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Abstract

Background: Inferring molecular pathway activity is an important step towards reducing the complexity of
genomic data, understanding the heterogeneity in clinical outcome, and obtaining molecular correlates of cancer
imaging traits. Increasingly, approaches towards pathway activity inference combine molecular profiles (e.g gene or
protein expression) with independent and highly curated structural interaction data (e.g protein interaction
networks) or more generally with prior knowledge pathway databases. However, it is unclear how best to use the
pathway knowledge information in the context of molecular profiles of any given study.

Results: We present an algorithm called DART (Denoising Algorithm based on Relevance network Topology) which
filters out noise before estimating pathway activity. Using simulated and real multidimensional cancer genomic
data and by comparing DART to other algorithms which do not assess the relevance of the prior pathway
information, we here demonstrate that substantial improvement in pathway activity predictions can be made if
prior pathway information is denoised before predictions are made. We also show that genes encoding hubs in
expression correlation networks represent more reliable markers of pathway activity. Using the Netpath resource of
signalling pathways in the context of breast cancer gene expression data we further demonstrate that DART leads
to more robust inferences about pathway activity correlations. Finally, we show that DART identifies a hypothesized
association between oestrogen signalling and mammographic density in ER+ breast cancer.

Conclusions: Evaluating the consistency of prior information of pathway databases in molecular tumour profiles
may substantially improve the subsequent inference of pathway activity in clinical tumour specimens. This de-
noising strategy should be incorporated in approaches which attempt to infer pathway activity from prior pathway
models.

Background
A key goal in cancer genomics is to map out the activa-
tion levels of cancer-relevant pathways across clinical
tumour specimens [1]. Obtaining pathway activity levels
is important for several reasons. First, it reduces the
genomic complexity from tens of thousands of features
to measurements on only dozens of relevant pathways,
thus circumventing the significant problems associated
with multiple testing [2]. Second, it represents an
important step towards understanding the functional

effects of genomic and epigenomic abnormalities in clin-
ical tumours [3]. Third, obtaining molecular pathway
correlates of clinical and imaging traits may help
improve current prognostic and predictive models as
well as provide us with important new biological
insights [3-5].
However, obtaining reliable estimates of molecular

pathway activity is a challenging endeavour. Various
gene expression based approaches have been used to
address this problem. Initial methods focused on infer-
ring differential pathway activity between biological con-
ditions using Gene Set Enrichment Analysis methods
[6,7]. These methods used prior knowledge pathway
databases, but only treated pathways as unstructured
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lists of genes. Proper systems biology approaches that
attempt to infer differential pathway activity by combin-
ing highly curated structural networks of molecular
interactions (e.g KEGG pathway database) with tran-
scriptional changes on these networks were subse-
quently developed [8-14]. These systems biology
approaches can be distinguished depending on whether
the discriminatory genes or gene subnetworks are
inferred de-novo in relation to a phenotype of interest
[9-11,14], or whether the molecular pathway models are
given as prior information [12,13]. These latter methods
are particularly appropriate in conjunction with prior
information pathway resources such as Netpath [15]. It
is important to stress again that most of these methods
(e.g [9-12,14]) are geared towards measuring differential
pathway activity and are thus supervised in the sense
that the phenotypic information is used from the outset
to infer discriminatory genes or gene subnetworks.
Another set of gene expression based approaches are

based on deriving perturbation signatures of activation
or inhibition in model cell systems and are based on the
assumption that the measured downstream transcrip-
tional consequences of the upstream perturbations con-
stitute faithful representations of upstream pathway
activity [1,3,16-18]. By correlating these in-vitro pertur-
bation mRNA signatures to a sample gene expression
profile one may infer pathway activity in individual sam-
ples, for example in tumours where one may wish to
know the potential functional impact of a particular
oncogenic amplification [1,3].
Mathematically, a perturbation signature has the

structure of a gene list with associated weights inform-
ing us if a gene in the list is up or downregulated in
response to gene/pathway activation. Similarly, the Net-
path signatures consist of curated lists of genes reported
to be up or downregulated in response to pathway acti-
vation, and of genes reported to be implicated in the
signal transduction of the pathway [15]. Thus, at an ele-
mentary level, all of these pathway signatures can be
viewed as gene lists with associated weights which can
be interpreted as prior evidence for the genes in the list
to be up or downregulated.
A common theme of most of the pathway activity esti-

mation procedures described above is the assumption
that all of the prior information relating to the pathway
is relevant, or that it is all of equal relevance, in the bio-
logical context in which the pathway activity estimates
are desired. While one would attempt to minimize dif-
ferences between the biological contexts, this is often
not possible. For instance, an in-vitro derived perturba-
tion signature may contain spurious signals which are
specific to the cell-culture but which are not relevant in
primary tumour material. Similarly, a curated signal
transduction pathway model may include information

which is not relevant in the biological context of inter-
est. Given that personalised medicine approaches are
proposing to use cell-line models to assign patients the
appropriate treatment according to the molecular profile
of their tumour [1], it is therefore important to develop
algorithms which allow the user to objectively quantify
the relevance of the prior information (e.g pathway
model or perturbation signature) before pathway activity
is estimated [5]. Similarly, there is a growing interest in
obtaining molecular pathway correlates of imaging traits,
such as for example mammographic density in breast
cancer [4,19-21]. This also requires careful evaluation of
prior pathway models before estimating pathway activ-
ity. More generally, it is still unclear how best to com-
bine the prior information in perturbation expression
signatures or pathway databases such as Netpath with
cancer gene expression profiles.
The purpose of this manuscript is four-fold. First, to

highlight the need for denoising prior information in the
context of pathway activity estimation. We demonstrate,
with explicit examples, that ignoring the denoising step
can lead to biologically inconsistent results. Second, we
propose an unsupervised algorithm called DART
(Denoising Algorithm based on Relevance network
Topology) and demonstrate that DART provides sub-
stantially improved estimates of pathway activity. Third,
we use DART to make an important novel prediction
linking estrogen signalling to mammographic density
data in ER positive breast cancer. Fourth, we provide an
assessment of the Netpath resource information in the
context of breast cancer gene expression data.
While an unsupervised algorithm similar to DART

was used in our previous work [5], we here provide the
detailed methodological comparison of DART with
other unsupervised methods that do not attempt to de-
noise prior information, demonstrating the viability and
critical importance of the denoising step. Finally, we
also evaluate DART against a state of the art supervised
method, called Condition Responsive Genes (CORG)
[11], and show that, despite DART being unsupervised,
that it performs similarly to CORG. DART is available
as an R-package from cran.r-project.org.

