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Abstract

Background: Mass spectrometry (MS) based metabolite profiling has been increasingly popular for scientific and
biomedical studies, primarily due to recent technological development such as comprehensive two-dimensional
gas chromatography time-of-flight mass spectrometry (GCxGC/TOF-MS). Nevertheless, the identifications of
metabolites from complex samples are subject to errors. Statistical/computational approaches to improve the
accuracy of the identifications and false positive estimate are in great need. We propose an empirical Bayes model
which accounts for a competing score in addition to the similarity score to tackle this problem. The competition
score characterizes the propensity of a candidate metabolite of being matched to some spectrum based on the
metabolite’s similarity score with other spectra in the library searched against. The competition score allows the
model to properly assess the evidence on the presence/absence status of a metabolite based on whether or not

the metabolite is matched to some sample spectrum.

plasma under the control of false discovery rate.

~ChangyuShen/index.htm
Trial Registration: 2123938128573429

Results: With a mixture of metabolite standards, we demonstrated that our method has better identification
accuracy than other four existing methods. Moreover, our method has reliable false discovery rate estimate. We
also applied our method to the data collected from the plasma of a rat and identified some metabolites from the

Conclusions: We developed an empirical Bayes model for metabolite identification and validated the method
through a mixture of metabolite standards and rat plasma. The results show that our hierarchical model improves
identification accuracy as compared with methods that do not structurally model the involved variables. The
improvement in identification accuracy is likely to facilitate downstream analysis such as peak alignment and
biomarker identification. Raw data and result matrices can be found at http://www.biostat.iupui.edu/

Background

The metabolome represents the collection of small com-
pound metabolites in an organism or biological system,
typically under 1000 daltons [1]. The network of meta-
bolic reactions, where outputs from one enzymatic che-
mical reaction are inputs to other chemical reactions, is
a key component of the cellular physiology. In addition,
the interactions of metabolites with other larger bio-
molecules (i.e. proteins) are critical for many important
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biological processes. Therefore, metabolomics, the study
of all metabolites in a system, in its own has great impli-
cations in scientific and biomedical advancement [2,3].
Mass spectrometry is a popular technique for meta-
bolic profiling [4]. In a typical experiment, metabolites
in a sample are first derivatized and then separated
using either liquid or gas chromatography (LC/GC). The
separated metabolites are further analyzed by mass spec-
trometry to generate their fingerprint spectra (see Figure
1). The identification of a metabolite is usually assisted
by including a spectrum library where each spectrum’s
identity is known. The fingerprint spectrum is compared
with each spectrum in the library using a numerical
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score that characterizes the similarity of the pair. The
score used to measure mass spectral similarity is called
similarity score. The metabolite in the library with the
best score is matched to the fingerprint spectrum as the
identification of the spectrum [5] (see Figure 1).

With the development of mass spectrometry technol-
ogy, particularly combined with the comprehensive two-
dimensional gas chromatography (GCxGC) that substan-
tially improves the separation capacity, a large number
of metabolites can now be identified at a time. By com-
paring spectra from those metabolites with spectra from
known identities, identification is performed [6]. How-
ever, these identifications are subject to errors due to
experimental noise, incompleteness of the library, tech-
nical limitations and so on. Thus, it is in great need to
improve the accuracy of both the identifications and
estimates of false positives at the data analysis stage as
the validity and efficiency of the downstream analyses
rely on the quality of the identifications.

