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Abstract

Background: How to compare studies on the basis of their biological significance is a problem of central
importance in high-throughput genomics. Many methods for performing such comparisons are based on the
information in databases of functional annotation, such as those that form the Gene Ontology (GO). Typically, they
consist of analyzing gene annotation frequencies in some pre-specified GO classes, in a class-by-class way, followed
by p-value adjustment for multiple testing. Enrichment analysis, where a list of genes is compared against a wider
universe of genes, is the most common example.

Results: A new global testing procedure and a method incorporating it are presented. Instead of testing separately
for each GO class, a single global test for all classes under consideration is performed. The test is based on the
distance between the functional profiles, defined as the joint frequencies of annotation in a given set of GO
classes. These classes may be chosen at one or more GO levels. The new global test is more powerful and accurate
with respect to type I errors than the usual class-by-class approach. When applied to some real datasets, the results
suggest that the method may also provide useful information that complements the tests performed using a class-
by-class approach if gene counts are sparse in some classes. An R library, goProfiles, implements these methods
and is available from Bioconductor, http://bioconductor.org/packages/release/bioc/html/goProfiles.html.

Conclusions: The method provides an inferential basis for deciding whether two lists are functionally different. For
global comparisons it is preferable to the global chi-square test of homogeneity. Furthermore, it may provide
additional information if used in conjunction with class-by-class methods.

Background
With the advent of genomic technologies it has become
possible to perform, in a routine manner, experiments
which simultaneously analyze the behavior of thousands of
genes or proteins in different conditions. A common fea-
ture of these studies is that they generate huge quantities
of data, which has led to the term “high-throughput” to
describe them. There are different types of high-through-
put experiments, but here we will refer specifically to the
most well known: microarray experiments [1-3]. A typical
differential expression study aims to identify genes that are
differentially expressed under two or more conditions; for
instance, healthy (or untreated or wild-type) cells com-
pared to tumor (or treated or mutant) cells. Such experi-
ments often result in long lists of genes which have been
selected using a given criterion (for instance a moderated

t-test followed by a p-value adjustment) to assign them
statistical significance.
Obtaining one or more lists of genes is only the first

step; they must be interpreted in a way that makes biolo-
gical sense. One common approach is to relate the genes
they contain with one or more functional annotation
databases, such as the Gene Ontology (GO), or Kyoto
Encyclopedia of Genes and Genomes (KEGG). For sim-
plicity we will speak only of GO classes (or categories, or
nodes) but many concepts are also applicable to other
annotation systems. There are many methods and models
for performing this re-processing [4-6]. Two of the most
commonly used are Gene Enrichment Analysis [7] (EA)
and Gene Set Enrichment Analysis [8,9] (GSEA). This
paper is mainly concerned with the EA approach.
To some extent, EA methods may be considered one-

sample procedures in the sense that they try to elucidate
the association between a “sample” gene list (e.g. differen-
tially expressed genes in the presence of a tumor type)
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taken from a given “universe” (e.g. the whole set of genes
in the microarray) and a characteristic such as being anno-
tated in a given GO class. In contrast, microarray data may
also be used in a context where the goal is mainly the com-
parison of two (or more) “sample” gene lists ([10-13]),
such as differentially expressed genes in a sample of
induced apoptotic cells vs differentially expressed genes in
a sample of senescent cells. These lists may share part of
their genes, but possibly not all of them. Again, the com-
parison is made in terms of their annotations in a func-
tional database. A clear example of this approach is the
comparison of whole experiments performed by different
laboratories, possibly using different microarray technolo-
gies, whose resulting gene lists do not always coincide, see
for example [14]. Similar or complementary studies that
are available may be compared or even combined; thus,
the goal of the analysis may be to prove difference or, con-
versely, to prove similarity.
The statistical model underlying EA and comparison

methods based on GO class counts or hits is usually the
hypergeometric-multihypergeometric distribution,
together with the assumption that the gene “samples”
under consideration are taken from a finite universe, e.g.
the entire microarray, [15]. This leads to inferential
methods mainly based on Fisher’s exact test. Sometimes,
the underlying model is the less realistic, but simpler to
handle, binomial-multinomial distribution, under the
assumption that the “samples” are taken from an infinite
population. This is the basis of the chi-square approach,
e.g. in [16]. In general, the binomial model provides an
adequate approximation to the hypergeometric model for
sufficiently large marginal frequencies.
Comparison methods typically focus on only one GO

