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Abstract

Background: Machine learning is a powerful approach for describing and predicting classes in microarray data.
Although several comparative studies have investigated the relative performance of various machine learning
methods, these often do not account for the fact that performance (e.g. error rate) is a result of a series of analysis
steps of which the most important are data normalization, gene selection and machine learning.

Results: In this study, we used seven previously published cancer-related microarray data sets to compare the
effects on classification performance of five normalization methods, three gene selection methods with 21 different
numbers of selected genes and eight machine learning methods. Performance in term of error rate was rigorously
estimated by repeatedly employing a double cross validation approach. Since performance varies greatly between
data sets, we devised an analysis method that first compares methods within individual data sets and then
visualizes the comparisons across data sets. We discovered both well performing individual methods and synergies
between different methods.

Conclusion: Support Vector Machines with a radial basis kernel, linear kernel or polynomial kernel of degree 2 all
performed consistently well across data sets. We show that there is a synergistic relationship between these
methods and gene selection based on the T-test and the selection of a relatively high number of genes. Also, we

find that these methods benefit significantly from using normalized data, although it is hard to draw general
conclusions about the relative performance of different normalization procedures.

Background

Machine learning methods have found many applica-
tions in gene expression data analysis, and are com-
monly used to classify patient samples into classes,
corresponding to for example cancer sub-type, based on
gene expression profiles. Supervised learning is a power-
ful tool in these studies since it can be used both to
establish whether the classes of interest can be predicted
from expression profiles and to provide an explanation
as to what genes underlie the differences between
classes. The expression data in such studies typically
undergo an analysis pipeline in which the most impor-
tant steps are data normalization, gene selection and
machine learning. Although there are several
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comparative studies of methods for normalization, gene
selection and machine learning, none have studied how
all of these analysis steps influence each other and the
final model performance.

A wealth of methods exists for microarray normaliza-
tion, gene selection and machine learning. Normaliza-
tion of microarray data involves several possible steps
[1], including background correction [2] and dye-nor-
malization [3]. The relative performance of different
normalization approaches, although not in the context
of machine learning, has previously been evaluated
using spike-in data sets [4,5]. Previous studies have also
shown that normalization has an impact on clustering
[6,7]. One of the challenges in using machine learning
and gene expression data to study medical diagnosis is
the large number of genes (features) compared to the
relatively limited number of patients (observations).
Many gene selection methods have therefore been
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developed to cope with this problem [8,9]. Approaches
to gene selections are either filter methods or wrapper
methods. Filter methods score, rank and select the best
individual genes before the machine learning methods is
applied, while wrapper methods score subsets of genes
according to the performance of machine learning mod-
els induced from the subset. Machine learning methods
are commonly used in bioinformatics applications both
for clustering (i.e. unsupervised learning) and for indu-
cing predictive models from examples (i.e. supervised
learning) [10].

Since gene selection is a necessary step in machine
learning-based analysis of microarray patient data, all
existing comparative studies have investigated the effect
of gene selection and machine learning methods on
classification performance. Most of these studies consid-
ered tumor classification. However, to the best of our
knowledge, no study has also taken data normalization
methods into account. Pirooznia et al. [11] studied the
performance of three gene selection methods and six
machine learning methods on eight microarray data
sets, and mainly highlighted the importance of gene
selection and the number of selected genes. Romualdi et
al. [12] investigated four gene selection methods and six
machine learning method using both simulated data and
two microarray data sets, and demonstrated that non-
parametric methods such as Support Vector Machines
(SVMs) and Artificial Neural Networks (NNs) were
more robust than parametric methods. Lee ef al. [13]
performed an extensive comparison of 21 machine
learning methods and three gene selection approaches
on seven microarray data sets. Their main conclusions
were that more sophisticated classifiers such as SVMs
perform better than classical methods and that the
choice of gene selection method has a large effect on
the performance. Li et al. [14] investigated eight gene
selection methods and seven machine learning methods
using nine data sets, and concluded that SVM methods
perform best and that the choice of machine learning
methods is more important than the choice of gene
selection methods. Statnikov et al. [15] applied four
gene selection methods and four machine learning
methods, as well as several different SVM methods and
some ensemble methods, to classify patients in 11 data
sets. They also concluded that SVM methods performed
better than non-SVM methods, that no significant
improvement was obtained using ensemble methods and
that gene selection improved all machine learning meth-
ods. All comparative studies used cross validation to
evaluate the performance of different methods. Several
previous studies have stressed the challenges related to
the applications of machine learning methods and the
importance of objective evaluation [16-18]. In particular,
Zervakis et al. [19] used several gene selection and
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machine learning methods to show how the perfor-
mance of gene selection methods vary with different
validation strategies and concluded that independent
test sets are important for validation.

The previous comparative studies have shown that
classification performance varies a great deal from data
set to data set. This is a challenge in comparative stu-
dies since it limits our ability to find general trends in
terms of methods and combinations of methods that
perform best across data sets. Here we approach this
problem by comparing methods and pairs of methods
on individual data sets, and then by visualizing trends
across data set using heat maps. Thus we are able to
draw general conclusions both about the individual
effect of normalization, gene selection and machine
learning on classification performance, and also to say
something about synergistic effects that occur when
these methods are used in combination. Our approach
to studying synergy between methods, and the fact that
we study the effect of normalization as well as gene
selection and machine learning, makes our study unique.
Our main conclusions are that Support Vector
Machines (SVMs) with a radial basis kernel, linear ker-
nel or polynomial kernel of degree 2 perform best across
data sets. We show that these methods exhibit a syner-
gistic relationship with gene selection based on the T-
test and the selection of a relatively high number of
genes. All these methods perform better on normalized
than on non-normalized data, however, while the radial
basis kernel and the linear kernel perform best when
the data is not background corrected, the polynomial
kernel benefit from background corrected data.