Methods
Perturbation signatures
We considered three different perturbation signatures,
all derived by a perturbation (overexpression or inhibi-
tion) affecting a single gene in a cell-line model. Specifi-
cally, the perturbation signatures were an ERBB2
perturbation signature derived by stably overexpressing
ERBB2 in an ER+ breast cancer cell line (MCF7) [17], a
MYC perturbation signature derived using a recombi-
nant adenovirus to overexpress MYC in human mam-
mary epithelial cells [1], and finally a TP53 perturbation
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signature derived by inhibition of protein synthesis by
cycloheximide (CHX) in a human lung cancer cell-line
[22]. ERBB2 and MYC are well-known oncogenes in a
wide range of cancers, including breast cancer [23].
TP53 is the tumour suppressor gene which is most fre-
quently inactivated in cancer [23].

The Netpath resource
The Netpath resource [15] (http://www.netpath.org) is a
growing, highly curated, database of important signal
transduction pathways relevant to cancer and immunol-
ogy. At the most elementary level these pathways con-
sist of genes whose coding proteins are implicated in
the actual signal transduction pathway as well as down-
stream genes that have been reported to be up and
downregulated in response to pathway stimuli. This list
of up and downregulated genes therefore provides a
measure of pathway activity, provided these genes are
relevant in the given biological context. To ensure that
correlations between two different pathway activity
levels were not due to trivial overlaps of their down-
stream transcriptional modules, we always calculated
activity inference for each pathway in a given pair by
only considering the mutually exclusive gene sets. Of all
Netpath signatures, we considered ones which have
been documented to play important roles in cancer
tumour biology, cancer immunology and tumour pro-
gression, specially in breast cancer: a6b4 (alpha-6 beta-4
integrin signalling pathway), AR (Androgen receptor),
BCellReceptor, EGFR1 (epidermal growth factor recep-
tor-1), IL1,2,3,4,5,6,7,9 (Interleukin 1,2,3,4,5,6,7,9 signal-
ling pathways), KitReceptor (Kit is a receptor protein
tyrosine kinase, which is a receptor for stem cell factor
or kit ligand), Notch (Notch proteins are important in
lineage specification and stem cell maintenance and
aberrant Notch signaling has been linked to a number
of malignancies including breast cancer), RANKL
(Receptor activator of nuclear factor-kappa B ligand
(RANKL) is a member of tumor necrosis factor (TNF)
superfamily), TCellReceptor, TGFB (transforming
growth factor beta signalling) and TNFA (the Tumor
Necrosis Factor alpha is a proinflammatory cytokine
belonging to the TNF superfamily). Because of the
documented role of these pathways in breast cancer,
these were used in the context of primary breast cancer
gene expression data sets.

Gene expression data sets used
We used a total of six breast cancer gene expression
data sets. Four data sets were profiled on Affymetrix
platforms, “Wang” [24], “Loi” [25], “Mainz” [26] and
“Frid” [27], while the other two were profiled on Illu-
mina beadarrays, “NCH” [28] and “GH"- a small subset
of the data published in [29]. Normalized copy-number

calls were available for three data sets: Wang [24], NCH
[28] and GH [29]. The “Wang data set” [24] had the lar-
gest sample size (209 ER+ samples, 77 ER- samples),
and hence was used as the training/discovery set, while
the other five data sets were used to evaluate and com-
pare the consistency of activity inference obtained using
the different methods.
We also considered five lung cancer/normal expres-

sion data sets [30-34]. One data set ("Wachi”) consisted
of 5 lung cancers and 5 normal samples [30]. Another
set ("Su”) consisted of 27 matched pairs of normal/can-
cer lung tissue (54 samples in total) [31]. The third set
("Landi”) consisted of 49 normal lung samples and 58
lung cancers [32]. The fourth set ("Su”) consisted of 18
lung cancers and 12 normal lung samples [33] and
finally the fifth set ("Lu”) consisted of 60 matched lung
cancer/normal pairs. All of these expression sets used
the Affymetrix Human Genome U133A or U133 Plus
2.0 Array. We used the “Landi” set for the training/dis-
covery of the pruned relevance network and the rest as
validation studies.

Mammogram density scoring
Mammograms consisted of original standard mediolat-
eral oblique and craniocaudal views and mammographic
density was scored by an independent consultant radiol-
ogist. As all patients had been diagnosed with malig-
nancy, the density of the tumour itself was scored on a
scale from 1-5 (5 being the most dense and one being
the least) without inclusion of normal breast tissue.

DART: Denoising Algorithm based on Relevance network
Topology
We assume a given pathway P with prior information
consisting of genes which are upregulated in response to
pathway activation PU and genes which are downregu-
lated PD. Let nU and nD denote the corresponding num-
ber of up and downregulated genes in the pathway. We
point out that for the given prior pathway information,
nU or nD may be zero, in other words, DART does not
require both to be non-zero. Given a gene expression
data set X of G genes and nS samples, unrelated to this
prior information, we wish to evaluate a level of pathway
activation for each sample in X.
Before estimating pathway activity we argue that the

prior information needs to be evaluated in the context
of the given data. For example, if two genes are com-
monly upregulated in response to pathway activation
and if this pathway is indeed activated in a given sample,
then the expectation is that these two genes are also
upregulated in this sample relative to samples which do
not have this pathway activated. In fact, given the set of
a priori upregulated genes PU we would expect that
these genes are all correlated across the sample set
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being studied, provided of course that this (i) prior
information is reliable and relevant in the present biolo-
gical context and (ii) that the pathway shows differential
activity across the samples. Thus, we propose the fol-
lowing strategy to arrive at improved estimates of path-
way activity:

1. Compute and construct a relevance correlation
network of all genes in pathway P.
2. Evaluate a consistency score of the prior regula-
tory information of the pathway by comparing the
pattern of observed gene-gene correlations to those
expected under the prior.
3. If the consistency score is higher than expected by
random chance, the consistent prior information
may be used to infer pathway activity. The inconsis-
tent prior information must be removed by pruning
the relevance network. This is the denoising step.
4. Estimate pathway activity from computing a
metric over the largest connected component of the
pruned network.