class at a time. If multiple classes are considered, the ana-
lysis is performed in a class-by-class fashion followed by a
correction for multiplicity. An obvious advantage of this
class-by-class approach is that classes associated with dif-
ference are readily identified. The main drawback of this
approach is a loss of power. Controls for multiplicity
based on strict criteria such as the family-wise error rate
(FWER) unavoidably impose a loss of power, while more
permissive criteria such as the false discovery rate (FDR)
may be associated to an incomplete type I error control.
In other words, the FDR corresponds to the expected pro-
portion of erroneous null hypothesis rejections (false posi-
tives) among the total number of observed positives; a
good FDR controlling procedure may maintain FDR below
a given level, but not maintain the probability of any false
positive below a given (significance) level, see for example
[17-19]. An alternative approach is testing for difference
jointly for all classes under consideration. The basis for
such an approach in EA is outlined in [20] and a general
approach and method is established in [21]. The obvious
advantage of the global approach (only one significance

test is performed) is a more strict control of type I and II
errors. The main drawback is that association or difference
is established with respect to a collection of classes, with
no identification of those that have a greater influence.
Here we present a family of hypothesis tests, and a method
based on them, which perform global comparisons but
also provide the possibility of combining them with a
class-by-class approach, in order to identify the most sig-
nificant classes.
If s denotes the number of GO classes under considera-

tion, note that the common procedures for 2 × s frequency
tables, such as the usual homogeneity chi-square test, are
not appropriate as the GO classes are not mutually exclu-
sive–in the sense that a single gene may be annotated in
more than one class. Previous work, [21], established a
probabilistic model for the joint distribution of gene hits
in GO classes and provided a method for testing the fit of
observed annotation frequencies to a given, fully-specified
model, in a similar way to the classic goodness-of-fit chi-
square test. Here we present an evolution of this method
which, under a quite general setting, accounts for global
testing of the differences between two gene samples, e.g. in
an enrichment or experiment comparison context. The
analysis may be performed with the objective of either
“demonstrating” differences, or conversely demonstrating
(near) equivalence, e.g. as an argument in support of the
combination of results from two experiments. In this
paper we focus in the first approach, i.e. demonstrating
difference. This global analysis may be of interest by itself,
or may be followed by class-by-class post-hoc compari-
sons, to determine which classes are more responsible for
determining the associations or differences. Under this set-
ting, the global test may provide useful information when
sample sizes for specific single classes are small (while glo-
bal sample size may be adequate). Its type I error level is
closer to the nominal level and its power is in general
greater than that of the class-by-class approach. For exam-
ple, at a deep GO level (such as level 10 in the examples
below) the global test may detect difference while class-
by-class comparisons may be unable to detect any such
difference. This may suggest exploring a less specific GO
level or even (as the global test provides evidence of the
significance of at least one class) to choose as significant
the class with the smallest p-value.

Methods
In this section we introduce our method, some notation
and the global test procedure, and give a brief description
of the associated R software. We conclude this section
with the proof of the validity of the global test.

Decision criteria and algorithm
To complement the information provided by the global
test with that from the class-by-class approach, we suggest
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the method illustrated in Figure 1 and described as
follows:

1. At a given GO level, or for a given target set of
GO classes (in one or more GO levels), perform a
global comparison test. If the global test gives a
non-significant result, stop the process: there is no
evidence of differences for these GO classes. Other-
wise, proceed to the next step.
2. Perform class-by-class testing (e.g. by means of
Fisher’s exact test1, with p-value adjustment) to iden-
tify the significant classes. If any of these tests pro-
duce significant results, stop the process: significant

GO classes have been identified. Otherwise, proceed
to the next step.
3. If no significant classes were found in the preced-
ing step (but remember, the global test for differ-
ences gave a significant result), either:

(a) Declare as significant the class associated with
the lowest unadjusted p-value or, alternatively,
(b) go back to step 2 and test for less specific
GO classes, if these classes are still biologically
or clinically interesting.

Step 1 is motivated by the need for adequate control
on type I errors: by proceeding this way, the type I error

YES

NO

YES

YES

NO

NO

Perform a global
comparison test

Global
differences?

Stop
No evidence of significantly different

profiles

Perform a class—
by—class analysis

Significant
classes?

Stop
Classes associated to global differences

have been detected

Interest in
lesser level?

Restart for
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general
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Stop
Take as significant the class with the

smallest p—value

Figure 1 Flow diagram for the basic algorithm. Flow diagram to illustrate the method of combining a general profile comparison test and
class-by-class analyses.
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of the full procedure is dominated by the type I error of
the new global test. Thanks to the safeguard provided in
step 1, step 3 may provide an extra possibility to identify
truly significant classes. Admittedly, sometimes the
class-by-class approach will detect one or more truly
significant classes while the global test will give a nega-
tive result. But our simulation results indicate that this
is a comparatively rare event, and the better power
properties of the global test compared to multiple class-
by-class testing, particularly in presence of low annota-
tion frequencies, in general largely compensate this
small loss of sensitivity.