To our knowledge, there have been relatively few
developments along this line, compared with similar
analysis issues in mass spectrometry based proteomics
[5,7-9]. Several studies on spectra registration (or align-
ment) for comprehensive two-dimensional GC data have
been done [10-13]. In some studies, without addressing
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Figure 1 Schematic representation of the GCxGC/TOF-MS
experiment. Schematic representation of the GCxGC/TOF-MS
experiment. M1,.,M6 are metabolites in a sample after separation.
“Library” includes spectra of the known identities.
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the identification issue, they assumed that metabolite
identification by ChromaTOF software is correct instead
and used those identification results directly for align-
ment. In addition, no model to analyse score distribu-
tion has been developed in order to improve the
accuracy of metabolite identification. In this paper, we
propose an empirical Bayes model which analyzes simi-
larity score distribution to improve the accuracy of
metabolite identifications and their confidence measures
for GCxGC/TOF-MS data. The model orchestrates all
information coming from each experiment step and pro-
duces confidence measure of identification in the form
of posterior probability. The advantages of our method
include (i) the posterior probability allows straightfor-
ward estimation of false discovery rate (FDR) [14] and
serves as the confidence measure; (ii) metabolites in the
library that are not matched to any spectrum are also
assigned a confidence measure regarding their presence/
absence status in the sample; (iii) integration of different
sources of evidence may provide better identification
accuracy. A major novelty of our method is the inclu-
sion of a competition score (b)) for each metabolite ; in
the library, which is defined based on all spectra in the
library. The competition score is a measure of the pro-
pensity of j being matched to some sample spectra
through the resemblance of the spectrum of metabolite j
with other spectra. As explained in details in Methods
Section, the competition score provides useful informa-
tion to discern the true from the false positives. In what
follows, we provide a detailed description of the model
and demonstrate the utility of our model through analy-
sis of a mixture of metabolite standards and a real data
set generated by GCxGC/TOF-MS. For terminological
clarity, since our identification is the compound identifi-
cation via database search, it is also known as putative
annotated identification. For simplicity, we use the word
“identification” throughout the article.

Results

Experiments

Experiment 1: Mixture of metabolite standards

A mixture of 35 amino acids, fatty acids and organic acids
were prepared in pyridine and derivatized with 100 uL of
N-Methyl-N-(Tert-Butyldimethylsilyl) trifluoroacetamide
(MTBSTFA). All GCxGC/TOEF-MS analyses were per-
formed on a LECO Pegasus 4D time-of-flight mass spec-
trometer (TOF-MS). Then, acquired data were processed
with a user defined data processing method. The LECO
ChromaTOF software version 3.41 was used for instru-
ment control and spectrum deconvolution. A total of 3286
sample spectra were obtained from this experiment.
Experiment 2: Rat plasma data

Metabolites were extracted from a 100xL rat plasma
sample using 900uL of organic solvent mixture
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(methanol:water = 8:1) and further derivatized with
MTBSTFA. All GCxGC/TOEF-MS analysis were per-
formed on a LECO Pegasus 4D time-of-flight mass
spectrometer (TOF-MS). The acquired data were pro-
cessed with a user defined data processing method. The
same software, LECO ChromaTOF software version
3.41 was used for instrument control and spectrum
deconvolution. 1122 sample spectra were obtained from
the experiment.

More details about both experiments are provided in
the Additional file Additional File 1.

Library and database search

For the analysis of Experiment 1 data, because of the
derivatization, a total of 52 metabolites are considered
to be the true positives. Details of the 52 true positives
are provided in the Additional file. The spectra of the
52 true positives were extracted from NIST/EPA/MIH
Mass Spectral Library (NIST2002) that was embedded
in ChromaTOF software. To introduce noises, we also
randomly selected 2000 false spectra from the same
library. Therefore, the library is composed of N = 2052
spectra with known identities. We consider cosine score
as the similarity score for a pair of spectra. The cosine
score (S) is interpreted as the angle between two spectra
with smaller angle indicating more similarity, which is
defined

180 A,B >
S="""cos! ( = >, (1)

7 [HAI[ - 11Bl|
where < A, B >is the inner product of spectra A and B
and || - || is the Euclidean norm. To calculate the com-

petition score b;, we conducted all pairwise comparisons
among the 2052 spectra in the library and considered
two values for the threshold 4, # = 30 and % = 40 (see
Methods Section for the definition of b; and k). For
each of the 3286 sample spectra, we compared it with
the 2052 spectra from the library using cosine score and
selected the metabolite with the best score (i.e. smallest)
as the assignment to that sample spectrum.