Results

We evaluated classification models induced from seven
different two-channel microarray expression data sets
with two known classes (Table 1). Each classification
model is the result of a combination of different compu-
tational methods for microarray normalization, gene
selection, number of selected genes and machine learn-
ing. We included five different approaches to normaliza-
tion, three gene selection methods, 21 different numbers
of genes and eight different machine learning methods
(Table 1). In total 14685 models were induced corre-
sponding to all possible combinations of the different
methods and data sets. We will refer to data sets and
methods according to the acronyms given in Table 1
(see Methods for more details).

Combinations of methods were validated by employ-
ing a double cross validation (CV) approach where the
inner loop was used to find good parameter settings (e.
g. number of units in the hidden layer of a Artificial
Neural Network (NN)) and the outer loop was used to
estimate the predictive power of the final model in
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Table 1 Overview of the data sets and the methods used in this study

Data set (D)

Classes* No. of genes™

Alizadeh DLBCL (68), other samples (65) 7806 (7430)
Finak Epithelial (34), stromal tissue (32) 33491
Galland Invasive NFPAs (22), non- invasive NFPAs (18) 40475 (40291)
Herschkowitz High ER expression (58), low ER expression (46) 19718
Jones Cancerous samples (72), non-cancerous samples (19) 40233 (39746)
Serlie High ER expression (55), low ER expression (18) 8033 (7734)
Ye Metastatic (65), non-metastatic (22) 8911
Normalization (No) Description

No 0 Raw data

No 1 Print-tip MA-loess, no background correction

No 2 Print-tip MA-loess, background correction

No 3 Global MA-loess, no background correction

No 4 Global MA-loess, background correction

Gene selection (G) Fixed parameters

T-test Two-sided

Relief Threshold = 0, nosample = # obs. in data set

Paired distance

Euclidian distance

Number of genes
(N)

2,12, 22,32,42,52,62, 72, 82,92, 100, 200, 300, 400, 150, 500, 600, 700, 800, 900, 1000

Machine learning Description, Fixed parameters Optimized
(M) parameters
DT Gini Decision tree, Splitting index = Gini
DT Information Decision tree, Splitting index = Information
NN One layer Neural Network, one hidden layer, decay = 0.001, rang = 0.1, maxit = 100 size = [2-5]
NN No layer Neural Network, no hidden layer, decay = 0.001, rang = 0.1, maxit = 100, skip = TRUE, size = 0
SVM Linear Support Vector Machine, linear kernel, type = nu-scv, cross = 10, nu = 0.2, scaled = FALSE
SVM Poly2 Support Vector Machine, polynomial kernel, deg 2, type = nu-scv, cross = 10, nu = 0.2, scaled =
FALSE
SVM Poly3 Support Vector Machine, polynomial kernel, deg 3, type = nu-scv, cross = 10, nu = 0.2, scaled =
FALSE
SVM Rb Support Vector Machine, radial basis kernel, type = nu-scv, cross = 10, nu = 0.2, scaled = FALSE sigma = 274, 2"

Acronyms defined here are used throughout the paper. “Fixed parameters” in the methods were given fixed values, while “Optimized parameters” were
optimized in the inner cross validation using a grid search. *The number of samples belonging to each class is given in parenthesis. **Dimensions after

background corrected normalization (No 2 and No 4) are given in parenthesis.

terms of average error rate (Figure 1). Normalization
was done initially, before the cross validation, while
gene selection was done inside the outer cross
validation.

Method choices explain variation in classification
performance within data sets

The average error rate obtained by evaluating all the dif-
ferent combinations of methods on the seven data sets
was 0.1512 with a standard deviation of 0.1195 (Addi-
tional file 1). The observed variation has two causes; the
varying performance of different combination of methods
used to induce models and the varying difficulty of discri-
minating the two classes in different data sets. The later
could to some degree be explained by the varying distri-
butions of observations over the two classes in the data
sets. To reduce this effect, error rates were adjusted by

dividing by the theoretical error rate obtained by random
class assignment from the known distribution of classes.
Thus adjusted error rates below one correspond to mod-
els performing better than random class assignment.
Henceforth, when we discuss error rates, we will refer to
the adjusted version of error rates if not specifically sta-
ted otherwise. The average adjusted error rate from all
the 14685 models was 0.3668 with a standard deviation
of 0.3159. This indicates that, although the adjustment
reduces the influence due to unbalanced class sizes, most
of the variation has other causes. Figure 2 shows that the
error rates vary a lot between different data sets, but also
that there is variation within data sets. It is this latter var-
iation, due to the choice of combinations of methods,
that is of interest to us in this paper.