Notation and statistical approach
Given a set of GO classes which cut a GO graph at a
given (but not necessarily unique) level–or simply a set
of “interesting” classes–our approach consists of expand-
ing the original distribution (where one gene can appear
in several classes) into a new expanded distribution in
which each gene belongs to one, and only one, disjoint
set. This expanded distribution can be modeled as multi-
nomial or as multihypergeometric, and standard statisti-
cal methods can be used to derive the asymptotic
distribution of the counts.
We define a functional profile as the full vector of counts

of the n genes in the sample in the A1, A2, ..., As classes of
a given level of an ontology–or, more generally, s classes

defining a cross section of an ontology, possibly at more
than one level. Since single genes may be annotated in
more than one class, these counts may sum more than the
total number of genes under consideration (if taken as
absolute frequencies) or more than one (if taken as relative
frequencies). To overcome this problem [21] introduced
the concept of an expanded profile, defined as the joint
frequencies of counts in the set of all possible combined
GO classes, which are mutually exclusive. In other words,
we distinguish between genes that are annotated exclu-
sively in node A1, genes that are annotated exclusively and
simultaneously in node A1 and node A2, genes that are
annotated exclusively and simultaneously in nodes A1, A2

and A3, and so on. Expanded profiles should not be con-
fused with plain ("contracted”) functional profiles.
Figure 2 shows the contracted and expanded profiles

associated with 4 genes in 3 GO classes.
With these ideas in mind, we establish notation as

follows.
The column vector of relative frequencies evaluated over

a set of n genes is represented by P̂ = (p̂1·, p̂2·, . . . , p̂s·)′ (or
P̂n to emphasize that it comes from a “sample” of n genes).
The “dot” notation p̂i· is used to highlight the fact that all
the genes annotated in class i (but not exclusively in it)
have been counted. The term “profile” will indistinctly be
used to designate the absolute frequencies, nP̂n or the rela-
tive frequencies P̂n given n.

Figure 2 Basic vs expanded profiles. A schematic view of basic and expanded functional profiles associated with a list of 4 genes projected at
the second level of the MF ontology.
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The symbol P̂ (or P̂n) designates an expanded profile,
that is, the column vector of relative frequencies

P̂ = (p̂1, p̂2, . . . , p̂s, p̂12, p̂13, . . . , p̂(s−1)s, p̂123, . . .)′. (1)

Here p̂i corresponds to the frequency of genes exclu-
sively annotated in node Ai, p̂ij to the frequency of genes
exclusively annotated in nodes Ai and Aj, and so on.
All these profiles are taken as sampling realizations of

theoretical or population profiles, say P and Q–or P and
Q for expanded profiles.
The dissimilarity between two profiles is measured in

terms of their squared Euclidean distance:

d(P̂, Q̂) =
s∑

i=1

(p̂i· − q̂i·)2. (2)

A new global comparison test
Suppose that we wish to compare the GO profiles of
two lists of genes, A and B, of size n and m, respectively.
Following [22], we note that the lists may share k genes,
with three possibilities available (see Figure 3):

1. k = n <m, that is A ⊂ B.
2. k <n, k <m, that is A ∩ B ≠ ∅.

3. k = 0, that is A ∩ B = ∅.

Now, let P̂ be the sample profile for the first list in a
given ontology, and Q̂ the corresponding profile for the
second list. We have

P̂ =
k
n
P̂0 +

n − k
n

P̂1 (3)

and

Q̂ =
k
m
P̂0 +

m − k
m

Q̂1 (4)

where P̂0 is the profile of the k common genes, and P̂1
and Q̂1 are the profiles of the non-common genes. Simi-
larly, P̂0, P̂1 and Q̂1 are the corresponding expanded
sample profiles.
To test a null hypothesis of profile equality versus an

alternative of difference, that is:

H0 : d (P,Q) = 0
H1 : d (P,Q) > 0

(5)

we can use the fact that, if H0 is true,

Vn,m =
nm
n +m

d(P̂, Q̂) (6)

Figure 3 Relations between lists of genes. Possible relationships between gene lists to be compared: one list includes the other; two
intersecting lists; two non-intersecting lists.
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approximately follows the distribution of a linear com-
bination of s independent central chi-square-distributed
random variables, each one with one degree of freedom:

s∑
i=1

βiχ
2
1,i. (7)