We consider three different variations of the above
algorithm in order to address two theoretical questions:
(i) Does evaluating the consistency of prior information
in the given biological context matter and does the
robustness of downstream statistical inference improve
if a denoising strategy is used? (ii) Can downstream sta-
tistical inference be improved further by using metrics
that recognise the network topology of the underlying
pruned relevance network? We therefore consider one
algorithm in which pathway activity is estimated over
the unpruned network using a simple average metric
("UPR-AV”) and two algorithms that estimate activity
over the pruned network but which differ in the metric
used: in one instance we average the expression values
over the nodes in the pruned network ("PR-AV”), while
in the other case we use a weighted average ("DART”)
where the weights reflect the degree of the nodes in the
pruned network. The rationale for this is that the more
nodes a given gene is correlated with, the more likely it
is to be relevant and hence the more weight it should
receive in the estimation procedure. This metric is
equivalent to a summation over the edges of the rele-
vance network and therefore reflects the underlying
topology [5].
Next, we clarify how DART was applied to the various

signatures considered in this work. In the case of the
perturbation signatures, DART was applied to the com-
bined upregulated and downregulated gene sets, as
described above. In the case of the Netpath signatures
(which were more numerous) we were interested in also
investigating if the algorithms performed differently
depending on the gene subset considered (i.e if up or

downregulated set). Thus, in the case of the Netpath
signatures we applied DART to the up and down regu-
lated gene sets separately. This strategy was also partly
motivated by the fact that most of the Netpath signa-
tures had relatively large up and downregulated gene
subsets.

Constructing expression relevance networks
Given the set of transcriptionally regulated genes and a
gene expression data set, we compute Pearson correla-
tions between every pair of genes. The Pearson correla-
tion coefficients were then transformed using Fisher’s
transform

yij =
1
2
log

1 + cij
1 − cij

(1)

where cij is the Pearson correlation coefficient between
genes i and j, and where yij is, under the null hypothesis,
normally distributed with mean zero and standard
deviation 1/

√
ns − 3 with ns the number of tumour sam-

ples. From this, we then derive a corresponding p-value
matrix. To estimate the false discovery rate (FDR) we
needed to take into account the fact that gene pair cor-
relations do not represent independent tests. Thus, we
randomly permuted each gene expression profile across
tumour samples (a Monte Carlo run) and selected a p-
value threshold (0.0001) that yielded a negligible average
FDR (an average of less than 1 false positive as averaged
over 1000 Monte Carlo runs). Gene pairs with correla-
tions that passed this p-value threshold were assigned
an edge in the resulting relevance expression correlation
network.
The estimation of P-values assumes normality under

the null, and while we observed marginal deviations
from a normal distribution (data not shown), the above
FDR estimation procedure is equivalent to one which
works on the absolute values of the statistics yij. This is
because the P-values and absolute valued statistics (|yij|)
are related through a monotonic transformation, thus
the FDR estimation procedure we used does not require
the normality assumption.

Evaluating significance and consistency of relevance
networks
The consistency of the derived relevance network with
the prior pathway regulatory information was evaluated
as follows: given an edge in the derived network we
assigned it a binary weight (1,-1) depending on whether
the correlation between the two genes is positive (1) or
negative (-1). This binary weight can then be compared
with the corresponding weight prediction made from
the prior, namely a 1 if the two genes are either both
upregulated or both downregulated in response to the
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oncogenic perturbation, or -1 if they are regulated in
opposite directions. Thus, an edge in the network is
consistent if the sign is the same as that of the model
prediction. A consistency score for the observed net-
work is obtained as the fraction of consistent edges. To
evaluate the significance of the consistency score we
used a randomisation approach. Specifically, for each
edge in the network the binary weight was drawn from
a binomial distribution with the binomial probability
estimated from the whole data set. We estimated the
binomial probability of a positive weight (1) as the frac-
tion of positive pairwise correlations among all signifi-
cant pairwise correlations. A total of 1000
randomisations were performed to derive a null distri-
bution for the consistency score, and a p-value was
computed as the fraction of randomisations with a con-
sistency score higher than the observed one.

Pathway activation metrics
First, we define the single-gene based pathway activation
metric. This metric is similar to the subnetwork expres-
sion metric used in the context of protein-interaction
networks [9]. The metric over the network (pruned or
unpruned) of size M is defined as,

�sAV =
1√
M

∑
i∈N

σi�zi (2)

where �zi denotes the z-score normalised (mean zero
and unit variance) expression profile of gene i across the
samples and si denotes the sign of pathway activation
(from the prior information), i.e si = 1 if upregulated
upon activation, si = -1 if downregulated. Thus, this
metric is a simple average over the genes in the network
and does not take the underlying topology into account.
An alternative is to weight each gene by the number of
its neighbors in the network

�sW AV =
1√

�i∈Nk2i

∑
i∈N

σiki�zi (3)

where ki is the number of neighbors of gene i in the
network. Normally, this would include neighbors that
are both in PU and in PD. The normalisation factor
ensures that sW AV, if interpreted as a random variable,
is of unit variance.

