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Abstract

Background: Machine learning methods are nowadays used for many biological prediction problems involving
drugs, ligands or polypeptide segments of a protein. In order to build a prediction model a so called training data
set of molecules with measured target properties is needed. For many such problems the size of the training data
set is limited as measurements have to be performed in a wet lab. Furthermore, the considered problems are
often complex, such that it is not clear which molecular descriptors (features) may be suitable to establish a strong
correlation with the target property. In many applications all available descriptors are used. This can lead to difficult
machine learning problems, when thousands of descriptors are considered and only few (e.g. below hundred)
molecules are available for training.

Results: The CoEPrA contest provides four data sets, which are typical for biological regression problems (few
molecules in the training data set and thousands of descriptors). We applied the same two-step training procedure
for all four regression tasks. In the first stage, we used optimized L1 regularization to select the most relevant
features. Thus, the initial set of more than 6,000 features was reduced to about 50. In the second stage, we used
only the selected features from the preceding stage applying a milder L2 regularization, which generally yielded
further improvement of prediction performance. Our linear model employed a soft loss function which minimizes
the influence of outliers.

Conclusions: The proposed two-step method showed good results on all four CoEPrA regression tasks. Thus, it
may be useful for many other biological prediction problems where for training only a small number of molecules
are available, which are described by thousands of descriptors.

Background
Nowadays, empirical methods of machine learning are
widely used in life sciences and related sciences such as
chemistry, biochemistry, pharmacy, and medicinal diag-
nostics. They can be used to predict the value of a tar-
get property in focus such as the competence of a
molecular compound to fulfill a specific function. For
this purpose, regression methods correlate specific
molecular properties (features or descriptors) of molecu-
lar compounds with the desired target property. In the
simplest case, the regression uses an objective function

whose number of parameters is as large as the number
of considered features. Usually the objective function
contains also a so-called regularization term. It penalizes
model details of unnecessary complexity, focuses on the
most relevant features, and thus avoids over-fitting of
the data used for training (parameter optimization) [1].
The most commonly used regularization methods are
L1 regularization, also known as Lasso [2] and L2 regu-
larization also known as ridge regression [3]. As penalty
term, the L1 regularization adds the sum of the absolute
values of the model parameters to the objective function
whereas the L2 regularization adds the sum of the
squares of them. Due to its inherent linear dependence
on the model parameters, regularization with L1 disables
irrelevant features leading to sparse sets of features.
Thus, L1 regularization combines efficient feature

* Correspondence: knapp@chemie.fu-berlin.de
† Contributed equally
1Institute of Chemistry and Biochemistry, Freie Universität Berlin,
Fabeckstrasse 36A, 14195 Berlin, Germany
Full list of author information is available at the end of the article

Demir-Kavuk et al. BMC Bioinformatics 2011, 12:412
http://www.biomedcentral.com/1471-2105/12/412

© 2011 Demir-Kavuk et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:knapp@chemie.fu-berlin.de
http://creativecommons.org/licenses/by/2.0


selection and model generation into one single optimi-
zation step.
In recent years, considerable advancements were made

in high throughput techniques to generate for a large
number of relevant molecular compounds the target
values in focus. Nevertheless, for many problems, where
molecular target values need to be predicted by empiri-
cal machine learning methods, the amount of data is
often scarce. Hence, in a typical prediction scenario the
number of compounds with known target values can be
very small (say 100 or even much below), while the
number of potentially relevant features (and thus also
the number of model parameters), which need to be
employed initially is often large (1000 or even more).
Under such circumstances, overtraining would be una-
voidable unless specific precautions are applied to con-
trol and reduce the number of features and thus also
the number of parameters. Becoming aware of these
problems, the biological research community has started
to pay increasingly attention to feature selection techni-
ques. There are various feature selection strategies,
which all have their pros and contras. Recently, feature
selection using Lasso (L1) regularization has gained
research interests due to its simplicity and several modi-
fications of the original L1 regularization have been
developed [4,5].
In this study we apply in a two-step regularization

procedure where first L1 and than L2 regularization is
applied, using L1 regularization for feature selection
only. With the remaining selected features, the final
model achieves higher accuracy, if it is build with L2
regularization only. In spite of its simplicity, L1 regulari-
zation requires special solvers, since the derivatives of
the L1 regularization term are not defined at vanishing
parameter values. A number of highly optimized solvers
are available that can minimize the objective function in
presence of L1 regularization [6-10]. However, the pro-
vided implementations are limited to a certain program-
ming language and loss functions complicating re-
implementation and modification of the original algo-
rithm. In this work, the simple Rprop algorithm [11] is
used to approximate the optimal L1 regularized solution
leading to good results. We apply the two-step method
mentioned above to the prediction tasks of CoEPrA
(Comparative Evaluation of Prediction Algorithms)
modeling competition of 2006 [12]. These data sets are
characterized by few data points (~80) with a large
number of features (~5000). The data sets of CoEPrA
2006 contain octo- and nona-peptides relevant to MHC
class I binding which play an important role in the
immune response of mammals. The purpose of this
competition was to facilitate testing and comparison of
various classification and regression algorithms for bio-
logical active molecules using blind prediction. The

participant groups in CoEPrA applied various methods
to the data sets at each task, and the organizers evalu-
ated all collected predictions and then announce the
rank of the participants on web site. All data sets can be
obtained free of charge from the CoEPrA web site [12].

