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Abstract

Background: Bacteriophage genomes have mosaic architectures and are replete with small open reading frames
of unknown function, presenting challenges in their annotation, comparative analysis, and representation.

Results: We describe here a bioinformatic tool, Phamerator, that assorts protein-coding genes into phamilies of
related sequences using pairwise comparisons to generate a database of gene relationships. This database is used
to generate genome maps of multiple phages that incorporate nucleotide and amino acid sequence relationships,
as well as genes containing conserved domains. Phamerator also generates phamily circle representations of gene
phamilies, facilitating analysis of the different evolutionary histories of individual genes that migrate through phage

populations by horizontal genetic exchange.

representations of bacteriophage genomes.

Conclusions: Phamerator represents a useful tool for comparative genomic analysis and comparative

Background

Bacteriophages represent a numerically vast, highly
dynamic, evolutionarily ancient, and genetically highly
diverse population [1-3]. Phage genomes are typically
small compared to those of their bacterial hosts (ranging
from a few to several hundred kilobases) and no longer
present significant technical challenges to sequence deter-
mination [1]. As genomic sequencing approaches get sim-
pler and cheaper, the availability of individual phage
isolates for characterization becomes limiting, a need that
can be effectively addressed through integrated research-
education programs involving undergraduate and high
school student investigators [4,5].

In spite of their relatively small size, phages present sig-
nificant challenges to accurate genome annotation
including gene identification. Two principal issues arise.
First, phage genes tend on average to be small (~600 bp),
approximately two-thirds the average size of bacterial
genes [1,6]. Many of the genes required for virion struc-
ture and assembly are relatively large (tape measure
genes can be over 6 kbp long), but those in the non-
structural genomic segments are small, often shorter
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than 100 codons. Secondly, phage genomes are replete
with genes of unknown function for which no homolo-
gues have been described [7-10].

Mosaic architectures are hallmarks of phage genomes,
and individual phages can be considered as particular
combinations of interchangeable modules, each of which
can be present in two or more different genomic contexts
[10,11]. In some cases, where the recombination events
giving rise to these mosaic structures occurred relatively
recently in evolutionary time, mosaicism is apparent
through nucleotide sequence comparisons [12-14]. When
the events occurred in more remote evolutionary times
the evidence of common ancestry is usually no longer
apparent at the nucleotide level, but often can be revealed
from comparison of the predicted amino acid sequences
[15-17]. Such comparisons reveal that individual phage
genomes are typically constructed from multiple modules
- often corresponding to single genes - each of which has
a distinctly different phylogeny [10]. As such, accurate
compilations of whole genome phylogenies that reflect the
evolutionary history of the entire genome are not possible,
and reticulate-based representations are needed to capture
this evolutionary complexity [16,18].

The mechanisms giving rise to genome mosaicism are
unclear but must accommodate the striking observation
that module boundaries correspond closely with gene

© 2011 Cresawn et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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boundaries, and in some cases, domain boundaries
[11,19]. One model invokes homologous recombination
events targeted to short conserved boundary sequences
between genes, and there is evidence for this in some
phage genomes [20,21]. However, there are numerous
examples where no conserved boundary sequences are
evident, raising the possibility that mosaicism results
largely from illegitimate recombination events between
randomly chosen partners sharing little or no sequence
identity [10,11]. In this second model, correspondence
between module and gene boundaries results from the
selection for gene function, not from targeting of the
recombination events [22].

Comparison of genomes from phages that infect taxono-
mically diverse hosts typically provides little information
into their evolution because of only very limited similarity
at either the nucleotide or amino acid sequence level
[4,11]. Phages of a common host, however, have the
advantage that they are more likely to have been in recent
genetic communication with each other and to have
exchanged modules in recent evolutionary times [6]. Large
sets of phage genomes are now available for several hosts
including Burkholderia [9], Bacillus [23], Enterobacteria-
ceae [24], Mycobacteria (6], Prochlorococcus and Synecho-
coccus [25], Pseudomonas [7], and Staphylococcus [8],
although even these can span enormous genetic diversity
[1,6].