The details of the calculation of the bi coefficients and
in general the proof of the above result are delayed to
the end of this section. The result ensures the validity of
the following decision criterion: “reject H0 if Vn,m >v (a,
s)”, where v (a, s) stands for the 1 - a quantile of the
distribution of (7). Likewise, a p-value for (6) can be cal-
culated from (7).
When the population profiles are not equal, the

statistic

( nm
n +m

)1/2 (
d(P̂, Q̂) − d(P,Q)

)
(8)

approximately follows a normal distribution N (0, s2).
As a consequence,

d(P̂, Q̂) ± zασ̂

√
1
n
+

1
m

(9)

defines an approximate 1 - 2a confidence interval for
d (P, Q), where za stands for the 1 - a quantile of a
standard normal distribution and σ̂ is a suitable estimate
of s. Additionally, expression (8) provides a way to
approximately compute the power of the above test.
Again, details such as the expression of the variance s2

are considered at the end of this section ("Mathematical
details”).

Software
The functionalities described in this paper, together with
those in [21], have been implemented in the R package
goProfiles, available from Bioconductor http://biocon-
ductor.org/packages/release/bioc/html/goProfiles.html.
Package goProfiles uses the CRAN package Comp-

QuadForm [23] to compute the distribution associated
with (7). As an illustration of its use, the R commands
associated with the example in the next section are
available at http://estbioinfo.stat.ub.es/pubs/goProfiles1_-
BIF/goProfiles1.htm.

Mathematical details
From considerations similar to those in [21] we con-
clude that the asymptotic distribution of (P̂, Q̂) is
approximately multivariate normal. More exactly, if

Dn,m =
( nm
n +m

)1/2
(P̂ − P, Q̂ − Q) (10)

then

Dn,m
d→

n,m→∞Y ∼ N(0,�PQ) (11)

where the covariance matrix ΣPQ may be estimated by:

�P̂Q̂ =

(
m

n+mA
k

n+mB
k

n+mB
n

n+mC

)

with:

A = k
n�P̂0

+ n−k
n �P̂1

B = �P̂0

C = k
m�P̂0

+ m−k
m �Q̂1

and �P̂0, �P̂1 and �Q̂1 correspond to the covariance
matrices associated with the respective profiles P̂0, P̂1
and Q̂1, that have the general form [21]: sii = pi· (1 - pi·)
for i = 1, ..., s and sij = pij· - pi·pj·, when i ≠ j, for i, j =
1, ..., s.
From the algebraic relation:

d(P̂, Q̂) = (P̂ − Q̂)t(P̂ − Q̂)

= (P̂, Q̂)t�2s(P̂, Q̂)

= (P,Q)t�2s(P,Q)+

2(P,Q)t�2s(P̂ − P, Q̂ − Q)+

(P̂ − P, Q̂ − Q)t�2s(P̂ − P, Q̂ − Q)

= d(P,Q)+

2(P,Q)t�2s(P̂ − P, Q̂ − Q)+

d(P̂ − P, Q̂ − Q)

(12)

where �2s is the 2s × 2s matrix defined from the iden-
tity matrices of dimension s, Is:

�2s =

(
Is − Is
−Is Is

)
, (13)

we have:

( nm
n+m

)1/2 [
d(P̂, Q̂) − d(P,Q)

]
=

2(P,Q)t�2sDn,m+( nm
n+m

)1/2
d(P̂ − P, Q̂ − Q)

(14)

where Dn, m has been defined in (10).
Consider first the case P ≠ Q. The second summand

on the right-hand side of the above expression tends to
zero,

( nm
n +m

)1/2
d(P̂ − P, Q̂ − Q)

P→
n,m→∞ 0 (15)
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while, as a direct consequence of (11), the first sum-
mand in (14): is asymptotically normal:

2(P,Q)t�2sDn,m
d→

n,m→∞U ∼ N(0, σ 2), (16)

with

σ 2 = 4(P − Q,Q − P)t�PQ(P − Q,Q − P). (17)

Consider now that P = Q. Then we have

d(P̂, Q̂) = d(P̂ − P, Q̂ − Q). (18)

From general results on the asymptotic distribution of
quadratic forms with a normal basis [24], it can be
deduced that

Vn,m =
( nm
n +m

)
d(P̂, Q̂) = Dt

n,m�2sDn,m (19)

is approximately distributed as a mixture of indepen-
dent chi-square random variables:

Vn,m
d→

n,m→∞V =
∑s

i=1
βiχ

2
1,i, (20)

where the bi correspond to the eigenvalues of the
matrix �2s�PQ and the χ2

1,i are independent chi-square
random variables with one degree of freedom.
From (16) it follows that under the null hypothesis in

(5) (i.e., when P = Q) Un,m
P−→ 0. Thus, the decision cri-

terion for (5) may be based on (20).