Results
The training sets have been used to build prediction
models using the proposed two-step learning method.
The models have then been used to predict the provided
test sets. All experiments were performed on a single
core of an Intel Xeon X5670 CPU running at 2.93Ghz.
Typically the whole optimization of a prediction model
for one of the four CoEPrA regularization tasks required
only 10 minutes of CPU time. Thereby the most CPU
time demanding step is the optimization of the regulari-
zation parameters l1,2, involving the average over five
different ten-fold cross validations for the eight and thir-
teen considered candidate values of l1 and l2, respec-
tively. The CPU time increases linearly with the number
of features and the number of molecules in the training
data set. Furthermore, the number of cross validation
rounds may be decreased for large data sets. Hence, the
proposed method is also applicable for much larger data
sets. Finally, using the optimized prediction model
requires only milliseconds of CPU time per molecule to
be predicted. Hence, it can be used as a high through-
put method.
We compared the achieved results with the top per-

forming participants of the CoEPrA contest. Table 1
shows the prediction results in terms of q2 values, eq.
(5), on the test sets for all four CoEPrA tasks together

Table 1 Prediction results

rank task I task II taskIII task IV a

first 0.677 0.735 0.237 -2.578 (0.593)

second 0.627 0.612 0.201 -2.560 (0.565)

third 0.615 0.455 0.154 -2.561 (0.472)

stage 1

l 1 0.05 0.05 0.08 0.1

predict 0.667 0.642 0.205 -2.573 (0.548)

featuresb 50 43 56 41

stage 2

l2 0.1 0.01 0.3 0.2

predict 0.691 0.668 0.131 -2.574 (0.586)
a Numbers in brackets are Spearman Rank Correlation Coefficients (SRCC) [29].
b number of features after L1 regularization.

Prediction results of q2 values, eq. (5), for all four CoEPrA regression tasks
using a two-step optimization procedure. First three lines display the results
of the three best predictions for the different CEoPrA tasks. Stage 1: only L1
regularization is used. All features are removed, where the corresponding
parameters have absolute values smaller than 10-8 after optimization, Stage 2:
only L2 regularization is applied for all features remaining after stage 1. The
regularization parameters l1 and l2 have been determined using 5 times a
10-fold cross validation procedure.
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with the optimized regularization parameters l1 and l2,
which have been selected using the cross validation
technique as described in the methods section. For all
four tasks, the number of features could be reduced
drastically to about one hundredth of the initial number
of features or even less. Surprisingly, based on the set of
features selected with L1 regularization in the first train-
ing stage, a better prediction performance is obtained, if
in the second training stage L2 instead of L1 regulariza-
tion is used. The prediction results of the present study
surpass the best performing participants of the CoEPrA
contest adopting first rank for task I and second rank
for task II and III (if stage 1 is considered). As one can
see from the very low q2 values for task III, the predic-
tion results are not very significant. This is due to a lack
of overlap between the target values of the training and
the test set as discussed below.
The winner of CoEPrA regression task II and IV, and

the second best for task III is the group of Curt Brene-
man. Their method combined the provided physico-che-
mical features with 147 RECON (TAE/RECON
electron-density derived) descriptors. Feature selection
has been performed using principal component analysis.
Their final models contained 34, 148 and 148 features
in task II, III and IV respectively. Wit Jakuczun, who
ranked first, second and third for task III, I and IV,
respectively, used a Random Forest approach for feature
selection and model building [13]. For task III, his pre-
diction model used 115 relevant features. Almost all
methods used by the CoEPrA participants applied an
independent feature selection step before the final
model building. It is worth mentioning that none of the
participants of the CoEPrA contest was able to rank
best for all four regression tasks. Our prediction method
provides good scores using consistently the same
method for all four CoEPrA regression tasks. It serves a
double purpose namely a dramatic reduction of the
number of used features by feature selection and a sub-
sequent parameter optimization in a two-step learning
procedure.
Figure 1 shows correlation diagrams between the pre-

dicted and the measured pIC50 values for training and
test sets of each CoEPrA regression task. For regression
task IV the range of measured pIC50 values differs dra-
matically between training and test sets. Hence, it is
clear that the provided training set is not a representa-
tive sample of the prediction set. Thus, the prediction
performance for task IV must be very poor regardless of
the methods used. For task III our approach yielded
poorer results after stage 2 than after stage 1 (see Table
1). Seemingly, the initial number of features is reduced
too much in this case, such that the stage 2 results are
less successful. This becomes also evident comparing
the regression results for the training sets, which show a

large scatter for task III in contrast to the other three
regression tasks. In line with this behavior, the results of
all participants were relatively poor for task III indicat-
ing that this regression task is a particular difficult task.