Simulated data
To test the principles on which our algorithm is based
we generated synthetic gene expression data as follows.
We generated a toy data matrix of dimension 24 genes
times 100 samples. We assume 40 samples to have no
pathway activity, while the other 60 have variable levels
(we assume 3 levels) of pathway activity. The 24 genes

are all assumed to be part of a given pathway, but only
3 are assumed to faithfully represent the pathway in the
synthetic data set. Specifically, the data is simulated as

X1s ∼ δs≤40N(0, σ1) + δs>40N(2, σ1)

X2s ∼ δ(s≤40)∪(60<s≤80)N(0, σ1) + δ(40<s≤60)∪(80<s)N(2, σ1)

X3s ∼ δs≤80N(0, σ1) + δ80<s(2, σ1)

where N denotes the normal distribution of the given
mean and standard deviation (s1 = 0.25), and where δ is
the Kronecker delta such that δx = 1 if and only if con-
dition x is true. The rest of the genes are modelled from
the same distributions but with s2(= 3) replacing s1(=
0.25), thus these genes are subject to large variability
and don’t provide faithful representations of the path-
way. Thus, in this synthetic data set all genes are
assumed upregulated in a proportion of the samples
with pathway activity but only a relatively small number
are not subject to other sources of variation. We point
out that the more general case of some genes being
upregulated and others being downregulated is in fact
subsumed by the previous model, since the significance
analysis of correlations or anticorrelations is identical
and since the pathway activation metric incorporates the
directionality explicitly through a change in the sign of
the contributing genes.
We also consider an alternative scenario in which only

6 genes are upregulated in the 60 samples. Of the 6
genes, 3 are generated as above with s1 = 0.25 and the
other 3 with s2 = 3. The rest of genes are modelled as
N(0, 2) and are therefore not discriminatory. We call
this synthetic data set “SimSet2”, while the previous one
we refer to as “SimSet1”.
The algorithms described previously are then applied

to the simulated data to infer pathway activity levels. To
objectively compare the different algorithms we apply a
variational Bayesian Gaussian Mixture Model [35] to the
pathway activity level. The variational Bayesian approach
provides an objective estimate of the number of clusters
in the pathway activity level profile. The clusters map to
different activity levels and the cluster with the lowest
activity level defines the “ground state” of no activation.
Hence we can compare the different algorithms in
terms of the accuracy of correctly assigning samples
with no activity to the ground state and samples with
activity to any of the higher levels, which will depend on
the predicted pathway activity levels.

Evaluation based on pathway correlations
One way to evaluate and compare the different estima-
tion procedures is to consider pairs of pathways for
which the corresponding estimated activites are signifi-
cantly correlated in a training set and then see if the
same pattern is observed in a series of validation sets.
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Thus, significant pathway correlations derived from a
given discovery/training set ("train”) can be viewed as
hypotheses, which if true, must validate in the indepen-
dent data sets. We thus compare the algorithms in their
ability to identify pathway correlations which are also
valid in independent data.
Specifically, for a given pathway activity estimation algo-

rithm and for a given pair of pathways (i,j), we first corre-
late the pathway activation levels using a linear regression
model. Under the null, the z-scores are distributed accord-
ing to t-statistics, therefore we let tij denote the t-statistic
and pij the corresponding P-value. We declare a significant
association as one with pij < 0.05, and if so it generates a
hypothesis. To test the consistency of the predicted inter-
pathway Pearson correlation in the validation data sets D,
we use the following performance measure Vij:

Vij =
∑
d∈D

σ
(d)
ij

∣∣∣t(d)ij

∣∣∣ S(
p(d)ij

)
(4)

where the summation is over the validation sets, S is
the threshold function of pij defined by

S(pij) =
{
1 if pij ≤ 0.05
0 if pij > 0.05

(5)

and where

σ
(d)
ij =

{
1 if sign(t(train)ij ) = sign(t(d)ij ), d ∈ D

−1 if sign(t(train)ij ) = −sign(t(d)ij ), d ∈ D
(6)

In the above, t(d)ij is the t-statistic of interpathway cor-

relation estimated in validation set d Î D and
∣∣∣t(d)ij

∣∣∣ de-
notes its absolute value. Thus, the quantity Vij takes into
account the significance of the correlation between the
pathways (through the threshold function S), penalizes
the score if the directionality of correlation is opposite

to that predicted (through σ
(d)
ij ) and weighs in the mag-

nitude of the correlation association
(∣∣∣t(d)ij

∣∣∣). For each

method, we thus obtain a set of hypotheses

H(m) =
{
(i, j) : p(train)ij < 0.05

}
and consistency scores

over H(m) : V(m) =
{
V(m)
ij : (i, j) ∈ H(m)

}
. Finally, an

objective comparison between two different methods
(m1, m2) for pathway activity estimation can be achieved
by comparing the distribution of V(m1) to that of V(m2)

over the common hypothesis space i.e H(m1) ∩ H(m2).
For this we used a two-tailed paired Wilcoxon test.

Results and Discussion
We argue that more robust statistical inferences regard-
ing pathway activity levels and which use prior

knowledge from pathway databases can be obtained by
first evaluating if the prior information is consistent
with the data being investigated (Figure 1). If the expres-
sion level of a certain set of genes faithfully represents
pathway activity and if these genes are commonly upre-
gulated in response to pathway activation, then one
would expect these genes to show significant correla-
tions at the level of gene expression across a sample set,
provided of course that differential activity of this path-
way accounts for a proportion of the data variance.
Thus, one may use a gene expression data set to evalu-
ate the consistency of the prior information and to filter
out the information which represents noise.

Simulated Data
To test the principle (Figure 1) we first generated syn-
thetic data where we know which samples have a
hypothetical pathway activated and others where the
pathway is switched off (Methods). We considered two
different simulation scenarios as described in Methods
to represent two different levels of noise in the data.
Next, we applied three different methods to infer path-
way activity, one which simply averages the expression
profiles of each gene in the pathway (UPR-AV), one
which infers a correlation relevance network, prunes the
network to remove inconsistent prior information and
estimates activity by averaging the expression values of
the genes in the maximally connected component of the
pruned network (PR-AV). The third method also gener-
ates a pruned network and estimates activity over the
maximally connected subnetwork but does so by a
weighted average where the weights are directly given
by the degrees of the nodes (DART). To objectively
compare the different algorithms, we applied a varia-
tional Bayesian clustering algorithm [35,36] to the one-
dimensional estimated activity profiles to identify the
different levels of pathway activity. The variational Baye-
sian approach was used over the Bayesian Information
Criterion or the Akaike Information Criterion, since it is
more accurate for model selection problems, particularly
in relation to estimating the number of clusters [35,36].
We then assessed how well samples with and without
pathway activity were assigned to the respective clusters,
with the cluster of lowest mean activity representing the
ground state of no pathway activity. Examples of specific
simulations and inferred clusters in the two different
noisy scenarios are shown in Figures 2A &2C. We
observed that in these specific examples, DART assigned
samples to their correct pathway activity level much
more accurately than either UPR-AV or PR-AV, owing
to a much cleaner estimated activation profile. Average
performance over 100 simulations confirmed the much
higher accuracy of DART over both PR-AV and UPR-
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AV (Figures 2B &2D). Interestingly, while PR-AV per-
formed significantly better than UPR-AV in simulation
scenario 2 (SimSet2), it did not show appreciable
improvement in SimSet1 (Figures 2B &2D). The key dif-
ference between the two scenarios is in the number of
genes that are assumed to represent pathway activity
with all genes assumed relevant in SimSet1, but only a
few being relevant in SimSet2. Thus, the improved per-
formance of PR-AV over UPR-AV in SimSet2 is due to
the pruning step which removes the genes that are not
relevant in SimSet2.