To analyze the effect that different methods have on the
classification performance, we used multiple linear
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Figure 1 Method overview. The figure illustrates the analysis pipeline used to induce and validate models. First data was normalized (or raw
data are used: No 0). Then a 5-fold cross validation (CV) was conducted to divide data into training and test sets. The training sets were used to
train the models (red box), while the test sets were used to validate their classification power. In order to induce a classification model, some
parameters had to be tuned. For example, the different Support vector machines (SVMs) employed different kernels with one or more
parameters. The parameter sigma in the radial basis kernel was tuned by conducting a grid search and choosing the values with the lowest
error rate during a 10-fold CV. The selected parameter value was finally used to induce a model from the training set in the outer CV and to
classify the observations in the corresponding test set. The outer 5-fold CV was performed 10 times resulting in 50 test sets from which we
evaluated 50 different models trained on 50 different trainings sets. As a measure of classification performance we used the average fraction of

Evaluation

regression [20] with methods as predicting variables and
error rate as the response variable. Predicting variables
included both first order terms and second order interac-
tion terms constructed from Data set (D), Normalization
(No), Gene selection method (G), Number of selected
genes (N) and Machine learning method (M) (see Table
1). The regression model had an adjusted R-squared [20]
value of 0.9589. The analysis showed that Data set (D) is
by far the most explanatory predicting variable completely
overshadowing the other variables. This is in accordance
with what we already saw in Figure 2, and provides little
information as to what is the best combination of meth-
ods. Thus, we performed a new regression analysis without
Data set (D) as predicting variable, resulting in an adjusted
R-squared value of only 0.0283. As a consequence of the
lack of general, interpretable results from the regression
analysis across data sets, we changed strategy to first ana-
lyze each data set individually and then search for general
trends across data sets. This seems to be a viable strategy;
adjusted R-squared values for these new regression models
from the seven individual data sets range from 0.74 to

0.97, indicating that variation in error rate within data sets
indeed can be explained by method choice. Also, all the
first order terms (except G in one data set) and most
interaction terms (except N+G and N+M in one data set)
have significant explanatory power in the regression mod-
els (see Methods).

Significant differences in performance of individual
methods

To study the performance of individual methods, e.g.
the gene selection method Relief, we plotted error rates
resulting from applying all relevant combinations of
methods to individual data sets and to all data sets (Fig-
ure 3, Figure 4, Figure 5 and Figure 6). We also com-
pared all methods head-to-head and visualized
statistically significant differences between pairs of
methods across data sets (see Figure 7, Additional file 2
and Methods).

Normalization

Across data sets, the normalization methods perform
rather similar (Figure 3); the somewhat worse results for
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Figure 2 Overall error rates for each data set. Box plots showing the error rates resulting from all the different combinations of methods

Jones Sarlie Ye

No 1 and 2 (i.e. print-tip normalization) can be
explained by the fact that these normalization methods
are not relevant to the Agilent data sets (i.e. Finak and
Galland) of which the Finak data set results in extremely
well-performing models for almost all methods (Figure
2). Within data sets, however, the picture is rather com-
plex (Figure 3 and Figure 7). In the Serlie data set, mod-
els based on non-normalized data (No 0) somewhat
surprisingly outperform models from normalized data
(No 1-4) by a large margin, but non-normalized data is
also significantly better than all normalized data in
Herschowitz. On the other hand, all normalized data is
statistically better than non-normalized data in Ye, Ali-
zadeh and Jones. Thus the major differences are
observed between non-normalized and normalized data.
Significant differences between normalization methods
(No 1-4) are sporadic, although No 4 is significantly bet-
ter than No 2 and No 3 in three data sets.

Gene selection

Also gene selection methods exhibit a rather complex
pattern with some data sets showing a gene selection
preference (Figure 4 and Figure 7). The T-test outper-
forms the two other methods in Ye and Galland, and is
significantly better than Paired distance and Relief in

five and four data sets, respectively. Relief is significantly
better than Paired distance in Alizadeh, Galland,
Herschkowitz and Ye. However, Paired distance is sig-
nificantly better than the two others in Jones and Serlie.
Hence, while the general trend is that the T-test per-
forms best followed by Relief and Paired distance, the
Sorlie data set again shows the opposite trend.

Number of selected genes

Figure 5 shows that there is a clear improvement in error
rates when going from selecting only the two best genes
from the gene selection methods to selecting several
genes. We also see that, for several data sets including Ye,
Serlie and Galland, more genes imply better performance,
although this trend decreases as we add many more genes
than we have observations. From Figure 7 it is clear that
there is no statistically significant improvement in a major-
ity of the data sets from including more than 200 genes.
Since we are applying the cross validation approach, and
thus estimate error rates on data that is unseen by the
models, we expected the predictive power of the models
to suffer somewhat from including many genes. What we
instead observe is that the performance keeps improving
or stays constant, but never gets worse. Interestingly, the
three data sets that keep improving even when more than
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Figure 3 Classification performance relative to normalization method. Box plots showing the error rates resulting from all method-
combinations utilizing a specific normalization method. Since the Finak and Galland data sets could not be normalized with methods 1 and 2,
these methods are absent from the relevant plots.

200 genes are used (i.e. Ye, Sorlie and Galland) also have
the fewest number of differentially expressed genes among
all data sets (Table 2).

Machine learning

In general, Support Vector Machines (SVMs) have the
best classification capabilities followed by Artificial
Neural Networks (NNs), while Decision Trees (DTs)
have the worst performance (Figure 6 and Figure 7).
However, DTs clearly outperform other machine learn-
ing methods in Serlie, which again shows the opposite
trend of the other data sets. Although there are some
clear conclusions to be drawn from the performance of
machine learning methods, Figure 7 also portray a
rather complex picture where most methods perform
significantly better than most other methods in at least
one data set. Notably, SVMs with a radial basis (Rb) ker-
nel are only outperformed in single data sets, but SVM
Linear and SVM Poly 2 are also performing well.