For the analysis of Experiment 2, we used the library
obtained from Automated Mass Spectral Deconvolution
and Identification System (AMDIS) software, which
includes 3540 spectra. AMDIS is a software for GC-MS
data interpretation from National Institute of Standards
and Technology (NIST). Again, b; was calculated based
on all pairwise comparison of spectra in the library and
database search assigned the metabolite with the best
cosine score to each sample spectrum.

Mixture of metabolite standards
Figure 2 is a histogram of the 3286 cosine scores from
searching the library of 2052 spectra. Scores of the true
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Figure 2 Histogram of similarity scores and three estimated
normal curves. Mixture of metabolite standards: histogram of 3286
best scores obtained from searching the library and three estimated
normal curves (red, green, blue) and mixture distribution (cyon). T1
(red) and T2(green) are two components of the mixture density f; and
F1(blue) is fr. The three component normal mixture for similarity score
is the mixture of T1, T2, and F1. 43 true positives out of 52 are assigned
to at least one sample spectrum and average score is calculated for
metabolites matched more than one sample spectra. 43 average
scores for the 43 true positives are indicated by black circle; For
another example, we selected two metabolites with CAS number
107715-91-3 (TP1) and 6066826 (TN1). They have 8 and 2 match pairs,
respectively. 8 scores for TP1 are indicated by red asterisks and 2
scores for TN1 are indicated by blue asterisks. Bigger asterisks (red,
blue) indicate average of the scores with the same color.

positives are highlighted as circles at the bottom of Fig-
ure 2. Clearly, similarity scores of the true positives are
in general better (i.e. smaller) than scores of the false
positives. We consider a mixture model for the score
distribution, which is composed of the distributions of
true positive (f7) and false positive (fz). For our analysis,
we consider fr to be composed of the two normal com-
ponents on the left and fr to be the single normal com-
ponent on the right. Here we present the results based
on & = 30. Results based on /% = 40 do not differ much
and can be found in the Additional file.

We obtained p = 0.026 based on the EM algorithm.
This suggests that about 2.6% of the metabolites in the
library, or 2052 x 0.026 = 53, are expected to be present
in our sample. This is very close to the known number
of true positives, 52. Furthermore, £ = 0.84, which indi-
cates that 84% of the matches of the true positives are
correct. The three fitted normal curves and the mixture
distribution (three component normal mixture) are
shown in Figure 2. It can be seen that the estimated
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mixture distribution (thick solid line in cyon) fits the
similarity score data well (Goodness of fit test results
are given in the Additional file). One major advantage of
the mixture sample of metabolite standards is that it
allows us to assess the performance of any method
because the identities of metabolites in a sample are
known. For comparison purpose, we consider four
methods: naive method, NIST MS dot product, weighted
dot product, and composite similarity based on the
methods developed by Stein and Scott [15]. More details
about three other methods except Naive method are
given in [15,16]. Among them, the naive method has the
best performance in terms of ROC curve and FDR. All
comparison results are provided in the Additional file.
Thus, we chose the naive method to compare with our
method, which is defined by using the average similarity
score to call the status of a metabolite (see Methods
Section). Figure 3 shows the receiver operating charac-
teristic (ROC) curves of our method and the naive
method. In the same graph, we also plot the true FDR
for both methods. It is clear that our method has more
discriminating power than the naive method. Note that
our library has much more true negatives than true
positives, i.e. 2000 v.s. 52, implying that even minor
compromise in specificity will significantly inflate the
FDR. For instance, even though the specificity is con-
trolled at 99%, the FDR is 28% with perfect sensitivity.
Therefore, we chose to compare the ROC curve at high
specificity range. As we can see in Figure 3, our method
provides moderate sensitivity (60%) even at extremely
high level of specificity (>99.9%).
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Figure 3 ROC curves and FDR. Mixture of metabolite standards:
Receiver Operating Characteristic (ROC) curves and true FDR for
empirical Bayes (EB) and naive methods.
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Not only does our method provide better identifica-
tion accuracy, but our method also provides a reliable
estimate of the FDR. This is shown in Figure 4, where
true FDR is plotted against estimated FDR for metabo-
lites claimed to be present based on different thresholds
of the posterior probabilities. It can be seen that the
estimated FDR is very close to the true FDR and most
of the time our FDR estimate is conservative.