Improved prediction of natural pathway perturbations
Given the improved performance of DART over the
other two methods in the synthetic data, we next
explored if this also held true for real data. We thus col-
lected perturbation signatures of three well-known

cancer genes and which were all derived from cell-line
models. Specifically, the genes and cell-lines were
ERBB2 (ER+ breast cancer cell line), MYC (human
mammary epithelial cells) and TP53 (lung cell line)
[1,17,22]. We applied each of the three algorithms to
these perturbation signatures in the largest of the breast
cancer sets (Wang data set in the case of ERBB2, MYC)
and also one of the largest lung cancer sets (Landi set in
the case of TP53) to learn the corresponding unpruned
and pruned networks. Using these networks we then
estimated pathway activity in the same sets as well as in
the independent validation sets. We evaluated the three
algorithms in their ability to correctly predict pathway
activation status in clinical tumour specimens. In the
case of ERBB2, amplification of the ERBB2 locus occurs
in only a subset of breast cancers (HER2+ subtype),
which have a characteristic transcriptomic signature

Ngenes

Synthetic perturbation in-vitro pathway signature

R
es
po
ns
e

Upregulated

Downregulated

Tumour “in-vivo” samples

Pathway-ONPathway-OFF
Oncogenehypomethylated
Oncogeneamplified

Ngenes
Relevant genes

Noise Build relevance
“pruned” network

+ve

-ve

k=6
k=3

k=1

Topology based pathway activation metric

Weigh in topology
when estimating
pathway activity

(1)

(2)

(3)

DART: Denoisinga lgorithm u sing Relevance Topology

Figure 1 The DART algorithm. Flowchart describing the steps in DART (Denoising algorithm based on Relevance network Topology). (1) A
synthetic perturbation mRNA signature (e.g derived from an in-vitro cell model, or from a curated list) is evaluated across clinical tumour
specimens of a given cancer where pathway activity estimates are sought. Only a subset of genes will show correlations in response to
differential pathway activation across tumours. (2) Construction of relevance correlation pruned network as the maximally connected component
where all edges reflect correlations that are consistent with the prior information given by the synthetic perturbation signature. (3) Pathway
activation over pruned network via a topology based metric, which gives more weight to the hubs in the network. The hypothesis is that
correlation hubs represent corresponding pathway activity more faithfully than non-hubs.
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[37]. Specifically, we would expect HER2+ breast can-
cers defined by the intrinsic subtype transcriptomic clas-
sification to have higher ERBB2 pathway activity than
basal breast cancers which are HER2- [37]. Thus, path-
way activity estimation algorithms which predict larger
differences between HER2+ and basal breast cancers
indicate improved pathway activity inference. Similarly,
we would expect breast cancer samples with amplifica-
tion of MYC (a common genomic abnormality in breast
cancer) to exhibit higher levels of MYC-specific pathway
activity. Finally, TP53 inactivation, either through muta-
tion or genomic loss, is a common genomic abnormality
present in most cancers. Thus, TP53 activation levels
should be significantly lower in lung cancers compared
to respective normal tissue.

Of the 14 data sets analysed, encompassing three dif-
ferent perturbation signatures, DART predicted with
statistical significance the correct association in all 14
(P < 0.05 in all 14 cases) (Figure 3A). Specifically,
ERBB2 pathway activity was significantly higher in
ER-/HER2+ breast cancer compared to the ER-/basal
subtype, MYC activity was significantly higher in breast
tumours with MYC copy number gain, and TP53 activ-
ity was significantly less in lung cancers (frequent
TP53 inactivation) compared to normal lung tissue. In
contrast, using the other two methods (PR-AV, UPR-
AV) predictions were either less significant (PR-AV) or
less robust (UPR-AV): we observed many instances
where UPR-AV failed to capture the known biological
association (Figure 3B).
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Figure 2 Simulated data. A) & C) Predicted pathway activity levels (pal) (y-axis) against sample-ID (x-axis) for specific runs of the simulated
data. Pathway activity levels were estimated separately using the three algorithms (i) unpruned average metric (UPR-AV), (ii) pruned average
metric (PR-AV) and (iii) pruned weighted average metric (DART). The variational Bayesian clustering approach was used to infer the clusters in
these pathway activity level profiles. Black denotes the inferred cluster with lowest mean pathway activity level, red denotes samples assigned to
higher level clusters. Downward pointing triangles denote the samples with no true pathway activity (samples 1-40), upward pointing triangles
denote the samples with true pathway activity (albeit variable levels) (samples 41-100). The proportion of correctly assigned samples is given
(Accuracy). A) refers to SimSet2 and C) refers to SimSet1. B) & D) Comparison of classification accuracies (y-axis) of the three algorithms (x-axis)
over 100 simulations. B) SimSet2. Wilcoxon-test P-values given are between UPR-AV and PR-AV, and between PR-AV and DART. C) SimSet1.
Wilcoxon-test P-value is between PR-AV and DART.
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Evaluation of Netpath in breast cancer gene expression
data
Next, we wanted to evaluate the Netpath resource in the
context of breast cancer gene expression data. To this
end we applied our algorithm to ask if the genes
hypothesized to be up and downregulated in response
to pathway stimuli showed corresponding correlations
across primary breast cancers, which may therefore indi-
cate potential relevance of this pathway in explaining
some of the variation in the data. Because of the large
differences in expression between ER+ and ER- breast
cancer the evaluation was done for each subtype sepa-
rately (Table 1). The inferred relevance correlation net-
works were sparse, specially in ER-breast cancer, and for
many pathways a large fraction of the correlations were