Synergistic relationships exists between methods
One of the main questions we ask in this study is to
what degree we can observe synergistic relationships

between methods. In order to answer this question we
need to study combinations of methods. To have
enough data to claim statistical significance, we limited
our study of synergy to comparing all method-pairs of
the same type, i.e., machine learning-normalization (M-
No), machine learning-number of genes (M-N), machine
learning-gene selection (M-G), gene selection-normaliza-
tion (G-No), gene selection-number of genes (G-N) and
normalization-number of genes (No-N) (see Figure 8,
Figure 9, Figure 10, Additional file 3 and Methods).

Obviously, the performance of individual methods
affects the performance of pairs of methods. However,
in practice we always select one method of each type (i.
e. one method for normalization, gene selection, number
of genes and machine learning), thus methods that do
not significantly deteriorate the performance of other
individually well-performing methods are of interest as
well as methods that decrease performance of other
methods and therefore represent combinations that
should be avoided. Method-pairs that contain the num-
ber of selected genes (N) are generally exhibiting the
pattern already seen for single methods; too few genes
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combinations utilizing a specific gene selection method.

Figure 4 Classification performance relative to gene selection method. Box plots showing the error rates resulting from all method-

severely reduce the performance of most methods while
more than 200 genes do not significantly improve per-
formance. Thus we will mainly focus on pairs consisting
of methods for machine learning, normalization and
gene selection (all comparisons can be seen in Addi-
tional file 3). Furthermore, we are particularly interested
in pairs where the best machine learning methods (SVM
Rb, Linear and Poly 2) are significantly affected by nor-
malization or gene selection. The overall performance of
a method-pair can be summarized by counting the
number of data set where this pair is significantly better
than other pairs (i.e. the sum of one row in Figure 8,
Figure 9 and Figure 10, see Additional file 3 for these
calculations).

Machine learning and normalization (Figure 8)

Compared to all other pairs of machine learning and
normalization, pairs containing SVM Rb perform the
best. SVM Rb performs better on normalized than on
non-normalized data. The best normalization method to
use with SVM Rb is No 3 followed by No 1, although
the improvement over No 2 and No 4 is rather small.
The same pattern can be seen for the second best
machine learning method, SVM Linear, indicating that

these methods combine well with normalization meth-
ods not utilizing background correction (i.e. No 1 and
No 3). However, the picture is rather complex. For
example, the third best method, SVM Poly 2, works best
with background corrected normalizations (No 2 and
No 4), while normalizations without background correc-
tion is no better than non-normalized data.

Machine learning and gene selection (Figure 9)

A clear trend is that the T-test is the best gene selec-
tion partner to all machine learning methods, although
the actual improvement sometimes is rather small. SVM
Rb combined with the T-test is the best performing
method-pair, and T-test is also the best gene selection
partner for SVM Linear and SVM Poly 2.

Gene selection and normalization (Figure 10)

Almost all pairs of gene selection and normalization
methods are significantly better than almost all other
pairs of this type in at least two data sets. The lack of
clear trends is maybe not so surprising considering the
complex behavior of these methods when studied indivi-
dually. Surprisingly, there is a synergy between the T-
test and non-normalized data, which is the best pair of
gene selection and normalization. If we look at the
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Figure 5 Classification performance relative to different numbers of genes. Box plots showing the error rates resulting from all method-
combinations utilizing a specific number of genes.

performance of the normalization methods for each
gene selection method separately, we again see the trend
from our analysis of individual methods; three to four
data sets result in significantly better models when nor-
malized while at least two other data sets actually result
in better models when not normalized.

The comparison of method-pairs confirms the strong
performance of the individually best performing
machine learning methods (SVMs Rb, Linear and
Poly2). These methods require at least 150 genes to
achieve their best classification performance. A trend is
that SVM Rb is somewhat more robust with respect to
normalization, gene selection and number of selected
genes than the other well-performing machine learning
methods. For example, both SVM Linear and Poly 2
perform worse when not using gene selection based on
the T-test, while SVM Rb performs almost as well with
one of the two other methods. This example illustrates
a very important trend in our study; although some
methods perform well by themselves, their performance
can be severely hampered by unfortunate choices for the
other methods. In this context, data normalization is

shown to be very important; the wrong normalization
method can severely reduce the performance of many of
the best machine learning methods. Also, these best
methods perform better on normalized than non-nor-
malized data. There is also a very clear positive effect of
using normalized data with DT methods, while NN
methods actually perform best on non-normalized data.
Of particular interest are synergistic effects where
two methods perform significantly better together than
any of the two methods do individually. We specifically
searched for such patterns (Additional file 4), and con-
firmed synergistic relationships between the three best
machine learning methods (SVM Rb, Linear and
Poly2) and both the T-test (significant in at least three
datasets) and the selection of at least 200 genes (signif-
icant in at least four data sets). There is also synergy
between No 3 (normalization without background cor-
rection) and both SVM Rb and Linear (significant in
three data sets), while SVM Poly2 has a synergistic
relationship with background corrected data (No 2 and
4, significant in three and four data sets, respectively).
One surprise is that this analysis confirms synergy
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Figure 6 Classification performance relative to machine learning method. Box plots showing the error rates resulting from all method-
combinations utilizing a specific machine learning method.
J

between non-normalized data and the T-test (signifi-
cant in four data sets). However, since the best
machine learning methods perform well with normal-
ized data and the T-test, this result is a curiosity of lit-
tle practical importance.