Feature selection via L1 regularization
How the feature selection with L2 regularization works
in detail is demonstrated in Figure 2. It illustrates the
disappearance (by gaps) and occasional reappearance (by
color code) of features with increasing l1 values for
CoEPrA task I. The left vertical axis represents the l1
values whereas the right vertical axis shows the corre-
sponding number of remaining features. The horizontal
axis displays the 6219 initially available features. Fea-
tures that have been discarded in the selection proce-
dure correspond to white gaps. Interestingly, a very
small l1 value of 0.001 in L1 regularization leads already
to a reduction of the number of feature by more than a
factor of ten. The color code of the dots exhibits how
often the corresponding features reappear with increas-
ing l1 values after they have been discarded in a pre-
vious selection round. With each addition reappearance
event, the colored dot that marks the corresponding fea-
ture changes stepwise from black to yellow. Hence, dots
in darker colors represent features that disappeared and
reappeared rarely again whereas dots in brighter colors
represent features that reappear more often. For techni-
cal reasons some dots can be covered by other dots (e.g.
l1 = 0.2). Therefore, the number of visible dots is smal-
ler than the number of selected features. Interestingly,
features selected at larger l1 values were not necessarily
selected in previous steps with lower l1 values. There
are no dots consistently appearing for all l1 values. This
demonstrates that feature selection by L1 regularization
possesses some arbitrariness. We should expect such
behavior for regression problems with highly redundant
feature sets. Here, the composition of selected features
depends strongly on the used l1 value. Therefore, it is
crucial to set the regularization parameter l1 to an
appropriate value before model building. For feature sets
containing only few meaningful descriptors among a
large number of meaningless features, we expect these
important features to be selected for practically all l1
values. This favorable property of L1 regularization sug-
gested that it works like an oracle as discussed in some
papers [14,15].

Dependence of number of features and prediction
performance
Figure 3 shows the prediction performance for the test
set measured as q2 values versus the number of selected
features for all four CoEPrA regression tasks. It is clearly
seen that prediction performance increases as the num-
ber of selected features decreases up to a minimum
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Figure 1 Correlation diagrams for the four CoEPrA regression tasks. Blue crosses: recall performance on the training set. Red dots:
prediction performance on the test set.
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number of features. Beyond this point, also important
features are removed leading to prediction models with
lower performance quality. The value of the regulariza-
tion parameter l1 has a strong effect on sparsity of the
training data in the employed feature space. To illustrate
the influence of the regularization parameter l1 on the
number of selected features for the CoEPrA tasks the
relationship between the l1 value and the ratio of
selected features to the total number of features is
shown in Figure 4. It can be clearly seen that with
increasing l1 values the number of remaining features
decreases drastically. Even for small l1 values only a
small percentage of the initial descriptors are used.

Discussion
In this study we applied a two-step approach using first
feature selection and subsequent model building. In the
first stage L1 regularization is used to filter out redundant

and irrelevant features. The remaining features are used in
a second stage of model building in conjunction with L2
regularization. For both steps (p = 1, 2) an appropriate
regularization strength, governed by lp, is crucial. If the
regularization strength is too small, unimportant features
may get a strong influence on the resulting prediction
model. If it is too large, also relevant features will be
removed resulting in poorer prediction performance.
There are various ways to optimize the lp values. In this
work the lp optimization has been done in an additional
step using k times n-fold cross validation.
With the L1 regularization, we were able to select

about one hundred or less features of the initial feature
set. However, the set of selected features varied strongly
with the regularization strength used to build the pre-
diction model. We explained this behavior by the fact
that these regression tasks employ feature sets with high
redundancies as we used many physico-chemical fea-
tures to describe each amino acid. Hence, several of
these properties may be used equivalently to discrimi-
nate between amino acids. However, not only the
selected number of features but also the prediction per-
formance of the first stage depends strongly on the
parameter value used for L1 regularization.
Applying L2 regularization for the selected features,

we were able to achieve an even higher prediction per-
formance for three of the four CoEPrA regression tasks.
Hence, the feature selection with L1 regularization
should always be followed by an L2 regularized model-
building step.
Instead of a highly optimized solver to overcome the