inconsistent with the prior information. Given the rela-
tively large number of edges in the network even small
consistency scores were statistically significant. The ana-
lysis did reveal that for some pathways (e.g Notch path-
way, BCellReceptor) the prior information was not at all
consistent with the expression patterns observed indicat-
ing that this specific prior information would not be
useful in this context. The specific pruned networks and
the genes ranked according to their degree/hubness in
the these networks are given in Additional Files 1,2,3,4.

Denoising prior information improves the robustness of
statistical inference
Another strategy to evaluate and compare the different
algorithms is in their ability to make correct predictions
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Figure 3 Predicting pathway activity in tumours. A) Upper panel: predicted DART ERBB2 pathway activation scores in the basal (B) and HER2
+ subtypes of ER-breast cancer and across six different breast cancer cohorts. P-values are from a one-tailed t-test since activity is predicted to
be higher in the HER2+ subtype. The pruned network was only learned once, from the Wang set, and this same network was then used to
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of the associations (-log10(P - value)) between the three methods (UPR-AV,PR-AV,DART). The green dashed line represents the line where P = 0.05
and values above it are declared significant.
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about pathway correlations. Knowing which pathways
correlate or anticorrelate in a given phenotype can pro-
vide important biological insights [5]. Thus, having esti-
mated the pathway activity levels in our training breast
cancer set we next identified the statistically significant
correlations (or anticorrelations) between pathways in
this same set. We treat these significant correlations as
hypotheses. For each significant pathway pair we then
computed a consistency score over the 5 validation sets
(Methods) and compared these consistency scores
between the three different algorithms. The consistency
scores reflect the overall significance, directionality and
magnitude of the predicted correlations in the validation
sets (Figure 4). We found that DART significantly
improved the consistency scores over the method that
did not implement the denoising step (UPR-AV), for
both breast cancer subtypes as well as for the up and
down regulated transcriptional modules (Figure 4A).

Expression correlation hubs improve pathway activity
estimates
Using the weighted average metric (DART) also
improved consistency scores over using an unweighted
average (PR-AV), but this was true only for the up regu-
lated modules (Figure 4B). Generally, consistency scores
were also higher for the predicted up-regulated modules,
which is not surprising given that the Netpath

transcriptional modules mostly reflect the effects of
positive pathway stimuli as opposed to pathway inhibi-
tion. Thus, the better consistency scores for DART over
PR-AV indicates that the identified transcriptional hubs
in these up-regulated modules (which give more weight
to the activity estimates) are of biological relevance.
Down regulated genes might reflect further downstream
consequences of pathway activity and therefore “hub-
ness” in these modules may be less relevant. Impor-
tantly, weighing in hubness in pathway activity
estimation also led to stronger associations between pre-
dicted ERBB2 activity and ERBB2 intrinsic subtype (Fig-
ure 3B).

DART compares favourably to supervised methods
Next, we decided to compare DART to a state of the art
algorithm used for pathway activity estimation. Most of
the existing algorithms are supervised, such as for exam-
ple the Signalling Pathway Impact Analysis (SPIA) [12]
and the Condition Responsive Genes (CORG) [11] algo-
rithms. SPIA uses the phenotype information from the
outset, computing statistics of differential expression for
each of the pathway genes between the two phenotypes,
and finally evaluates the consistency of these statistics
with the topology of the pathway to arrive at an impact
score, which informs on differential activity of the path-
way between the two phenotypes. However, SPIA is not

Table 1 Netpath consistency scores in breast cancer

ER- ER+

Pathway nG nE fE fconsE Pval nE fE fconsE Pval

a6b4 27 33 0.09 0.64 0.05 94 0.27 0.53 0.22

AR 511 6164 0.05 0.55 < 0.001 22486 0.17 0.54 < 0.001

BCellReceptor 396 5324 0.07 0.51 0.10 16503 0.21 0.50 0.17

EGFR1 236 2256 0.08 0.56 < 0.001 5896 0.21 0.54 < 0.001

IL1 231 1926 0.07 0.60 < 0.001 5458 0.21 0.56 < 0.001

IL2 722 18836 0.07 0.54 < 0.001 52916 0.20 0.52 < 0.001

IL3 49 99 0.08 0.64 < 0.001 257 0.22 0.57 0.01

IL4 292 3463 0.08 0.54 < 0.001 9531 0.22 0.53 < 0.001

IL5 167 1109 0.08 0.75 < 0.001 3330 0.24 0.64 < 0.001

IL6 104 250 0.05 0.62 < 0.001 1037 0.19 0.62 < 0.001

IL7 62 189 0.10 0.63 < 0.001 353 0.19 0.59 < 0.001

IL9 24 12 0.04 0.92 < 0.001 47 0.17 0.83 < 0.001

KitReceptor 70 115 0.05 0.79 < 0.001 477 0.20 0.60 < 0.001

Notch 92 313 0.07 0.53 0.13 876 0.21 0.51 0.24

RANKL 69 147 0.06 0.62 < 0.001 394 0.17 0.53 0.14

TCellReceptor 561 11587 0.07 0.59 < 0.001 31820 0.20 0.55 < 0.001

TGFBReceptor 993 21396 0.04 0.53 < 0.001 92352 0.19 0.51 < 0.001

TNFA 801 11226 0.04 0.60 < 0.001 54534 0.17 0.53 < 0.001

For both the ER- and ER+ breast cancer data set [24] and for a number of important Netpath cancer signalling and immune signalling pathways (see Methods),
we list some of the network properties of the inferred relevance expression correlation networks. For each molecular pathway we give the number of genes of
the pathway present in the expression matrix (nG), the number and fraction of edges (i.e significant pairwise correlations between genes) (nE & fE), the fraction
of edges that are consistent with the prior information (fconsE) and the corresponding p-value of significance (Pval). P-values were estimated using 1000
permutations.
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aimed at identifying a pathway gene subset that could be
used to estimate pathway activity at the level of an indi-
vidual sample, thus precluding a direct comparison with
DART. CORG on the other hand, while also being
supervised, infers a relevant gene subset, and therefore,