Statistical significance

To establish statistical significance of the reported error
rates, we performed permutation tests by inducing mod-
els and estimating error rates after randomly shuffling
the class labels of all data sets (Figure 11). Since such
tests are computationally expensive, we limited the
study to one method combination that was chosen
based on earlier discussions related to performance and
synergy; No 3, T-test, 150 genes and SVM Rb. The per-
mutation tests show that shuffled data sets result in
adjusted error rates centered close to 1.0 and that our
reported error rates for the original data sets are highly
significant with the exception of Serlie. As discussed
earlier, the Sorlie dataset stands out from the other data
sets in many ways. For example, Sorlie results in better
models when non-normalized and when inducing mod-
els using decision trees.

Discussion
In this paper, we have studied the effect of data normal-
ization, gene selection and machine learning on the pre-
dictive performance of models induced from cancer-
related expression data. Performance was rigorously
assessed by repetitively employing a double cross valida-
tion approach to each method combination and each
data set. We analyzed seven cancer related two-channel
microarray data sets published in high-impact journals.
We were particularly interested in studying the effect of
normalization in two-channel experiments where a gen-
erally agreed-upon standard for normalization still does
not exist. Indeed we see some trends related to normali-
zation. Normalized data resulted in better models than
do non-normalized data when employing the best
machine learning methods. In particular, the two best
machine learning methods (SVM Rb and Linear)
showed a synergistic relationship with normalizations
not using background correction (i.e. No 1 and No 3).
The data sets in this study result in machine learning
models that perform rather differently both with respect
to error rate and also with respect to relative
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performance between methods. Although all data sets
are from two-channel microarray experiments related to
cancer, the classes we have used to train and evaluate
our models are defined somewhat differently. However,
all classes are based on clinical observations (for details
see Table 1). We chose to approach this challenge of
heterogeneous data sets and classes by initially evaluat-
ing the data sets separately and then by looking for gen-
eral trends across data sets.

Overfitting occurs when the learning framework
selects models that performs better on the training set
but worse on the external test sets [21]. This is a

particularly severe problem for the types of data sets
studied here, since we have many more genes than
patients, and thus a high risk of selecting genes that
discriminate classes in the training set but that do not
generalize to the test set [17]. To detect overfitting
and obtain robust results, we performed a double cross
validation where the inner loop was used to optimize
parameters (when applicable) and the outer loop was
used to estimate classification performance. A k-fold
CV was chosen since previous research has shown that
this reduce the bias compared to leave-one-out CV
[22]. In addition, we re-ran the CV several times to
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Table 2 Differently expressed genes in the datasets

Data set (D) No. significant genes Significance threshold
Alizadeh 787 6.40e-06
Finak 2145 1.49¢-06
Galland 209 1.24e-06
Herschkowitz 324 2.54e-06
Jones 6282 1.24e-06
Serlie 0 6.22e-06
Ye 47 561e-06

Number of significant genes in each data set and the corresponding
significance thresholds. The t-test was used to compute p-values for each
gene and the Bonferroni correction was used to judge significance (i.e.
significance threshold at 0.05 divided by the number of genes).

minimize the effect that particular data splits have on
the results.

To simultaneously study the effect of normalization,
gene selection and machine learning implies testing a
large number of method combinations. In order to
reduce running time, we therefore had to make certain
adjustments to the analysis pipeline used to induce and
validate models. Firstly, while we did gene selection
inside the outer CV loop, we chose not to perform a
separate selection inside the inner loop (see Figure 1).
Since the inner loop is used to optimize parameters
only, we found this to be a reasonable compromise to
reduce running time while still keeping training and test
sets completely separate when estimating the reported
error rates in the outer CV loop. Secondly, we decided
to fix several parameters in the machine learning meth-
ods. Although we carried out tests to make sure we
optimized the most important parameters, this approach
could give some advantage to methods that have para-
meters that were in fact optimized. For example, opti-
mizing the Gaussian kernel parameter o could
somewhat benefit SVM Rb since this is the only SVM
method left with a parameter that was tuned. Finally, we
only performed permutation tests for one method com-
binations (300 permutations with No 3, T-test, 150
genes and SVM Rb). However, this test was sufficient to
show that permutated data results in adjusted error
rates centered close to 1.0 and thus that the best meth-
ods in this study clearly produce statistically significant
results.

Due to the above mentioned risk of overfitting, and
also due to practical issues such as running time, gene
selection is required on data sets with many genes and
few observations (e.g. patients). We were rather sur-
prised to see that all data sets upheld predictive perfor-
mance even when 1000 genes were selected from the
gene selection methods, and that the error rate actually
improved for three data sets. Interestingly, the three
data sets for which performance continuously improved
when more genes were selected, were the same three
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data sets that have the fewest number of discriminatory
genes (Table 2); Ye, Sorlie and Galland. These data sets
are also among the four worst performing data sets in
terms of average error rate (Galland is slightly better
than Herschkowitz). Thus, one might conclude that the
inclusion of many genes give better performance for
data sets with many weakly discriminatory genes as
compared to data sets with strongly discriminatory
genes. It was also encouraging to see that our training
pipeline seems robust to overfitting in that the inclusion
of weakly discriminatory genes (most data sets have
fewer than 1000 significantly discriminatory genes,
Table 2) did not affect classification performance nega-
tively for any data set.