The definitions of terminologies such as FDR, sensitiv-
ity, specificity and ROC curve are provided in the Addi-
tional file.

Rat plasma

We present the results based on /# = 30. Results based
on & = 40 can be found in the Additional file. Figure 5
shows the distribution of the similarity scores of the
1122 spectra generated by a sample of rat plasma. Simi-
lar to the experimental data of the mixture of metabolite
standards, there seems to be three distribution compo-
nents as well. We fit similar model as the one used for
the analysis of the data of mixture of metabolite stan-
dards. As shown in Figure 5, the estimated normal mix-
ture (thick solid line in cyon) fits the empirical data well
(see Additional file for Goodness of fit plots).

Based on parameter estimates, we expect that 10% (or
354) of the 3540 metabolites in the library are present in
the sample. In a perfect world, there should be 354 meta-
bolites with posterior probability equal to 1 and the rest
have zero posterior probability. If it is the case, we have
the maximum amount of knowledge on which metabo-
lites are present or absent. However, in the real world,
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Figure 4 True FDR v.s. Estimated FDR. Mixture of metabolite
standards: True FDR v.s. Estimated FDR.
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Figure 5 Histogram of similarity scores and three estimated
normal curves. Rat plasma: histogram of 1122 best scores obtained
from searching the library and three estimated normal curves (red,
green, blue) and mixture distribution (cyon); T1(red) is fr, and F1
(green) and F2(blue) are two components of the mixture density fx.
The three component normal mixture for similarity score is the
mixture of T1, F1, and F2.

the confidence is not concentrated on 354 metabolites,
but diluted to all 3540 metabolites in the library. In Table
1 we provide the number of positives and nominal FDR
by applying different thresholds to the posterior probabil-
ities. Clearly, the probabilities are much more diluted to
all 3540 metabolites in the library and only 79 of them
have a confidence higher than 0.2. Therefore, our cer-
tainty on which metabolites are present or absent has
been reduced. Essentially, the separation of the three dis-
tribution components is less obvious than the Experi-
ment 1. As a result, discrimination of the true from the
false metabolites in this experiment is more difficult.
More results are given in the Additional file.

Table 1 Number of claimed positives and FDR

cutoff NCP EFDR cutoff NCP EFDR
0.20 79 0.2873 0.25 73 0.2469
0.30 70 0.2265 035 67 0.2066
040 65 0.1933 045 63 0.1818
0.50 58 0.1522 055 55 0.1344
0.60 49 0.0988 0.65 46 0.0809
0.70 41 0.0524 0.75 40 0.0472
0.80 39 0.0420 0.85 35 0.0276
0.90 29 0.0098 0.95 28 0.0083