A large number of phages that infect Mycobacterium
smegmatis mc155 have been isolated and a comparative
analysis of 80 has been described [4,6,10,14]. Although
these are genetically diverse, the diversity is heteroge-
neous, and phages can be grouped into ‘clusters’ accord-
ing to their overall nucleotide sequence relationships [6].
Of the 80 published completely sequenced mycobacter-
iophage genomes, 75 can be grouped into ten major clus-
ters, seven of which can be further subdivided into
subclusters according to the extent of the nucleotide
similarities [14]. Five of the genomes have no close rela-
tives and are referred to as ‘singletons’ [6]. Because the
currently sequenced mycobacteriophage genomes under-
represent the mycobacteriophage population-at-large,
these cluster designations will undergo modifications as
new genomes are sequenced [14]. There are, however,
numerous examples of genes that are shared between
phages of different clusters and whose common ancestry
is only apparent from amino acid sequence similarity
[4,6,10]. We have proposed previously [4] that mycobac-
teriophage genes related to each other can be grouped
into phamilies (phams) and that mosaic relationships can
be analyzed and represented using pham-annotated gen-
omes maps and phamily circles that show the patterns of
which phages contain members of particular phams.
Although manual or semi-automated approaches are
applicable when only small numbers of genomes are
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analyzed [4], this becomes an impossible task as the
number of genomes expands.

We describe here a software program ‘Phamerator’ that
provides bioinformatic tools for both analyzing and repre-
senting phage genome mosaicism. The core functionality
of Phamerator performs pair wise similarity searches
between predicted protein products of a set of phage gen-
omes, and assorts them into phamilies (phams) of related
sequences. Genome maps can be displayed that illustrate
the relationships between phages at both the nucleotide
and amino acid sequence level. Moreover, the evolutionary
histories of specific genes can be displayed by phamily cir-
cles in which all gene members of particular phams are
represented, and for which multiple phams can be com-
pared. We illustrate the utilities of Phamerator using a set
of 111 completely sequenced mycobacteriophage genomes,
but the program is applicable to any set of phage genomes
for which comparative analysis is desired.

Methods

Phamerator database architecture

Phamerator is written entirely in the Python computer
programming language and makes use of a number of
modules, including the Biopython framework for compu-
tational biology [26]. Biopython provides a programmatic
interface for sequence manipulation, the construction and
parsing of files in relevant formats, and access to external
command line applications such as those used for
sequence alignment. For the latter, Phamerator uses Bio-
python to interact with local instances of BLASTP and
CLUSTALW. Due to the significant computational time
required for performing large numbers of sequence align-
ments, Phamerator employs a distributed processing
model that is implemented using Python Remote Objects
(Pyro). Phamerator was developed on Ubuntu Linux but
should be able to run on any modern UNIX-based operat-
ing system.

Phamerator uses the MySQL database software with a
simple, custom database schema that incorporates and
extends the relevant information found in GenBank
records. The phage and gene tables are populated with
data from GenBank files, while the remainder store data
relevant to Phamerator analysis or imported data from
external databases such as the NCBI conserved domain
database (Figure 1). Additional tables are used to store
current and historical pham assignments, and records are
maintained of the splitting or joining of phams that can
occur as new sequences are added to the database. In the
event that a new mycobacteriophage protein is added to
the database that has similarity to members of more than
one existing pham, the phams are merged, their pham
names (numbers) retired, and a new pham created with a
new number. The new pham contains each of the mem-
bers of the joined phams in addition to the new protein.
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Figure 1 Database structure. An entity relationship diagram of the Phamerator database schema. Boxes represent SQL database tables, with
table names in bold and column names in gray. The gene is the central element of the design, with the domain and pham tables storing data
related to individual genes. The pham_history and pham_old tables record information regarding the automatic joining or splitting of phams as
genomes are added or removed from the database.

Conversely, the addition of new proteins to the database
can also invalidate an existing pham because the BLASTP
E values used for determination of pham membership are
in part dependent on the size of the data set. Thus, after
adding a new genome to the database, if a protein in a
pham is no longer related to any members of the pham it
is removed from the pham, and it is either placed into an
existing pham if that pham includes a related protein, or it
becomes an orpham (a pham containing only a single
member).