The gene selection methods considered in this study
were all filter-based methods. These methods select
genes prior to machine learning by typically ranking
genes based on their individual ability to separate classes
[9]. Unfortunately, this reduces the possibility for
advanced non-linear machine learning methods to find
complex discriminatory patterns or decision boundaries
based on genes that individually are weakly discrimina-
tory or even completely non-discriminatory. Wrapper-
based gene selection methods can in principle find such
genes by iteratively testing subsets of genes that result
in high-performing models [9]. However, for the data
sets that we are studying here, with tens of thousands of
genes and only around 100 patients, wrapper methods
are unrealistic not only in terms of time complexity, but
also due to the risk of overfitting. In this context, we
designed a new gene selection method (called Paired
distance) that first selects genes with high variance or
high absolute mean, and then ranks pairs of genes with
high discriminatory power (see Methods). Our hope was
that this method would identify discriminatory gene-
pairs containing genes that individually were not
selected by other gene selection methods and thus
would improve models from data sets with only weakly
discriminatory genes. Intriguingly, this method turned
out to be the best gene selection method on the worst
performing data set in this study, which also is the only
data set without any significantly discriminatory genes
(i.e. Serlie, see Figure 4).

In this study, we selected methods that are commonly
used to analyze gene expression data. Thus, although we
see rather small difference between, for example, gene
selection methods, this does not mean that gene selection
is not important. Initially, we also included a gene selec-
tion method that rank genes based on variance, however,
the consistently poor performance of this unsupervised
method spurred us to omit it from further analyzes.

For comparing the performance of methods, we used
the Wilcoxon signed rank test. This test considers the
ranking of comparable pairs of method combinations (e.
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Figure 8 The predictive performance of machine learning and normalization methods across data sets. The heatmap visualize the
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g. when comparing normalizations No 1 and No 2, com-
binations with equal choices for the other methods are
paired, that is, the combination No I, G T-test, N 100,
M SVM Linear is compared to No 2, G T-test, N 100, M
SVM Linear). Such paired tests are sensitive, and reveals
interesting significant differences even when average
performances are rather similar (i.e. Figures 3, 4, 5, 6).
For individual methods, the Bonferroni correction was
used to decide on statistical significance. However, when
pairs of methods were considered, much fewer error
rates were available to the statistical test, thus making
methods for multiple hypothesis correction too

insensitive. In these cases (Figures 8, 9, 10 and Addi-
tional files 3-4), we opt to use a fixed p-value threshold
of 0.05 to identify interesting synergistic relationship,
knowing that among these one must expect an increased
number of false positives (se Methods for more details).
The data sets and class definitions investigated in this
article have previously been used to compare unsuper-
vised clustering methods [7]. There are some interesting
parallels to be drawn between these two studies. First
and foremost, both studies experienced huge differences
in performance between data sets, and in particular the
results from Serlie did not agree with that of the other
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data sets. Normalization was shown to have a positive
effect on both clustering and machine learning, but it
was harder to draw any decisive conclusions about the
relative performance of different normalization methods
(i.e. No 1-4). Although the clustering study mainly
focused on unsupervised gene selection methods, both
studies found that relatively high numbers of genes were
needed to obtain good performance.

Conclusions

In this study, we have performed a comprehensive study
of the effect that normalization, gene selection, the
number of selected genes and machine learning method

have on the predictive performance of resulting models.
A unique aspect of this study was the inclusion of differ-
ent normalization methods in the comparisons. Indeed,
we showed that there is a significant positive effect of
normalization on the best methods; however, the rela-
tive performance of different normalization methods is
complex. The best machine learning methods in this
study were Support Vector Machines (SVMs) with a
radial basis kernel followed by SVMs with a Linear ker-
nel and SVMs with a polynomial kernel of degree 2. We
showed that there is a positive, synergistic relationship
between these methods and gene selection based on the
T-test and the selection of at least 150 genes.
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Methods

Data

We used seven previously published 2-channel microar-
ray experiments with a common reference design [23].
All data sets regard different types of human cancer.
Five of the experiments used custom made arrays, while
the last two used commercially produced arrays (Agi-
lent). Since the design and normalization procedures of
one-channel microarray experiments (e.g. Affymetrix)
are not comparable with 2-channel experiments, they
are not included in the study although they are widely
used. The data sets contain from 40 to 133 samples
each and are all published in high-impact journals.

Since the aim of this study was to investigate how the
performance of various machine learning methods is
affected by the choice of normalization method and
gene selection, we must have true class partitionings to
compare with the predicted classes from the models. To
make it easier to compare the results for different mod-
els and data sets, we choose to divide data into two dis-
tinct classes:

Alizadeh: 133 samples corresponding to patients with
different lymphomas, including patients with diffuse

large B-cell lymphoma (DLBCL) [24]. Samples also
include normal cell samples and a variety of cell lines.
We define the two classes as DLBCL (68) and all other
samples (65).

Finak: 66 samples profiled using Agilent microarrays
[25]. We define the two classes according to the distin-
guishable tissue types; epithelial (34) and stromal tissue
(32).

Galland: 40 samples profiled using Agilent microar-
rays [26]. The classes are defined as invasive (22) and
non- invasive non-functioning pituitary adenomas
(NEPAs) (18).

Herschkowitz: 106 samples. We define the two classes
according to the level of ER expression; high (59) or low
(47) [27].