Number of claimed positives and FDR for Rat plasma. NCP stands for the
number of claimed positives and EFDR stands for estimated false discovery
rate
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Rationale behind the use of competition score and
multiple similarity scores
In this section, we explain what kind of benefits we get
from the use of competition score and multiple similar-
ity scores of the same metabolite, the main advantages
of our model. For this purpose, we present two illustra-
tive examples by using Experiment 1. In the first exam-
ple, we highlight the effective role of competition score
in separating positives from negatives. To this end, we
consider two hypothetical metabolites j = 1, 2, all of
which are assigned to two sample spectra with the same
similarity scores 40 and 50. However, the competition
scores are different with (b1, b;*) = (0.1, 0.49), and (b,
by*) = (1.08, 1.15), i.e., the only difference between two
hypothetical metabolites is their competition scores.
Then, any difference in the posterior probability is
attributed to the difference in the competition score.
Based on our model, the posterior probabilities for the
two metabolites are 0.63 and 0.94, respectively. There-
fore, the competition score allows adjustment of the
confidence of a metabolite in addition to the similarity
scores. To understand the difference in posterior prob-
abilities, note that given the same similarity scores, the
confidence of a metabolite is driven by the likelihood
ratio of equation (4) to equation (3) as a function of b;
and b;*. Metabolite 2 has higher confidence than meta-
bolite 1 because the relative increase in likelihood of
being matched due to the presence of metabolite 2 is
higher than that of metabolite 1. To summarize, the
idea is that evidence on the presence or absence status
of a metabolite based on the fact that it is matched to
some sample spectrum should be quantified according
to the capability of the metabolite’s spectrum to mimic
other spectra in the library, and how the likelihood of
being matched will be altered from absence to presence.
In the second example, we elucidate the treatment of
our model on multiple similarity scores. More precisely,
we highlight the effect of multiple similarity scores on con-
fidence of metabolite identification. What if we use single
average score of those multiple scores instead of individual
scores? To answer this question, we select two metabolites
with b; = 0 from the mixture of metabolite standards to
exclude the effect of competition score: one true positive
TP1 (CAS number:107715-91-3) and one true negative
TN1 (CAS number: 6066826). Since we know which meta-
bolite exists in sample in this case, a true positive presents
a metabolite in library which exists in sample as well and
is claimed as positive. TP1 was assigned to 8 sample spec-
tra with similarity scores highlighted by * in red in Figure
3. TN1 was assigned to 2 sample spectra highlighted by *
in blue. The bigger * represents the average score for each
of the metabolites. The naive method is not able to discri-
minate the two metabolites because they have similar
average scores, i.e. close to 56. However, our empirical
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Bayes model provides posterior probabilities 0.99 and 0.01
for TP1 and TNI, respectively. The reason our model per-
forms well here is that all individual scores, not the single
average score are incorporated into the model and play a
key role of producing posterior probability. The point is
that taking into account the number of matches and the
distribution of the similarity scores provides rich informa-
tion in discriminating the true from the false positives.

Discussion

In this paper, there are two elements in layers 2 and 4
that need more explanation. The detail description of the
model is given in Methods Section. In layer 2, the quad-
ratic form of the function of conditional probability was
inspired by the results of logistic regression. More speci-
fically, we investigated the relationship between competi-
tion score and status of metabolites. For example, we
fitted logistic regression model (linear and quadratic) to
2000 true negatives and noticed that quadratic function
is fitted well, i.e., p-values for parameters corresponding
to b; and bjz were less than 0.0001. In layer 4, the charac-
terization of score function was based on the distribu-
tional behavior of similarity scores. It varies from data to
data. In the data we analyzed, we considered three com-
ponent normal mixture and the model worked reason-
ably well. Note that data-specific property of score
distribution made us utilise different component mixing
for each data set. For the mixture of standard metabo-
lites, we considered f7 to be two component normal mix-
ture and fr single normal distribution. In contrast, for the
rat plasma data, we considered fr to be two component
normal mixture and f7 single normal distribution.

The composition of the library will influence identifica-
tion process. Obviously the quality and species of the
spectra included in the library will affect how well identi-
fication can be made. However, this aspect is complicated
and beyond of the scope of this paper. Actually it can be
a separate study in its own right. Nevertheless, we did
make observations on the effect of the size of the library
on the quality of identifications. When the library include
much more false positives, identification of component
in the standard mixtures become much more difficult as
there are “false positives” with great similarity with the
true positives. The posterior probability in this case tend
to be much lower. Note that this is not a failure of our
model itself, it is simply because the matching score is
not sufficiently discriminating anymore.