Use of distributed computing resources

Adding genomes to a large Phamerator database is time-
consuming, with the length of time required being pro-
portional to the size of the existing database and the
number of genes in the genome to be added. However,
the length of time required to perform this operation can
be reduced by distributing the required calculations to
several computers. The reduction in time required scales

approximately linearly with the number of available com-
puters. Communication between computers is achieved
using the Python Remote Objects (Pyro) library, and can
be distributed to computers on the local network or
across the Internet.

Availability and distribution

Phamerator operates using a client/server model. A rela-
tional database resides on the server computer and is dis-
tributed to client computers when they run the
Phamerator client program. This enables all clients to
have the performance benefits associated with interacting
with data stored on the local computer along with a ben-
efit normally associated with processing data on a ser-
ver—assurance that the data being used is up-to-date.
Because the data files being disseminated are relatively
small (approximately 10-100 megabytes), a modest server
can handle the load of hundreds of users without perfor-
mance deterioration.
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Phamerator can be downloaded from: http://phamera-
tor.csm.jmu.edu/files/phamerator-current.tar.gz. Further
information and installation instructions are provided in
Additional Files 1 and 2.

Results

Rationale for Phamerator construction and operations
The pervasive mosaicism of bacteriophage genomes
requires bioinformatic tools that can organize and display
their complex relationships. Two key questions arise in
phage comparative analysis: what are the relationships
between genes that are evolutionarily mobile within a
given set of phage genomes, and how are they related to
genes found in other genomes. Both approaches are com-
plicated by the presence of intragenic mosaicism reflecting
distinct evolutionary histories of gene segments
[4,13,27-29].

Phamerator is a computational tool designed to sort
phage genes into phamilies of related sequences using
pairwise amino acid sequence comparisons of predicted
gene products. Rather than using ortholog identification
programs such as HMMER or Pfam [30] we have
employed BLASTP and CLUSTALW to perform pairwise
comparisons that are then assembled into phamilies of
related proteins. Both of these programs are relatively fast
computationally, a critical factor when large numbers of
computations are required. For example, in the dataset of
111 phage genomes used here, a total of 1.77 x 10° com-
parisons must be computed. We note that the use of effi-
cient pairwise BLASTP comparisons to generate families
of protein sequences has been described previously [31].

To identify homologues of previously identified proteins
Phamerator performs automated searches of GenBank
non-redundant protein sequences, as well as searches for
conserved domains in the NCBI conserved domain data-
base using the RPS-BLAST tool. This information can be
exported in tabular form, or represented in a whole-geno-
mic context. Details of the Phamerator program are
described in the Methods section and an overview of data-
base structure is shown in Figure 1.

Pham-building parameters

The building of phams is strongly influenced by the specific
parameters used for amino acid comparisons. In early stu-
dies initiated prior to Phamerator development we used a
BLASTP cutoff value of 0.001 and a CLUSTALW cutoff of
25% amino acid sequence identity for manual pham build-
ing [4]. However, as the number of mycobacteriophage
genomes increased and computational processing became
essential, it became clear that these largely arbitrarily cho-
sen parameters promoted assembly of many large phams
that require time-consuming manual deconvolution [6].
We therefore explored the impact of varying the threshold
values for BLASTP and CLUSTALW on pham assembly.
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We first evaluated the effect of changing the threshold
for CLUSTALW comparisons. We varied the threshold
between 50% amino acid sequence identity and 27.5%,
and for each level determined the number of phams gen-
erated, the size of the largest pham, the number of orp-
hams (single-member phams), the percentage of
orphams, and the mean pham size (Figure 2A, B). These
data are informative and provide guidance as to the opti-
mal parameters to use for routine database construction.
In particular, we note that as the threshold for amino
acid sequence similarity is made less stringent (50% to
27.5% identity) there is a reduction in the total number
of phams (from 3, 363 to 1, 995) reflecting the process of
pham assembly. Interestingly, this relationship is linear
between 50% and 32.5%, with a reduction in the total
pham number of about 40 for every percentage of iden-
tity that is reduced (Figure 2A). As the percent identity
falls below 32.5% the relationship becomes non-linear,
with a progressively greater reduction in the number of
phams as the percent identity threshold falls from 32.5%
to 27.5% (Figure 2A). The number of orphams also
reduces as stringency is relaxed, while mean pham size
increases as stringency is relaxed, and there are notable
changes between values above and below 32.5% identity
(Figures 2A, B).