like DART, allows pathway activity levels in independent
samples to be estimated. Specifically, a comparison can
be made between DART and CORG by applying each to
the same training set and then evaluating their perfor-
mance in the independent data sets. We followed this
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Figure 4 Consistency of inferred pathway activity correlations. For each breast cancer subtype (ER+,ER-) and for the up and down
transcriptional modules we compare the consistency scores of predicted Netpath pathway correlations evaluated over the 5 validation sets for
the three different pathway activity estimation algorithms (UPR-AV,PR-AV,DART). The up and downregulated transcriptional modules for each
pathway were inferred from Wang data set and the significant inter-pathway correlations constituted our hypotheses to be tested in the 5
validation sets. Consistency scores reflect significance as well as consistency of directionality and magnitude of correlations in the validation sets.
A) Boxplot of the difference in consistency scores between PR-AV and UPR-AV methods (PR-AV minus UPR-AV). B) Boxplot of the difference in
consistency scores between DART and PR-AV methods (DART minus PR-AV). C) Boxplot of the difference in consistency scores between DART
and UPR-AV methods (DART minus UPR-AV). P-values are from a two-tailed paired Wilcoxon rank sum test.
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strategy in the context of the ERBB2, MYC and TP53
perturbation signatures (Figure 5). As expected, owing
to its supervised nature, CORG performed better in the
three training sets. However, in the 11 independent vali-
dation sets (only DART validated successfully P < 0.05
in all 11), DART yielded better discriminatory statistics
in 7 of these 11 sets (Figure 5). Thus, despite DART
being unsupervised in the training set, it achieved com-
parable performance to CORG in the validation sets.

DART predicts an association between differential ESR1
signalling and mammographic density
Mammographic density is a well-known risk factor for
breast cancer. Indeed, women with high mammo-gra-
phic density (MMD) have an approximately 6-fold
higher risk of developing the disease [38]. However, no
biological correlates of MMD are known [19]. Therefore
there has been a lot of recent interest in obtaining mole-
cular correlates (mRNA expression, SNPs) of mammo-
graphic density [19-21]. Based on these studies there is
now considerable evidence that dysregulated oestrogen
metabolism and signalling may be associated with mam-
mographic density [20], and indeed there have been

reports of ESR1 expression levels being reduced in
breast tissue of high MMD [19].
We thus decided to test DART in its ability to detect an

entirely novel biological association, specifically we asked
if DART could predict an inverse correlation between
ESR1 signalling activity and MMD. To address this we
used the ESR1 signature derived in [39]. We verified that
this signature was able to discriminate ER+ from ER-
tumours in all breast cancer cohorts (Additional File 5),
thus confirming that this signature is activated upon
ESR1 signalling. Next, we applied DART to this signature
in the Wang ER+ cohort to learn an associated relevance
network for pathway activity estimation. We then esti-
mated pathway actity using this relevance network in the
GH ER+ cohort (32 samples), for which MMD scores
were available. Of note, DART predicted an inverse cor-
relation between ESR1 signalling and MMD (Figure 6). In
contrast, not using the denoising step (UPR-AV) failed to
pick out this association (Figure 6).

Discussion
The ability to reliably predict pathway activity of onco-
genic and cancer signalling pathways in individual
tumour samples is an important goal in cancer geno-
mics. Given that any single tumour is characterised by a
large number of genomic and epigenomic aberrations,
the ability to predict pathway activity may allow for a
more principled approach of identifying driver aberra-
tions as those whose transcriptional fingerprint is pre-
sent in the mRNA profile of the given tumour. This is
critical for assigning patients the appropriate treatments
that specifically target those molecular pathways which
are functionally disrupted in the patient’s tumour.
Another important future area of application is in the
identification of molecular pathway correlates of cancer
imaging traits. Imaging traits, such as mammographic
density, may provide important additional information,
which is complementary to molecular profiles, but
which combined with molecular data may provide criti-
cal and novel biological insights.
A large number of algorithms for predicting pathway

activity exist and most use prior pathway models
obtained through highly curated databases or through
in-vitro perturbation experiments. A common feature of
these methods is the direct application of this prior
information in the molecular profiles of the study in
question. While this direct approach has been successful
in many instances [1], we have also found many exam-
ples where it fails to uncover known biological associa-
tions (Figure 3). For example, a synthetic perturbation
signature of ERBB2 activation may not predict the natu-
rally occuring ERBB2 perturbation (i.e amplification of
the ERBB2 locus which in effect defines the ERBB2
intrinsic subtype) in primary breast cancers (Figure 3).
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Similarly, a synthetic perturbation signature for TP53
activation was not significantly lower in lung cancer
compared to normal lung tissue, despite the fact that
TP53 inactivation is a frequent event in lung cancer
(Figure 3). We argue that this problem is caused by the
implicit assumption that all prior information associated
with a given pathway is of equal importance or rele-
vance in the biological context of the given study, a con-
text which may be quite different to the biological
context in which the prior information was obtained.
To overcome this problem, we propose that the prior

information ought to be tested first for its consistency
in the data set under study and that pathway activity
should be estimated a posteriori using only the prior
information that is consistent with the actual data. We
point out that this denoising/learning step does not
make use of any phenotypic information regarding the
samples, and therefore is totally unsupervised. Thus, our
approach can be described as unsupervised Bayesian,
and Bayesian algorithms using explicit posterior prob-
ability models could be implemented. Here, we used a
relevance network topology approach to perform the
denoising, as implemented in the DART algorithm.
Using multiple different in-vitro derived perturbation
signatures as well as curated transcriptional modules
from the Netpath resource on real mRNA expression
data, we have shown that DART clearly outperforms a
popular model which does not denoise the prior infor-
mation (Figures 3 &4). Moreover, we have observed that
expression correlation hubs, which are inferred as part