Jones: 91 samples. We define the classes as the two
most distinctive ones in the data set; the cancerous (72)
and the non-cancerous (19) samples [28].

Serlie: 73 samples. The classes are defined according
to the level of ER expression; high (55) or low (18) [29].

Ye: 87 samples. We define the two classes as in the
original study [30]; metastatic (65) and non-metastatic
(22) patients.
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Figure 11 Permutation tests. The plots show the spread of adjusted error rates resulting from randomly shuffling class labels in each data set.
The results were obtained using the method combination No 3, T-test, 150 genes and SVM Rb, and each data set was permutated 300 times.
Adjusted error rates from the original class labels are marked by red crosses.

Expression values in this study are the log,-ratios
between the treated channel and the reference channel
(M-values).

Normalization

The normalization methods we investigated were the
four possible combinations of two dye-normalization
methods, global MA-loess [31] and print-tip (local) MA-
loess [32], and two approaches to background

correction, local correction [33] and no background cor-
rection. In addition, we also used non-normalized data
(i.e. raw data):

No 0: Raw data (no normalization)

No 1: Print-tip (local) MA-loess, no background
correction

No 2: Print-tip (local) MA-loess, background
correction

No 3: Global MA-loess, no background correction
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No 4: Global MA-loess, background correction

No 1 and 2 were not performed for the data sets Gal-
land and Finak, since print-tip normalization is not rele-
vant for the Agilent microarrays.

Filtration and missing value imputation

In each of the seven data sets there were spots flagged by
the scanner or the experimentalist, and some spots also
had a lower signal than the background (in the cases
where background correction was adopted). These were
all marked as missing values. A discussion on how to treat
flagged spots can be found in [34]. We chose to include
samples with less than 50% missing values and genes with
less than 30% missing values. Samples and genes were fil-
tered simultaneously and the remaining missing values
were imputed [35], [36]. There are several approaches to
dealing with missing values; ROW imputation replace
missing value with the row median (the median of that
gene), while SVD (singular value decomposition) imputa-
tion uses a linear combination of the k most significant
eigengenes to estimate missing values [37,38]. According
to [7], these two approaches do not significantly affect the
result of clustering analysis, and since we study the same
data sets, we only use the SVD imputation in our study.
We use the function svdImpute in the package pca-
Methods to impute missing values.

In addition to the above described filtration and miss-
ing value imputation, we also remove some samples
with incomplete annotations (i.e. class information). To
avoid including duplicate genes we choose to compute
the mean value of these.

Cross validation and model evaluation

In this study we perform double cross validations; a 10-
fold inner CV was used to optimize parameters in the
methods and a 5-fold outer CV was used to estimate
the final classification performance (see for example [38]
for more on CV). The models were trained on the train-
ing data and evaluated on test data. The data partition-
ing was done so that the number of distinct patients in
each test set differed by at most one patient. However,
in data sets with several samples from the same patient
(Ye, Alizadeh and Finak), all samples belonging to the
same patient were always placed in the same test set,
thus the number of samples per test set sometimes dif-
fered by more than one.

We used error rate, i.e. the percentage of misclassified
observations in a test set, as a measure of classification
performance. The error rates were adjusted by dividing
by the theoretical error rate obtained by randomly
assigning classes given the distribution of the two
classes. Thus adjusted error rates below one correspond
to models performing better than random class
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assignment. We performed the outer CV with 10 differ-
ent random partitions into training and test sets. Thus
the error rate of each combination of methods was esti-
mated from 50 different test sets (10 5-fold CVs).

Gene selection

In order to reduce the number of genes used by the
machine learning methods, we always performed gene
selection. There are several different types of gene selec-
tion techniques [8], but we decided to use three super-
vised approaches in this study:

T-test: A two sided, two sample t-test was used
[37,39] and genes with the lowest p-values were chosen
for further analysis. We used the function t.test from
the package stats in R.

Relief: The Relief-algorithm assigns a value to each
gene based on how well it separates nearest neighbors
with different class labels [40]. We implemented a modi-
fied version of the function relief from the package
dprep in R. The algorithm was modified so that all
observations are chosen once rather than being sampled
with replacement.

Paired distance: This is, to the best of our knowledge,
a new gene selection approach based on investigating
pairs of genes. We first chose the 1000 genes with the
highest variance and the 1000 genes with the highest
absolute mean value, and retained the union of these
genes. For each of the chosen genes we then calculated
two medians, one for those observations belonging to
the first class and one for those observations belonging
to the second class. In the two dimensional space
spanned by the gene-pairs, we then calculated the Eucli-
dian distance between the two corresponding pairs of
medians. Finally, we ranked pairs of genes according to
these distances.

The Decision trees (see Machine learning methods)
also used an embedded technique for gene selection.
Initially, we also used variance as an unsupervised gene
selection method, but this strategy was later dropped
due to its inferior performance.

Given the ranked lists from the gene selection meth-
ods, we selected 21 different numbers of genes to be
used for inducing machine learning models (see Table
1). Some machine learning methods could not be run
with all numbers of genes. In particular, SVMs could
not handle only two genes in a satisfactory way, while
NNs were not run with more than 150 genes for “one
hidden layer” and 900 genes for “no hidden layer” due
to computational costs.

Machine learning methods
We use three different supervised machine learning
methods; Support vector machines (SVMs), Artificial
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neural networks (NNs) and Decision trees (DTs). Most
machine learning methods have several parameters that
need to be set before inducing the model. To avoid
overfitting the models, some of the most important
parameters were optimized using an inner cross valida-
tion. Parameters not specifically mentioned were set to
default values.

