidate genes for further biological investiga-
tion. As for the PRINCE algorithm, the original version
takes as input a disease similarity matrix (arbitrarily
defined), and a protein interaction network. PRINCE
then uses a network propagation-based algorithm to
infer a strength-of-association scoring function and
exploits the prior information on causal genes for the
same disease or similar ones. This scoring is used in
combination with a PPI network to infer protein

complexes that are involved in a given disease. We
modified the algorithm to work with unweighted pro-
tein-protein interactions and extended it to include all
types of network interactions supported by iCTNet. In
addition, instead of using an arbitrarily defined disease
similarity matrix, our implementation of PRINCE uses
true disease associations as defined by a user-selected p-
value threshold. A genetic similarity network is then
created from GWAS data. Finally, the association of
candidate genes with a given phenotype is prioritized via
network propagation as originally described. The com-
plexity of both methods is O(tn2), where n is the num-
ber of nodes in the network, and t represents the
number of time-steps. The run times depend on the
number of truly associated genes, their associated
strength (p-value), and the number of connections
among their protein products in a network.

Results and Discussion
Once installed in the appropriate directory (cytoscape/
plugins) iCTNet is available from the Plugins menu
within Cytoscape. Through the initial menu, the user
can choose to load a network from a local file, or
download a network from the iCTNet database. The
user can then create a similarity network or perform a
series of network analyses. A typical user will choose
to start by downloading a network from the iCTNet
database. The “Database query” option offers the possi-
bility to query the database for a particular gene, dis-
ease, or tissue. Alternatively, the user can choose to
directly download any of these datasets to the Cytos-
cape environment (Figure 1). For example a user could
quickly create a gene-disease network with 5 common
autoimmune diseases (Type 1 diabetes, T1D; rheuma-
toid arthritis, RA; multiple sclerosis, MS; Crohn’s dis-
ease, CD; and psoriasis, Ps) at a p-value of 10-8 or
better (for this specific example only disease-gene, pro-
tein-protein and protein-DNA interactions were
retrieved). This will create a network with 239 nodes
(5 nodes of type = disease and 234 nodes of type =
gene) and 395 edges. The user has the choice of down-
loading just the directly associated genes as well as
their neighbors at different degrees of separation (ds).
A layout of this network (ds = 0) using the built-in
edge-weighted spring-embedded algorithm places RA,
MS, and T1D next to each other, while Ps and CD are
placed further apart (Figure 2A). The proximity among
RA, T1D, and MS is consistent with their strong HLA
association, while much less evidence of such an asso-
ciation is currently available for Ps and CD. This visua-
lization highlights both the amount of shared genes as
well as disease-specific associations. Since all interac-
tions downloaded through iCTNet are from published
articles, each disease-gene edge has a PubMed ID as
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an attribute and the article can be retrieved directly
within Cytoscape using the Edge Linkout feature.
A useful feature of iCTNet is the ability to create a

similarity network on any existing network using any
type of node. This function replaces indirect connec-
tions in the bi-partite network (in this case diseases are
connected though genes) thus creating a simpler display.
For example, a similarity network of the autoimmunity
graph shown in Figure 2A is shown in Figure 2B. This
feature is particularly useful when handling very large
networks. The color of each edge is proportional to the
number of genes shared by each disease (using a heat-
map coloring scheme). Another key component of iCT-
Net is the availability of drug-target relationships. Figure
2C shows the same autoimmunity network in which
proteins that are drug targets are linked to drugs (blue
nodes) as described in DrugBank. A straightforward
advantage of this multidimensional display is that it may
identify drugs that are effectively used for one disease as
a plausible alternative for another disease genetically
associated to the same drug target.
iCTNet also provides two candidate prioritization

algorithms that take full advantage of the underlying
protein interaction network. Both the random walk and
PRINCE algorithms take a set of “associated” genes
(genes with association p-value below a user-selected
threshold) and perform searches through the entire pro-
tein interaction network. This is a powerful way to iden-
tify a set of candidate genes that even if their association
p-value is modest, their position in the protein ensemble
makes them suitable candidates for further follow-up.
To the best of our knowledge a head-to-head

Figure 1 Screenshot of iCTNet. Genetic association data for more
than 200 traits and diseases are available to download from the
iCTNet database at a user-selectable significance threshold (-Log10
(p)). In addition, the user can choose to download disease-tissue,
tissue-gene, and drug-gene interactions by simply ticking a
checkbox. Protein-protein and protein-DNA interactions can also be
downloaded at different degrees of separation (ds) or distance.
Choosing a distance ds = 0 only downloads direct disease-gene
associations, and any existing interaction among associated gene
products (protein-protein). A distance ds = 1 will also include the
first neighbors of genes directly associated.