Results
In this section we describe two illustrative case-studies
and some simulation results on the performance of the
statistical methods introduced above.

Case-studies
We selected two datasets to illustrate our method. The
first one is inspired by the work presented in [25], using
data kindly provided by those authors. They studied the
relationships between phenotypic attributes of a disease
and the features of the associated genes, including their
ascribed annotated functional classes and expression
patterns. The sample gene lists were obtained from the
ENSEMBL and OMIM databases and manually curated
by the authors. They compared the functional pattern of
different groups of genes: (1) genes associated with
dominant diseases vs genes associated with recessive dis-
eases, (2) genes associated with diseases vs all the genes
in the human genome. The authors performed their glo-
bal comparisons using chi-square tests, although they
fairly point out that GO classes do not define a true
partition of the gene lists or, in other words, that a gene
may be annotated in more than one class. Although
their conclusions and ours will be similar, we believe

our method provides a more appropriate framework for
such comparisons. Here we illustrate our method by
comparing dominant disease-inducing genes and reces-
sive disease-inducing genes.
Table 1 shows the results of applying the global differ-

ence test to a list of 985 dominant and 818 recessive
genes from the NCBI Entrez database2 projected at the
second level of the GO. Figure 4 shows plots of the pro-
files corresponding to the second level of the molecular
function (MF) ontology for dominant and recessive
genes. The results of the analysis, which are consistent
with those obtained by [25], show that the two sets of
genes can be considered functionally distinct with respect
to the molecular function (MF) and biological process
(BP) ontologies, that is to say, the related dominant and
recessive diseases can be associated with different con-
cept categories in both ontologies. With respect to the
cellular component (CC) ontology, there are also statisti-
cally significant differences although they may be less
biologically significant because the profiles are very simi-
lar (0.0248 distance).
According to step 1 in our general algorithm, analysis

may be continued in order to identify the GO classes
associated with the observed global differences. Tables 2
and 3 show the significant GO classes at level 2 for the
MF and BP ontologies, respectively. The only significant
class for the CC ontology is GO:0032991 with a
4.258815 × 10-6 p-value. The p-values are based on
class-by-class analyses by means of Fisher’s test, fol-
lowed by correction for testing multiplicity using the
Holm method, [26].
These differences are also observed in deeper levels of

the GO, that is, for more specific categories of molecular
functions or biological processes. For illustrative pur-
poses we briefly discuss some results at level 10. For the
MF ontology, the global p-value is 0.0001307 but no sig-
nificant classes are detected when class-by-class analyses
are performed in the same conditions as before. How-
ever, according to step 3, the ontology class GO:0008094
(DNA-dependent ATPase activity) may be significant.
For the BP ontology, a significant global result is also
obtained, with a p-value of 8.639 × 10-8. The subsequent

Table 1 Dominant vs recessive diseases

MF BP CC

squared Euclidean distance 0.1029440 0.4138672 0.02482656

p-value < 2.2 × 10-16 < 2.2 × 10-16 1 × 10-4

95% CI lower limit 0.07004932 0.2715809 0.00894685

95% CI upper limit 0.13583861 0.5561534 0.04070628

Global analysis at level 2.

Results of performing a difference test between functional profiles produced
from lists of dominant and recessive genes, at the second level of each
ontology. The null hypothesis of equality of profiles can be rejected for all
ontologies at a 5% significance level
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Figure 4 Dominant vs recessive genes. Comparison of functional profiles at the second level of the MF ontology based on the lists associated
with dominant and recessive diseases.

Table 2 Dominant vs recessive diseases

Description GOID p-value

Binding GO:0005488 1.591855 × 10-2

catalytic activity GO:0003824 2.847567 × 10-20

electron carrier activity GO:0009055 2.535709 × 10-3

sequence-specific DNA binding transcription factor activity GO:0003700 5.082308 × 10-14

structural molecule activity GO:0005198 2.727443 × 10-8

transcription regulator activity GO:0030528 3.685094 × 10-6

Analysis at level 2.