of DART, improve the consistency scores of pathway
activity estimates. This indicates that hubs in relevance
networks not only represent more robust markers of
pathway activity but that they may also be more impor-
tant mediators of the functional effects of upstream
pathway activity.
It is important to point out again that DART is an

unsupervised method for inferring a subset of pathway
genes that represent pathway activity. Identification of
this gene pathway subset allows estimation of path-way
activity at the level of individual samples. Therefore, a
direct comparison with the Signalling Pathway Impact
Analysis (SPIA) method [12] is difficult, because SPIA
does not infer a relevant pathway gene subset, hence
not allowing for individual sample activity estimates to
be obtained. Thus, instead of SPIA, we compared DART
to a different supervised method (CORG) which does
infer a pathway gene subset, and which therefore allows
single sample pathway activity estimates to be obtained.
This comparison showed that in independent data sets,
DART performed similarly to CORG (Figure 5). Thus,
supervised approaches may not outperform an unsuper-
vised method (here DART) when testing in completely
independent data. We also observed that CORG gener-
ally yielded very small gene subsets (just a couple of
genes) compared to the larger gene subnetworks
inferred using DART (Additional File 6). While a small
discriminatory gene set may be advantageous from an
experimental cost viewpoint, biological interpretation is
less clear. For instance, in the case of the ERBB2, MYC
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and TP53 perturbation signatures, Gene Set Enrichment
Analysis (GSEA) could not be applied to the CORG
gene modules since these consisted of too few genes. In
contrast, GSEA on the relevance gene subnetworks
inferred with DART yielded the expected associations
(Additional Files 7,8,9) but also elucidated some novel
and biologically interesting associations, such as the
association of a tosedostat drug signature with the MYC
DART module (Additional File 8). A second important
difference between CORG and DART is that CORG
only ranks genes according to their univariate statistics,
while DART ranks genes according to their degree in
the relevance subnetwork. Given the importance of hubs
in these expression networks, DART thus provides an
improved framework for biological interpretation. For
instance, the protein kinase MELK was the top ranked
hub in the ERBB2 DART module, suggesting an impor-
tant role for this downstream kinase in linking cell-
growth to the upstream ERBB2 perturbation. Interest-
ingly, overexpression of MELK is a robust poor prognos-
tic factor in breast cancer [40,41] and may thus
contribute to the poor prognosis of HER2+ breast
cancers.
Finally, we tested DART in a novel application to mul-

tidimensional cancer genomic data, in this instance
between matched mRNA expression and imaging traits
of clinical breast tumours. Interestingly, DART predicted
an inverse correlation between ESR1 signalling and
MMD in ER+ breast cancer (Figure 6). This association
and its directionality is consistent with a study strongly
implicating oestrogen metabolism [20] and another
reporting an inverse correlation of ESR1 expression with
MMD [19]. Importantly, not using the denoising step in
DART, completely failed to capture this potentially
important and biologically plausible association.
In summary, we have shown that the denoising step

implemented in DART is critical for obtaining more
reliable estimates of molecular pathway activity. It
could be argued that a practical drawback of the pro-
cedure is the reliance on a relatively large data set (in
this context a genome-wide gene expression panel of
primary tumours) in order to denoise the prior path-
way knowledge. However, large panels of genome-wide
molecular data, including expression data of specific
cancers, are being generated as part of large interna-
tional consortia (see e.g [29,42]), and since these large
studies use cohorts representative of the disease demo-
graphics in question, they constitute ideal data sets to
use in the context of DART. Thus, we propose a strat-
egy whereby DART is used to integrate existing path-
way databases with these large expression data sets in
order to obtain more reliable molecular pathway activ-
ity predictions in tumour samples derived from newly
diagnosed patients.

Conclusions
The DART algorithm and strategy advocated here sub-
stantially improves unsupervised predictions of pathway
activity that are based on a prior model which was
learned from a different biological system or context. It
will be fruitful to apply DART and further extensions of
it in the context of multidimensional cancer ge-nomic
data, where reliable and robust molecular pathway cor-
relates of (epi)genomic abnormalities, clinical and ima-
ging traits are urgently needed.

Additional material

Additional file 1: DART modules for Netpath pathways in ER+
breast cancer. Tables listing the pruned, consistent, maximally
connected networks inferred from the application of DART to the
transcriptional up and downregulated modules from Netpath in the ER+
subset of the Wang data set.

Additional file 2: DART modules for Netpath pathways in ER- breast
cancer. Tables listing the pruned, consistent, maximally connected
networks inferred from the application of DART to the transcriptional up
and downregulated modules from Netpath in the ER- subset of the
Wang data set.

Additional file 3: Hub genes in DART modules in ER+ breast cancer.
Genes in pruned Netpath pathway networks ranked according to their
degree in the network.

Additional file 4: Hub genes in DART modules in ER- breast cancer.
Genes in pruned Netpath pathway networks ranked according to their
degree in the network.

Additional file 5: DART ESR1 module in breast cancer. Boxplots
comparing predicted pathway activities of the Doane ESR1 signature in
ER+ versus ER- tumours in the six different breast cancer cohorts. P-
values from a t-test are given.

Additional file 6: Comparison of module genes between CORG and
DART. Table comparing the number of genes in the CORG and DART
predictors of pathway activity.

Additional file 7: GSEA table for DART ERBB2 module genes. Gene
Set Enrichment Analysis table for the ERBB2 DART gene modules
(relevance subnetworks). P-values are from a one-tailed hypergeometric
test using the genes on the Affy array (Wang data set) as the null
background.

Additional file 8: GSEA table for DART MYC module genes. Gene Set
Enrichment Analysis table for the MYC DART gene modules (relevance
subnetworks). P-values are from a one-tailed hypergeometric test using
the genes on the Affy array (Wang data set) as the null background.

Additional file 9: GSEA table for DART TP53 module genes. Gene Set
Enrichment Analysis table for the MYC DART gene modules (relevance
subnetworks). P-values are from a one-tailed hypergeometric test using
the genes on the Affy array (Wang data set) as the null background.
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