There is also a dramatic change in the size of the largest
pham as the threshold level varies from 32.5% to 27.5%
(Figure 2A). At 32.5% the largest pham contains 172
members, but increases to 2, 505 at 27.5% (Figure 2A).
The size of the largest pham is more stable between 32.3%
and 50% identity thresholds and varies from 172 to 53.
We interpret these data as indicating that between 50%
and 32.5% identity, pham assembly proceeds in a manner
that simply reflects the variation in the overall relation-
ships between genes. However, at levels below 32.5%,
there is an increasing proportion of phams that are more
complex, such that not all pairwise matches within the
pham are above the threshold level. One example might
be where two genes (e.g. gene A and gene B) have been
fused into a single open reading frame (gene C), such that
although genes A and C, and gene B and C, both surpass
the threshold, the unrelated genes A and B do not (a spe-
cific example is phage PBI1 genes 6 and 7, which are fused
in phage Gumball to form gene 6). For routine database
building purposes where we wish to avoid the assembly of
large phams that then warrant subsequent deconvolution,
we have chosen to use a 32.5% CLUSTALW threshold,
but note that comparison of phams generated with these
parameters and those with lower stringencies should be
useful in analyzing intragenic mosaic relationships.

One advantage of CLUSTALW as an assembly pro-
gram is that the threshold values are independent of gene
length. Nonetheless, we predict there are instances where
large genes may not exceed the CLUSTALW threshold
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but are evidently homologues because of statistically
informative BLASTP scores. We therefore examined the
impact of including a BLASTP search along with the
CLUSTALW comparison (using a 32.5% cut off value)
and varying the BLASTP cut off value (pham member-
ship thus required meeting either the CLUSTALW or the
BLASTP thresholds) (Figure 2C, D). As threshold values
are made less stringent we observe a reduction in the

total number of phams and the number of orphams, and
a corresponding increase in mean pham size and the size
of the largest pham (Figures 2C, D). Between BLASTP
thresholds of 10°° and 107*° these is only a modest
change in the total pham number (from 2, 757 to 2, 644;
~4% reduction) and number of orphams (from 1, 322 to
1, 260; ~4% reduction), but the size of the largest pham
changes from 118 to 198 (68% increase). Upon manual
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inspection of all phams with 100 or more members at the
BLASTP thresholds between 10°° and 102° we see ‘false’
pham assembly occur as illustrated by joining of a pham-
ily of tape measure proteins with a phamily of lysin pro-
teins, through sharing of small but closely related
domains. Nonetheless, inclusion of the BLASTP compari-
son with a 107 threshold joins several lysin phams that
are separate when using just the CLUSTALW compari-
son. We conclude that inclusion of BLASTP contributes
rather little to the pham assembly process, but that a
combination of a CLUSTALW threshold of 32.5% and a
BLASTP cut off of 10°° offers optimal parameters for
this dataset, building phams of homologous proteins
while minimizing construction of complex phams in
which only segments of the proteins are related to each
other.

When these parameters are applied to this dataset, the
111 mycobacteriophage genomes contain a total of 12, 298
genes that assemble into 2, 757 phamilies with a mean size
of 4.46 genes/pham; 1, 322 phams are orphams (48%) and
the largest pham contains 118 members.

Identification of known homologues and conserved
domains

Once a novel genome has been sequenced and annotated,
questions about the functions of individual genes
encoded within the genome can be addressed. This pro-
cess is facilitated by analyzing the predicted gene pro-
ducts for the presence of conserved domains. Numerous
tools already exist for this purpose, but the NCBI con-
served domain database (CDD) aggregates many of them
into a single, searchable dataset. These domain databases
often use different, complementary techniques such as
hidden Markov models or position-specific scoring
matrices to define domains and for the matching of novel
sequences to existing domain models. To leverage the
power of each of these approaches, we have implemented
a system in Phamerator whereby phage proteins are used
to query CDD, and the results are presented in a search-
able database browser in addition to being displayed on
genome maps. The latter affords both a global view of
the genomes and provides a way to visualize the conser-
vation of specific sequences in the Phamerator dataset
with those in other organisms.