Significant MF level 2 GO classes after a class-by-class analysis based on Fisher’s test and correction for multiple testing
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class-by-class analyses indicate the GO classes in Table 4
as significant.
In the second example we compare two microarray

experiments described in [27] and [28] to study prostate
tumors on the basis of gene expression data. Although
the studies were performed independently, the type of
tumor they analyzed, the microarray platforms (both
studies were based on Affymetrix technology U95AV2)
and the sample sizes were all similar; see Table 1 in
[29]. Even a substantial proportion of the genes were
common to both lists, which makes global comparison
methods such as the chi-square test for homogeneity
highly inadequate for determining the extent to which
these genes represent different functional GO profiles or
not. Obviously, the answer to the preceding question

may depend on the level of specificity of the GO classes
under consideration. The results for very general classes,
at level 2 in the GO, are summarized in Table 5. There
is only evidence of statistically significant differences
(though possibly with little biological relevance, given
the very small distances) for the CC ontology, with a
0.004 p-value. When class-by-class Fisher’s tests are per-
formed for the CC ontology (this testing step should be
avoided for the globally non-significant ontologies, MF
and BP) two classes (Table 6) emerge as significant.
Significance for the CC ontology is maintained for more
specific GO classes. When the analysis is performed at
level 10, the global comparison test only produces sig-
nificant results for the CC ontology, with a p-value of
0.01511. Class-by-class analyses (Table 7) reveal differ-
ences in some classes, all related to the ribosome.

Simulations
Simulations were performed in order to assess the valid-
ity of the above tests. Their true probability of rejecting
the null hypothesis was estimated in different circum-
stances. Each simulation consisted of the generation of
series of 10,000 sample profiles from hypothetical popu-
lations whose configurations were suggested (number of
GO classes, sample sizes, etc.) by the observed profiles
in some selected datasets and studies. The simulated

Table 3 Dominant vs recessive diseases

Description GOID p-value

biological regulation GO:0065007 1.011094 × 10-13

cell proliferation GO:0008283 1.148909 × 10-10

death GO:0016265 4.620938 × 10-9

developmental process GO:0032502 9.242509 × 10-9

growth GO:0040007 3.916801 × 10-4

immune system process GO:0002376 1.032981 × 10-3

locomotion GO:0040011 3.610015 × 10-4

metabolic process GO:0008152 1.654187 × 10-4

multi-organism process GO:0051704 3.214156 × 10-2

multicellular organismal process GO:0032501 2.839762 × 10-7

negative regulation of biological
process

GO:0048519 1.206870 × 10-16

pigmentation GO:0043473 3.834365 × 10-3

positive regulation of biological process GO:0048518 3.273178 × 10-13

regulation of biological process GO:0050789 2.141995 × 10-21

signaling GO:0023052 9.023421 × 10-14

signaling process GO:0023046 1.113202 × 10-10

Analysis at level 2.

Significant BP level 2 GO classes after a class-by-class analysis based on
Fisher’s test and correction for multiple testing

Table 4 Dominant vs recessive diseases

Description GOID p-value

negative regulation of transcription from RNA polymerase II promoter GO:0000122 1.271933 × 10-2

negative regulation of transcription, DNA-dependent GO:0045892 4.613832 × 10-3

positive regulation of transcription from RNA polymerase II promoter GO:0045944 3.114127 × 10-7

positive regulation of transcription, DNA-dependent GO:0045893 5.356749 × 10-7

regulation of calcium ion transport GO:0051924 4.333597 × 10-3

regulation of transcription from RNA polymerase II promoter GO:0006357 2.291754 × 10-9

regulation of transcription, DNA-dependent GO:0006355 9.753411 × 10-14

transcription from RNA polymerase II promoter GO:0006366 8.714318 × 10-11

Analysis at level 10.

Significant BP level 10 GO classes after a class-by-class analysis based on Fisher’s test and correction for multiple testing

Table 5 Comparison of two prostate cancer studies

MF BP CC

squared Euclidean
distance

0.001028538 0.004627587 0.003136238

p-value 0.1108498 0.07159675 0.004018912

95% CI lower limit -5.921965 ×
10-5

-0.0001544709 0.0004614338

95% CI upper limit 2.116296 × 10-
3

0.0094096442 0.0058110419

Global analysis at level 2. Results of performing a difference test between
functional profiles produced from two studies of prostate cancer ([27] and
[28]), at the second level of each ontology. The null hypothesis of equality of
profiles can be rejected for the CC ontology at 5% significance
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profiles were always generated, in a first step, as
“expanded profiles” according to a multinomial distribu-
tion, and subsequently converted to “contracted” profiles
in order to compute the test statistics. The simulation
programs were written in R [30] and executed in 64-bit
R 2.12.1 under 64-bit Windows 7 Enterprise edition. An
exhaustive simulation study is in process and is the sub-
ject of a forthcoming paper. Some early results of this
study are available at the above address; they are fully
concordant with the preliminary study described here.
Table 8 shows the main results for two simulation

scenarios based on [25] and [27,28] and simulating level
10 in the GO. The results in the “true H0“ column cor-
respond to “sample” profiles that were generated from
equal “population” profiles, based on pooled data. The
results in the “false H0“ column correspond to popula-
tion profiles directly taken as the observed profiles in
the preceding examples (and that to a greater or lesser
extent are truly different). For each simulation scenario,
the following estimated quantities are displayed:

• Probability of detecting at least one significant
class when a class-by-class analysis with Holm’s cor-
rection for multiplicity is performed,
• Probability of rejecting the null hypothesis for the
standard chi-square test of homogeneity
• Probability of rejecting the null hypothesis for the
global test based on (6) and (7), and
• Additional detections of significant classes, accord-
ing to step 3 of the proposed algorithm, i.e. when no
significant classes are detected in a class-by-class
analysis but the global test gave a significant result.

All the tests are simulated under a nominal signifi-
cance level of 0.05.

The classical global chi-square test is clearly incorrect,
as may be expected from the arguments in the back-
ground section. Its true significance level is very erratic,
with very low but also very high values that may largely
exceed the nominal level, with an observed maximum of
0.152 for the simulation based on the [25] scenario and
the BP ontology.
Also as expected, the new method is at least as power-

ful (and in general more powerful) than a standard
class-by-class analysis. The proportion of true positives
that are detected by the class-by-class approach and not
by the global test is very low. In the simulated scenarios
it ranges from 0 to a maximum of 0.0038 in the simula-
tion scenario inspired by [27,28] and the MF ontology.
So, the possible loss in power associated to step 1 in
our method is largely compensated by the greater power
of the global test.

Discussion
In this work we present a method for performing global
comparisons between groups of genes based on their
functional profiles that is itself based on their projections
at fixed GO levels, or their projections on a set of “inter-
esting” GO classes which could even be at different levels
in the ontology.
The method has been shown to perform well in the real

case situations analyzed as well as in the simulation stu-
dies performed, even for very sparse frequency tables.
We noticed that it has become common practice to

perform global tests (that is comparing two lists of genes)
based on class-by-class analysis (declaring global differ-
ences if there is at least one significant class). Our work
suggests that this approach is not appropriate because
the dependence between the individual tests for each
class and the objective of controlling the FDR or FWER
error rates may result in a loss of power. Indeed our
simulation results show that this approach yields a less
powerful test than the method we present. This is not
surprising since making global comparisons is not the
main objective of these tests.
Another alternative to performing global tests, the clas-

sical homogeneity chi-square test, has also proven not to
be valid. On the basis of aprioristic validity reasons
explained above in the Background section, and specially
in view of its lack of adequate type I error control, its use
should be avoided as a tool for making global compari-
sons between profiles.
Although making a global comparison may often be

the main objective of a study, especially if interest is
focused on the GO classes that make the difference, the
global test may work in conjunction with the usual
methods to provide some extra insight. This is particu-
larly clear when many GO classes are considered, for
example for deep levels of the GO. Table 8 reflects the

Table 6 Comparison of two prostate cancer studies at
level 2

Description GOID p-value

organelle GO:0043226 0.03825311

macromolecular complex GO:0032991 0.04459121

Significant CC level 2 GO classes after a class-by-class analysis based on
Fisher’s test and correction for multiple testing

Table 7 Comparison of two prostate cancer studies at
level 10

Description GOID p-value

cytosolic large ribosomal subunit GO:0022625 0.0002794424

cytosolic small ribosomal subunit GO:0022627 0.0028788683

Large ribosomal subunit GO:0015934 0.0027483186

Small ribosomal subunit GO:0015935 0.0027483186

Significant CC level 10 GO classes after a class-by-class analysis based on
Fisher’s test and correction for multiple testing
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true significance level and power of the global test and
the class-by-class approach in some scenarios inspired
by real examples, at level 10 in the GO.
Even for these cases where thousands of possible GO

classes are considered, the global test still has a test size
that is near the nominal significance level while at the
same time it is more powerful than (or as powerful as)
the class-by-class approach.
For those cases where highlighting GO classes causing

the difference is of interest, we suggest the following
strategy: if class-by-class analysis fails to detect any sig-
nificant classes but the global test provides a significant
result, then highlight as significant the class with the
smallest uncorrected p-value. This strategy allows the
detection of additional significant classes without inflat-
ing the type I error rate.