Conclusion

Database-search based algorithm has been a popular
approach to mass spectrometry-based high-throughput
metabolite profiling. Due to the complexity of the experi-
mental procedure and dynamic nature of the fragmenta-
tion process, identifications of metabolites in GCxGC/

Page 6 of 10

TOE-MS are subject to errors. The accuracy of identifica-
tions and false positive estimate are critical for the error
control of downstream in silico or experimental investi-
gations. During the database search, each candidate
metabolite faces competition from other metabolites in
the library to be the top hit. On the other hand, a large
number of sample spectra also offer many opportunities
for a candidate metabolite to be falsely matched. Taking
into account the competition and opportunity associated
with each candidate metabolite allows one to more prop-
erly extract evidence on the presence/absence status
based on whether or not a candidate metabolite is
matched to some sample spectra. This type of evidence
adds another dimension of information to the similarity
score for the assessment of the confidence of metabolite
identifications. In this article, we proposed the concept of
a competition score to characterize the magnitude of
competition and opportunity for each candidate metabo-
lite. The competition score and similarity score are inte-
grated by an empirical Bayes model to yield confidence
measure in the form of posterior probability.

Since our method is a novel model-based approach to
metabolite identification in GCxGC/TOF-MS data, there
is no other model-based method to compare with. Thus,
we compared it with four other methods, especially, the
naive method which is solely based on the similarity
score. Through the experiment of mixture of metabolite
standards, it was demonstrated that our model provides
more accurate metabolite identifications than other
methods. Just as controlling type I error is very impor-
tant issue in classical statistics problem, so is controlling
false discovery rate in high-throughput data [14,17,18].
As we see in Figure 4, our estimate of FDR is reliable
and conservative. From a sensitivity perspective, a mod-
erate sensitivity (about 0.6) is retained even at the extre-
mely high level of specificity (greater than 0.999). It
should be noted that the primary goal of high-through-
put data analysis is to select promising candidate for
downstream target-orientated experimental studies.
Therefore, false positive is more of the investigator’s
concern than false negative. In this sense, we consider
EDR is of higher priority than sensitivity in data analysis.

It is conceivable that the conditional probability of
being a correct match given the presence status (i.e. Pr
[Wj; = 1|Y; = 1, Z; = 1]) may also depend on the compe-
tition score or some other more appropriate measures.
Extension of our model along this direction could lead
to further accuracy improvement.

Methods
Overview
The empirical Bayes model for metabolite identifications
shares a similar structural hierarchy as the model con-
structed for peptide/protein identifications in [9].
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Essentially, our model includes four layers that charac-
terize the process through which the data are generated.
The four layers target on four key variables relevant to
metabolite identifications, which are the presence/
absence of a metabolite in the sample (Y), whether or
not a metabolite is matched to any sample spectrum
(Z), whether or not a match is correct (W) and the simi-
larity score (S). The rationale behind the model is that
the information embedded in Z and S (observed) pro-
vides us evidence on the values of Y and W (unob-
served). By properly establishing the connections
between the two sets of variables, we can infer Y and W
statistically. Hence, the empirical Bayes model partitions
the joint distribution of the four variables into a series
of marginal/conditional distributions starting with the
marginal distribution of Y (see Equation 6). Specifically,
the introduction of W allows correlations among multi-
ple similarity scores of the same metabolite and
improves identification accuracy [9]. Figure 6 presents a
schematic representation of the hierarchical model. To
describe our model, we adopt the following notations.
For each metabolite j in the library, ¥; = 1 or 0 indicates
the true status of metabolite j with regard to its pre-
sence or absence in a sample; Z; = 1 or 0 indicates
whether or not metabolite j is matched to some sample
spectrum; For metabolite j matched to more than one
sample spectra, Wj; = 1 or 0 indicates whether or not
the match of metabolite j to /th assigned sample spec-
trum is correct and Sj; is the corresponding similarity
score.
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Other identification methods