An analysis of the distribution of CDD hits among the
mycobacteriophage protein sequences reveals that a cur-
rent search produces a total of 16, 420 matches among the
18, 901 predicted proteins, for an average of 0.87 matches
per protein. However, as expected, the distribution of
matches is non-random, with only 2, 981 proteins (15.8%)
having at least one CDD entry match, with the average
number of matches for these proteins being 5.51. While
935 proteins each match a single domain, a single protein,
Myrna gp183 (the presumed Lysin A), matches 77 domain

Page 6 of 14

models, most of which are aminotransferases. Generally,
when numerous matches of a single protein to domains in
the CDD are found, it reflects the redundant nature of the
CDD dataset, although in some cases it reflects the pre-
sence of multiple domains within a single protein.

Computation of nucleotide sequence similarities
Phamerator uses the BLAST “Align Two Sequences” pro-
gram (bl2seq) to perform pairwise local alignments of
whole genome sequences. An E value of le-4 was chosen
as the BLAST threshold. The alignments are performed
between adjacent genomes on the linear genome maps
and the results are overlaid on the maps using shading
between the genomes to depict the aligned regions. This
shading is color-coded according to the E value with violet
representing an E value of zero and red an E value equal
to the threshold used.

Representation of genome maps

Perhaps the key functionality of Phamerator is the con-
struction of phage genome maps that incorporate the
nucleotide similarity and pham assignment information.
An example of this is shown in Figure 3. When the six
genomes that currently constitute Cluster D are displayed,
each is represented by a horizontal bar with coordinate
markers with putative genes shown as colored boxes either
above or below, corresponding to rightwards or leftwards
transcription respectively (Figure 3). The name of each
gene is shown within the gene box, and the pham number
is shown above with the total number of pham members
shown in parentheses. Each pham has a designated color,
with the exception of orphams that are shown as white
boxes.

Because the genomes shown in Figure 3 are all mem-
bers of the same cluster they share substantial nucleotide
sequence similarity, which is reflected by the extensive
violet shading between adjacent genomes in the stack of
maps. Genomes can be easily re-positioned both verti-
cally and horizontally within the display such that differ-
ent pairwise relationships can be captured. For genomes
within a designated cluster - such as those in Figure 3 -
interruptions in the nucleotide sequence similarity are
readily apparent, seen as either a reduced level of similar-
ity (by shading with colors towards the red end of the
spectrum) or by no shading (reflecting absence of DNA
similarity below a BLASTN cut off value of 10 using the
Align Two Sequences algorithm. For example, in Figures
4 and 5 comparison of Gumball and Troll4 reveals a
mosaic substitution of Troll4 gene 52 with Gumball gene
51, with the flanking sequences being very closely related.
PLot shares the same organization as Gumball, whereas
Butterscotch, PBI1 and Adjutor all share the Troll4 orga-
nization. The different segments of DNA also encode
proteins of different sequences, because the predicted
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Figure 3 Phamerator-generated genome maps. A. Genome maps of six Cluster D phages (Plot, Gumball, Troll4, Butterscotch, PBIT and
Adjutor). The genomes are shown in two tiers. Genes are color-coded according to their pham assignment. Gene numbers are shown within
each gene box, and the pham number and number of pham members in parentheses shown above each gene. Pairwise nucleotide sequence
similarities are presented as colored shading between genomes; color spectrum reflects the extent of nucleotide sequence similarities with violet
being the most similar and red being the least similar. No shading shows that there is no similarity with a BLASTN score of 10 or better.

genes belong to different phams [Pham1115 (Gumball)
and Pham1086 (Troll4)]. Dotplot analysis clearly shows
that Gumball gene 51 and Troll4 gene 52 segments are
unrelated at the nucleotide level (Figure 5A) and
sequence alignment reveals that the discontinuities occur
at the start codons of these genes, and those of the down-
stream genes (Figure 5B). The map function of Phamera-
tor provides a tool for readily identifying and analyzing
these module boundaries.

Phamerator-generated maps optionally can also dis-
play conserved domains identified with the automated
CDD function (Figure 6). Domain hits are shown as yel-
low boxes or lines (if there are multiple separate domain
hits) within each gene box. Hovering the mouse over

any domain pops up a description of that domain hit
(Figure 6).