Conclusion
In conclusion, the method presented here provides a
suitable approach for making global comparisons
between lists of genes and should be considered to be
complementary to some of the existing ways of compar-
ing lists of genes derived from microarray studies.
In those cases where the user is interested in focusing

on a few genes or specific classes, other methods may be
more suitable. However, when a global comparison based
on the biological meaning of the list of selected genes is
required, our method may be the option of choice. It is
statistically reliable (Table 8 and http://estbioinfo.stat.ub.
es/pubs/goProfiles1_BIF/goProfiles1.htm) and an ade-
quate alternative to the chi-square homogeneity test,
which is incorrect to compare GO profiles. Additionally,
it may provide some extra insight into GO classes that

Table 8 Simulation results

Onto. s n m A and B gene lists Testing procedure Pr{rejectH0} (true H0) Pr{rejectH0} (false H0)

Reference: [25]

MF 88 69 52 A ∩ B = ∅ Class-by-class 0.0012 0.3903

Chi-square 0.0334 1

New global 0.0469 1

Additional signif. classes 0.04585 0.697

BP 1602 372 328 A ∩ B = ∅ Class-by-class 0.002 1

Chi-square 0.162 1

New global 0.042 1

Additional signif. classes 0.042 0

CC 298 305 336 A ∩ B = ∅ Class-by-class 0.0042 1

Chi-square 0.0775 1

New global 0.0389 1

Additional signif. classes 0.0374 0

References: [27] and [28]

MF 88 110 99 A ∩ B ≠ ∅ Class-by-class 0.0028 0.0729

k = 46 Chi-square 0.0341 0.998

New global 0.0428 0.7281

Additional signif. classes 0.0409 0.659

BP 1722 858 651 A ∩ B ≠ ∅ Class-by-class 0.003 0.351

k = 318 Chi-square 0.152 1

New global 0.056 0.997

Additional signif. classes 0.055 0.646

CC 394 897 679 A ∩ B ≠ ∅ Class-by-class 0.0076 0.9982

k = 354 Chi-square 0.0883 1

New global 0.0625 0.9999

Additional signif. classes 0.0599 0.0018

Probability of rejecting the null hypothesis of equality of profiles at a nominal 5% significance level in different scenarios associated with real case studies at
level 10 in the GO. In the column “testing procedure”, “Class-by-class” stands for declaring global differences (i.e. rejecting the null hypothesis of profile equality)
if at least one significant class is detected in a class-by-class analysis with correction for testing multiplicity; “Chi-square” stands for the classical chi-square test of
homogeneity; “New global” stands for the global test presented in this paper and, finally, “Additional signif. classes” stands for step 3 in the algorithm proposed
in the methods section, i.e. proportion of simulation replicates where additional significant classes were detected when a class-by-class analysis was unable of
any detection.
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prove to be interesting but which would not be detected
otherwise. This is more apparent at deep GO levels for
sparse frequency tables (i.e. profiles), where correcting
for a great degree of testing multiplicity imposes a heavy
load on the class-by-class approach.
Finally, it is worth mentioning that the applicability of

our global comparison method largely surpasses the
scope of our conducting examples. As mentioned in the
second example (prostate cancer studies), comparison of
functional profiles associated with distinct datasets can
be used to decide if they can be merged or used com-
binedly for further studies. Another interesting applica-
tion appears if one is interested in comparing gene
signatures, that is groups of genes whose combined
expression pattern is uniquely characteristic of a given
condition or disease state and which are usually used to
characterize or to predict this condition. One problem
with signatures is that in many cases there are many sig-
natures for similar situations. A comparison of their asso-
ciated functional profiles may be used to help deciding if
two given signatures are functionally equivalent. Also
other useful applications may arise -as kindly reported by
a referee - when one is interested in comparing the effect
of applying different filtering methods. If two lists of
genes obtained by applying different filters, or different
cutoffs, do not differ in their functional profiles they
might be considered functionally equivalent. Last,
although outside the scope of this journal, the method
may also have potential applications, like to compare lists
of words (e.g. from two literary styles) in terms of their
annotation profiles in semantic databases.

Endnotes
1Fisher’s exact test constitutes nearly a standard in this

context and does not require new software development;
clearly, a 2 × 2 version of our own test will be a more
canonical possibility, but make the method less compar-
able to the mainstream approach without avoiding the
need for a multiple testing correction.,

2Given the dynamic nature of the content of biological
databases, these lists may have experienced some
changes. In order to have a “frozen” version they have
not been modified since they were included in the
goProfiles package (first version Bioconductor 2.3) so
that, in spite of possibly being out of date, they allow
the examples in the package to be reproduced.
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