Since there is no other model-based approach other
than our method, we compare our method with four
other identification methods: naive method, NIST MS
dot product, weighted dot product, and composite simi-
larity based on the methods developed by Stein and
Scott [15]. Among the four methods, the naive method
has best performance in terms of ROC curve and FDR.
Comparison results are provided in the Additional file.
Thus, for comparison, we focus on the naive method,
which is defined by using the same similarity scores
which is incorporated in our model-based method. As
mentioned, the similarity score is calculated by compar-
ing library and sample spectra. Given the similarity
score, the process of the naive method consists of three
steps. First, we find the best match of each sample spec-
trum, i.e. a library spectrum with the best score
obtained by the comparison of sample and library. Sec-
ond, for those metabolites matched to more than one
sample spectrum, we take average of the scores. Third,
after applying cutoff value to the average score, we
claim each metabolite as either positive or negative. On
the other hand, metabolites in the library not matched
to any sample spectrum are considered as absent in the
sample.

The model

Layer 1: We consider the marginal probability that
each metabolite in the spectrum library is present in a
sample:

Layer 1: Probability that a metabolite is present (Y)

4

Layer 2:

Probability that the metabolite is matched to some
spectrum, given the knowledge of its presence (Z)

U

Layer 3: Probability that a match is correct (W)

L

Layer 4:

Probability density of the score, given the knowledge
of the correctness of the match (S)

observed, Y and W: unobserved).

Figure 6 Schematic representation of the hierarchy of the model. Schematic representation of the hierarchy of the model (Z and S
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P(Yj=1)=p, j=1,2,,N, )

where N is the number of the spectra in the library.

Layer 2: Z is the first piece of information that pro-
vides us knowledge on the value of unobserved Y. For a
given library, each metabolite has its own intrinsic
intendancy to be matched to some sample spectrum
due to the nature of the metabolite itself and the library.
We need to account for this factor when we assess the
confidence in Y using Z, i.e., magnitude of confidence in
Y according to Z. To illustrate this idea, we consider the
following hypothetical example. Suppose the spectrum
of metabolite M1 shares high level of similarity with a
large number of other metabolites. Then there is a high
probability that it will be mistakenly matched to some
sample spectrum of other metabolites even if M1 is
absent in the sample (Z,;; = 0). What if M1 exists in
the sample? In this case, M1’s presence in the sample
(Zarr = 1) does not add much probability of being
matched to some spectrum because there is high likeli-
hood of being matched already regardless of the status
of M1. Therefore, there is not much information in Z,;
on the value of Y,;;. On the other hand, if metabolite
M2 has a very unique spectrum, then its chance of
being mistakenly matched to some spectrum generated
by other metabolites is very low, and the presence of
M2 in the sample increases the chance of being
matched substantially. In this case, Z,;, provides us a
lot of information on the value of Y,;,. Therefore,
proper assessment of the confidence in Y based on Z
needs to be tailored to each individual metabolite.
Along this line, we introduce a competition score, b, for
each metabolite j in the library. The b; is defined using
the metabolite library in the following way:

b= Y.

ki keC1(ryg<h)

1/a,

where ar = quc I(rge < h), gk is a similarity score
between spectra of metabolites g and k in the library
and it is assumed that the smaller the similarity score,
the more resemblance the two spectra are (see Results
Section for details of the definition of similarity score),
C is the set of spectra in the library, and I(-) is the indi-
cator function. In other words, a; is the number of
neighbors of metabolite k within the radius of / includ-
ing k itself (ax = 1, 2, 3, ...). Each neighbor is assigned
“equal chance” of being matched to metabolite k. There-
fore, the competition score b; is the characterization of
the sum of the “chance” of metabolite j being matched
to a spectrum generated by any of j’s neighbors (k is a
neighbor of j). If metabolite j does not have any radius-
h neighbor, then b; = 0. For the library used in our ana-
lysis of the mixture of metabolite standards, about 50%
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of the metabolites in the library has b; = 0 if / is set to
30. Figure 7 shows the histogram for those with b; >0.
Intuitively, b; characterizes the propensity of Z; = 1
when Y; = 0 because the definition of b; does not
include 1/a;. However, it should be noted that the effect
of b; on Z; might not be monotone. This point is sup-
ported by a logistic regression of Z; for those j with ¥; =
0 using a mixture of metabolite standards. The model
demonstrated that there is high statistical significance
that the log odd of Z; is associated with b; (for those
metabolites with b; >0) through a downward quadratic
curve, which results in the characterization of 1B; b)). In
consideration of the relatively large percentage of meta-
bolites with b; = 0, we fit the following model for Z;
conditional on Y; = 0, i.e,, mixture of point mass and y