Phamily circle representations of gene phylogenies

Phamily circles provide a graphic way to illustrate the
relationship between proteins in a phamily, and to dis-
play which genomes within the dataset contain members
of that pham (Figures 7 and 8). The strength of the pair-
wise relationships for a particular phamily can be simply
accessed from the ‘Phams’ function in the left hand
panel (Figure 7). The ‘Phams’ window displays two sepa-
rate panels with the upper one showing a numerical list
of phams, the number of phamily members, and the
clusters and subclusters that are represented. Selecting a
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Figure 4 Expanded view of Cluster D genome maps. Five specific features are indicated. Feature #1 shows the designation of the pham
assignment (Pham1082) for Plot gene 47, and that Pham1082 contains six members (shown in parentheses). The six genomes shown all contain
a member of Pham1082, and thus there are no other members of Pham1082 outside of Cluster D. Feature #2 shows the violet shading between
Plot and Gumball genomes, reflecting a high degree of nucleotide sequence similarity. Feature #3 illustrates a departure in the synteny of
phages Gumball and Troll4, with an apparent insertion within Troll4 gene 49, relative to Gumball gene 48, both of which are in Pham1083.
Feature #4 indicates a replacement of Gumball gene 57 for the Troll4 gene 52, reflected in the lack of nucleotide similarity and the designation
of the genes in two different phams (Pham1115 and Pham1086 respectively). Note that PLot shares a member of Pham1115 and Butterscotch,
PBIT and Adjutor share members of Pham1086. Feature #5 shows a small insertion in Gumball relative to Troll4 (as well as Butterscotch, PBI1 and
Adjutor) that leads to an alternative annotation of this genome segment, with inclusion of a putative new orpham (Gumball gene 56) and

shorter version of Gumball gene 57.
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Figure 5 Lack of nucleotide similarity between Gumball gene 57 and Troll4 gene 21. A. Dotplot comparison of Gumball genes 50-52 and
Troll4 genes 51-53 (see feature #4 in Figure 4). B. Alignment of DNA segments of Troll4 and Gumball shows that the boundary of sequence
identity and non-identity occurs precisely at the beginnings of Troll4 gene 52 and Gumball gene 57 (the ATG start codons are underlined) and
the beginnings of Troll4 gene 53 and Gumball gene 52 (GTG start codons are underlined).
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Figure 6 Representations of conserved domains. A segment of the Gumball genome is displayed while using the Show Conserved Domains
functions in Phamerator. Within the gene 6 - 23 region there are four genes (arrowed) for which conserved domains are displayed, shown as
yellow boxes. In genes 6 and 11, only a single domain is identified, whereas in genes 10 and 23, two and three domains are displayed. These
correspond to the same parts of the proteins and therefore reflect redundancy in the CDD database. Holding the mouse over a domain
activates a pop-up displaying the domain information, illustrated for a domain in gene 10.
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Figure 7 The Phamily display function of Phamerator. A screen-shot of the main Phamerator display shows four sources listed in the left-
hand panel (feature #1). When the Phams function is selected, a list of all of the phamilies, the numbers of members, and the clusters to which
the parent genomes belong are displayed in the top right panel (feature #2). When a particular pham is selected (Pham3102 is shown), the gene
members, the parent phages, and the percent identities and BLASTP E-values are shown in the bottom right panel. When a specific gene is
selected (Barnyard gene 9 is shown; feature #3), the percent identity and BLASTP E-values displayed are in reference to the selected gene. The

values in red and gray-highlighted are below the threshold values for pham assembly.

pham directs a display in the lower window of each of
the phamily members by gene name and phage. When a
gene name is selected, Phamerator reports the CLUS-
TALW and BLASTP score of each of the other mem-
bers relative to the selected gene (Figure 7).