Support vector machines, SVMs

The idea behind SVMs is to use an implicit kernel func-
tion to map the data into an » dimensional space where
the classes are separated by a hyperplane constructed to
create the largest possible margin between the classes
[38,41]. We use the function ksvm from the package
kernlab in R to build SVM models (see [42] for a
comparison of different SVM-packages in R). The data
were not standardized, i.e. scaled to zero mean and unit
variance (default in the ksvm function), before machine
learning methods were applied. After some experiments
with the different types of SVM classifications (C-svc,
C-bsvc and nu-scv) we decided to use nu-scv for all the
SVM models. We also experimented with different ker-
nels and decided to use the following four kernels; lin-
ear, polynomial with degree 2, polynomial with degree 3
and radial basis kernel. The parameter nu was set to 0.2,
which is the default value in ksvm. The inverse kernel
width, sigma, for the radial basis kernel function was
optimized using a grid search by choosing the value
with the lowest cross validation error rate obtained from
the ksvm function.

Artificial neural networks, NNs

NNs consists of connected units (neurons) that trans-
form the input values to an output value based on a
threshold function applied to the weighted sum of the
input values [38,43,44]. We use two types of NNs; one
with one hidden layer and one with no hidden layer (i.e.
a perceptron). The number of units in the hidden layer
was optimized in the inner cross validation (allowed
values were 2, 3, 4 and 5). We use the function nnet
from the package nnet in R to build NN models [45].
We set the maximum number of iterations to 100 and
the value of rang to 0.1. After experimenting with dif-
ferent decay values we choose the value 0.001. Due to
computational costs, models were only built from a
maximum of 150 genes for one hidden layer and 900
genes for no hidden layer.

Decision trees, DTs

DTs are built by iteratively splitting the data using the
most separating gene, thus forming a tree with nodes
and leaves [38,43,44]. We used two different splitting
criteria; information gain index and Gini index [46]. We
used the function rpart from the package rpart in R
to build the DT models. The trees were pruned by
choosing the number of splits from the tree with the
lowest cross-validated error [45].
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Including settings (such as kernels in SVMs), we
investigated the performance of the following eight
machine learning methods:

DT Gini: Decision tree with Gini index as splitting
criteria

DT Information: Decision tree with Information
index as splitting criteria

NN One layer: Artificial Neural Network with one
hidden layer

NN No layer: Artificial Neural Network with no hidden
layer

SVM Linear: Support Vector Machine with a linear
kernel

SVM Poly2: Support Vector Machine with a polynomial
kernel of degree 2

SVM Poly3: Support Vector Machine with a polynomial
kernel of degree 3

SVM Rb: Support Vector Machine with a radial basis
kernel

Analysis of results

The possible combinations of the different methods
described above gave in total 14685 models with calcu-
lated error rates and corresponding standard devia-
tions. To analyze these results, we used multiple linear
regression models with error rate as response and Data
set (S), Normalization (No), Gene selection method
(GQ), Number of selected genes (N) and Machine learn-
ing method (M) (see Table 1) as predicting variables.
We also included second order interaction terms in the
regression models. When examining the data sets indi-
vidually we removed Data set as predicting variable.
We used the functions 1m and anova (with default
values of parameters) in the package stats in R to
conduct the regression analyses. Test for significant
predicting variables was done using a Bonferroni cor-
rected threshold (0.05 divided by the number of vari-
ables: 10).

We used the Wilcoxon signed rank test to determine
whether there was any significant difference between
error rates obtained by different individual methods
(Figure 7) and between pairs of methods (Figure 8, 9,
10). The tests were performed using the function wil-
cox.test in R. Significance was determined by a Bon-
ferroni corrected threshold for individual methods and a
threshold of 0.05 for pairs of methods and synergistic
relationships. Entries (i,j) in the heat maps equal the the
number of data sets where method (or pair of methods)
i is significantly better than method (or pair of methods)
j. The number of significant data sets for combinations
including No 1 or No 2 was adjusted by multiplying by
7/5 since these methods were not applied to two data
sets. The heat map was created with the function
levelplot in the package lattice in R.
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Additional material

Additional file 1: Error rates obtained for all combinations of
methods and data sets. A table of the 14 686 different combinations of
methods and data sets. Columns include Data set (D), Machine learning
method (M), Gene selection (G), Number of selected genes (N),
Normalization method (No), Error rate (E), Standard deviation of error rate
(Esd), Adjusted error rate (Eadj) and Standard deviation of adjusted error
rate (Esdadj).

Additional file 2: The predictive performance of individual methods
across data sets. Comparisons of the predictive performance of
individual methods (data material for Figure 7).

Additional file 3: The predictive performance of pairs of methods
across data sets. Comparisons of the predictive performance of pairs of
methods (data material for Figures 8-10 and additional comparisons).

Additional file 4: Synergistic relationships between pairs of
methods across data sets. The matrix show the number of data sets in
which pairs of methods (given by one row and one column) performed
significantly better (upper-right half, positive values) or significantly worse
(lower-left half, negative values) than the best/worst method did
individually. The Wilcoxon signed-rank test was used to compare the
error rates of all combinations containing the pair against the error rates
of all combinations containing the best/worst single method.
Significance was determined using a p-value threshold of 0.05.
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