(B; by)
P[Zj = 1]Y; = 0] = o' =0y (8; 1)~ ®)

where y('B;bj) =1- 1+€XP(ﬂ0+}31bi+ﬂ2b/2)'

We consider the following competition score to char-
acterize the propensity of being matched to some spec-
trum when Y; = 1:

b= Y .

keC,I(ny<h)

In contrast to b, b;* includes metabolite j itself as a
neighbor to account for the fact that ¥; = 1. The pro-
pensity of being matched should then be increased,
which is reflected by the relationship b* > b;. Note that
b; = 0 indicates b;* = 1. We then fit the following model
for Z; conditional on ¥; = 1

PIZ = 11Y; = 1] = O D b)), @)

*
where Aa;b") =1 — 1+exp(a0+a11b,-*+a2b,-*2)'

Layer 3: For those metabolites matched to at least one
sample spectrum (Z; = 1), we consider the correctness
of those matches. Obviously, if ¥; = 0, the match is
incorrect. For those matches of metabolite j with ¥; = 1,

we consider the following model:
PWp=1lY;=1,Z=1)=r1, (5)

Hence, we assume that conditional on ¥; = 1 and Z; =
1, the correctness of each assignment of j to some sam-
ple spectrum follows independent Bernoulli distribution.
This layer allows our model to account for the situa-
tions where although a metabolite j is present in a sam-
ple, its assignment to some spectrum is not always
correct. In other words, the match of a true positive to
a sample spectrum may not always be correct.

Layer 4: we use a mixture model to characterize the
distribution of the similarity scores.
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Figure 7 Histogram of competition scores. Histogram of competition scores greater than 0, i.e., b; >0, for the library searched against in

| T | |
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bj

J

TIw - UfT(Sﬂ; o) Vife(Sp; ¢r) T,

where fis the mixture of f7 and fr that are the prob-
ability density functions of the scores of the correct
matches and incorrect matches, respectively, and ¢ and
@p are corresponding parameters.

By integrating the four layers, the joint distribution of
variables involved in the model can be written as:

[Y,Z,W,S] = [Y]IZIY][WIY, Z][SIW]

[T (TTiz
j j

(6)

< | TT [Tl vl (Splwil

jiZjZl )

By treating Y and W as the unobserved variables, we
used Expectation-Maximization (EM) algorithm to esti-
mate model parameters 6 = (p, No, B, N1, @, T, O, QF)
[19]. The confidence of each metabolite j can then be
calculated as the posterior probability of Y}:

D, - {P[Yj =11Zj=1,8;;0]
P[Y; = 112, = 0;6]
where § is the estimated parameter vector. More
details about EM are provided in the Additional file. It
should also be noted that the posterior probability
allows easy estimation of the false discovery rate (FDR).

Specifically, the local false discovery rate (IFDR) in the
sense of [20] can be estimated as

IFDR(j) = 1 — P;.

The FDR for a set Q of n metabolites that is claimed
to be present in the sample is [21]

FDR(Q) = ¥ IFDR(j)/n.
jeQ

Additional material

Additional file 1: File name: metabolomics-BMC bio-support. This file
include formula derivation and some results including tables and plots.
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