Figure 2 A network of five common autoimmune diseases. A. Disease-gene interaction network (ds = 0) for five common autoimmune
diseases. Each disease has unique and shared associations. RA, T1D, and MS are closely related both through HLA and non-HLA associated
genes. B. A simplified version of the network shown in A, using the “create similarity net” feature of iCTNet. In this representation, diseases are
connected by edges of a color proportional to the number of shared genes. C. Same network as in A with drug-target interactions. Colored
circles represent diseases (MS = yellow, T1D = red, RA = green, Ps = magenta, CD = teal), white triangles represent genes, and cyan round
squares represent drugs. Disease-gene interactions are colored according to the disease. Protein-protein and DNA-protein interactions are shown
as white edges. Drug-gene interactions are represented as cyan dashed edges.
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comparison of these algorithms under extensive range of
parameters has not been performed. Thus, we are
unable to recommend the use of a particular algorithm,
and instead encourage the user to test them under dif-
ferent experimental scenarios.
Previous studies that explored the relationship between

genes and diseases on a large scale [3,8] were based on
manually curated databases such as the Online Mende-
lian Inheritance in Man (OMIM) [18]. While data from
OMIM is readily accessible, the relationships between
genes and diseases from its GeneMap do not strictly
represent susceptibility loci, but in some cases also refer
to progression or pharmacogenomics effects. In contrast,
iCTNet incorporates phenotype-SNP associations from
the genome-wide association studies (GWAS) Catalog
database (http://www.genome.gov/gwastudies). When
multiple sources of information implicate a given gene
with a trait, p-values from those studies were combined
into a meta p-value. As a result, each disease-gene inter-
action (edge) in iCTNet has a quantitative value approxi-
mately equal to the -Log10 of the association p-value
(-Log10(p)). This strategy also enables the iCTNet user to
filter results based on a given significance threshold.
Another distinctive feature of iCTNet is that multi-par-
tite networks can be created by combining up to four
classes of nodes (disease, gene, drug, and tissue) with up
to five classes of edges (protein-protein, protein-DNA,
disease-gene, drug-gene, and tissue-gene).
In summary, here we present a database and Cytos-

cape plugin for the integration of different high-
throughput datasets. iCTNet represents a new family of
applications that are designed to integrate and analyze
disparate data sources, a key pillar in the new paradigm
of systems biology.

Conclusions
iCTNet is a powerful plugin for Cytoscape, built on a
complex database that integrates interactions among
human phenotypes, proteins, tissues, and drugs. It uti-
lizes the power of multi-partite network analysis and
visualization to uncover genetic similarities among mul-
tiple traits to suggest alternative therapeutic approaches
and to prioritize disease-associated genes. iCTNet
enables a point and click environment to load views for
user-selected phenotypes, and provides two methods for
evaluation or prioritization of disease-causing genes. To
maintain iCTNet, monthly updates of GWAS catalog
are planned. Integration of further data sources includ-
ing quantitative omics data, miRNA targets, and
advanced analysis are among future plans.

Availability and Requirements
• Project name: iCTNet, integrated Complex Traits
Networks.

• Project home page: http://www.cs.queensu.ca/ictnet
• Operating system: Platform independent
• Programming language: Java, minimum requirement

Java SE 1.5
• Cytoscape version: iCTNet requires Cytoscape ver-

sion 2.6 or later, and has been tested on version 2.8
• Memory: minimum 2GB for large networks
• License: BSD-style open source license
• Any restrictions to use by non-academics: none

other than those in the BSD license

List of abbreviations
iCTNet: integrated complex trait networks; SNP: single nucleotide
polymorphism; GWAS: genome-wide association study; HPRD: Human
protein reference database; CD: Crohn’s disease; MS: multiple sclerosis; Ps:
Psoriasis; T1D: Type 1 diabetes; RA: Rheumatoid arthritis
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