Phamily circle diagrams can be generated for individual
phams and include the name for each phage in the data-
base positioned around the circumference of a circle,
ordered and colored according to cluster and subcluster

designation (Figure 8). If a given phage has a gene that is
a member of the phamily represented in the diagram, the
protein name is included with the phage name. Arcs are
drawn between pairs of genomes that contain a gene
member of that phamily; relationships derived from
CLUSTALW analyses are represented in blue, and
BLASTP in red. In the Pham3102 example shown in
Figure 8, the phamily of small proteins is present in 33 of
the genomes and distributed among several cluster and
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Figure 8 The Phamily circle representation function. When the Pham Circle function is chosen (shown in the very top panel in Figure 7), a
phamily circle is drawn in which all of the component phages in the dataset are represented around the circumference of a circle, ordered
according to their cluster and subcluster designations. An arc is drawn between members of that pham that are related to each other above the
threshold values; blue and red arcs show CLUSTALW and BLASTP matches respectively. Some of the relationships only report BLASTP scores,
such as the blue arcs between PLot and Send513, and others only CLUSTAL score such as the red arcs between Konstantine and Nigel. Most
show red and blue arcs superimposed. Arc widths reflect the strengths of the relationships.

subclusters. Some of the relationships are shown as blue-  An abundance of Orphams

only arcs, indicating that the relationships exceed the The great genetic diversity of the mycobacteriophage
threshold of 32.5% amino acid sequence identity of the  population is reflected in the large number of orphams
CLUSTALW comparisons but does not meet the E value (1, 322; 48%), the relatively low mean and median pham
of 10°° for the BLASTP comparisons (Figure 8). The  sizes (4.46 and 2 genes respectively), and the observation
gene sequences can be readily exported for each pham  that 91% of the phams contain ten or fewer members
and used to construct neighbor-joining trees for compar-  (Figure 9A). The question arises as to whether the orp-
ison with the phamily circles. ham designation is useful, because one gene member
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might be deemed insufficient to form a phamily. We
think this is a useful designation because this is an espe-
cially informative group when attempting to identify
those genes that have been most recently acquired in
evolutionary time [6], but also note that orphams are
especially abundant in singleton genomes for which no
close relatives have yet been isolated (Figure 9B). The
abundance therefore reflects the current poor sampling
of the mycobacteriophage population, and as relatives of
the current singleton genomes are discovered, many of
the orphams are anticipated to be assembled into larger
phams [6]. We anticipate a substantial reduction in the
proportion of orphams as we approach saturation of the
phage population, but it is not yet simple to predict
when that will occur.

Discussion

We have explored the use of Phamerator with several
other sets of phage genomes including SPO1-like phages
of Bacillus subtilis [23] and a group of Streptomyces
phages, but we have recently successfully generated a
database from 319 genomes, substantially larger than the
111-genomes described here. We recognize that as the
number of complete phage genome sequences increases
that the computational time required increases as the

square of the number of genes, and this could impose
considerable limitations. For example, increasing the
number of genomes to 1, 000 - not an unreasonable
expectation given the advances in DNA sequencing tech-
nology - increases the number of pairwise computations
to ~10"!, a 1000-fold increase in time over the current
dataset. However, with recent advances in cloud comput-
ing and the availability of massively parallel and multi-
core computing systems we anticipate that these
demands can be readily met. For example, cloud-comput-
ing systems can provide more than a 1000-fold increase
in the number of processors at minimal cost. Phamerator
will remain a useful tool for comparative phage genome
analysis for the next few years. We also note that recent
developments in alternative profile-based similarity
searches such as HMMERHEAD and HHMER3 http://
hmmer.org/ that greatly increase their efficiencies should
provide additional Phamerator components [32,33].

Conclusions

Phamerator provides a simple but useful computational
tool for dissecting the genetic relationships among bacter-
iophage genomes, and displaying them in informative
representations. Phamerator is especially useful for analysis
of particular sets of phages such as the mycobacteriophages
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described here, but can be readily expanded to include a
broader phage set, in which it is desired to map the hori-
zontal exchange of genes between phage populations (for
example, between Streptomyces phages, Propionibacterium
acnes phages, Rhodococcus phages, and the mycobacterio-
phages). Because of its computational intensity, it is less
well suited to mapping global genome-scale relationships
among large phage genome sets, but other programs have
been described for this purpose [34,35]. The use of a com-
monplace Biopython framework and MySQL database soft-
ware should facilitate interaction of the Phamerator
database components with other web-based utilities to
make this a broadly accessible utility.

Additional material

Additional file 1: Phamerator program. Phamerator program.

Additional file 2: Phamerator Installation Instructions. This file
contains installation instructions for Phamerator.
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