singular behavior occurring with L1 regularization, we
made use of the simple Rprop algorithm [11]. Although
the Rrpop method is not able to set the feature weights
exactly to zero the optimal solution is well approxi-
mated. Setting a threshold near zero and removing all
features with an absolute weight below this threshold
seems to be a simple alternative and may also be useful
for other machine learning approaches.
The choice of loss function, eq. (3), can have a large

influence on prediction results. Squared error loss func-
tions, most often used, try to recall each data point of
the training set as accurate as possible. Hence, errors in
the training set may have a large influence on the pre-
dictor. In this work a loss function is used which
increases very smoothly with increasing prediction
errors weakening the influence of potential outliers.
The data sets of the CoEPrA contest are particularly

valuable, since they offer the possibility to compare the
own approach with a larger number of alternative
approaches from different groups on equal footing. In
one case (task I) our approach surpasses the best result
obtained in the CoEPrA concourse, while in two cases
(task II and IV) our results are at second rank. For task
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III the feature selection with L1 regularization was see-
mingly too rigorous. Hence, the results in the second
stage were of lower quality than in the first stage where
the second rank was obtained. However, we like to
point out the following. Although, we did not make
explicit use of knowledge on the prediction set, we
knew them ahead. This can have a subtle influence on
the details of the procedures we were selecting in the
present study and may thus have provided a hidden
advantage.
Previous studies have used reduced sets of descriptors

to encode amino acid sequences [16-18]. These small
descriptor sets were generated using multivariate statis-
tical methods to reduce the dimension of the feature
space by Principal Component Analysis (PCA) [19]. In
PCA the main assumption is that the variance of a fea-
ture represents its information content. Hence, PCA
tries to project the original features into a lower dimen-
sional space such that the variance of data in the lower
dimensional space is maximized. The advantage of these
generated small feature sets is that they can be used
instantly to build models using few descriptors. The
proposed L1/L2 method on the other hand has to be
performed for each specific task (here MHC binding
affinity). This results in highly optimized feature sets,
which we expect to perform better than feature sets
obtained with a generally valid reduction scheme. It is
also possible to use PCA for a specific task similar to
conventional feature selection. In this case PCA is per-
formed on the training data of the considered problem.
We used PCA analysis in this manner in previous
unpublished studies. PCA was able to reduce the num-
ber of features drastically. Still, using conventional fea-
ture selection resulted in better predictive power in
most cases. This may be explained by the fact that PCA
combines the original descriptors such that the variance
in the reduced space is maximized. However, features
with large variance carry not necessarily the most useful
ones for a specific learning task. Furthermore, it has to
be kept in mind that PCA features in the lower dimen-
sional space are linear combinations of the original
descriptors. Hence, interpretation of selected descriptors
may be much less intuitive than by the use of a classical
feature selection method.

Conclusion
The limitations of wet labs to generate larger data sets
for a particular problem of interest may be due to var-
ious reasons. Mostly measurements may be expensive or
complicated and time consuming to perform such as in
vivo experiments. Another reason may be that the
regarded problem is a quite new one. In all these cases
in silico methods are highly requested as these are able
to easily predict the desired target property of new

compounds. Without precautions many machine learn-
ing methods fail in such situations. Hence, specialized
methods are desired. Our proposed method achieved
good prediction results for the four CoEPrA regression
tasks. Furthermore, the number of molecular descriptors
has been reduced drastically for the final prediction
models. The CoEPrA data sets are representative for
many biological classification and regression problems
where small data sets of less than hundred are described
by thousands of descriptors. Hence, we expect the pro-
posed method to be applicable for many other machine
learning tasks having same conditions.

Methods
Data sets
To explore model building with the two-step regulariza-
tion procedure using L1 regularization followed by L2
regularization and to evaluate the performance of the
proposed method, we used the data sets of the CoEPrA
2006 competition [12]. CoEPrA presented four classifica-
tion and four regression tasks. For the regression tasks,
binding affinities of small peptides (octo-peptides for task
II and nona-peptides for all other tasks) to the class I
major histocompatibility complex (MHC) have to be pre-
dicted. Each task consists of two independent data sets of
oligo-peptides: a calibration data set (training set) and a
prediction data set (test set). Regression task IV did not
provide an independent training set. Instead the partici-
pants were asked to use the regression model from task
III to make also predictions for the test set of task IV.
Both data sets (for training and prediction) contain phy-
sico-chemical descriptors (explained below) and the
sequences of each oligo-peptide. The calibration data sets
provide also the target values, which are the measured
binding affinities of the oligo-peptides to the MHC com-
plex given as pIC50 values. The binding characteristics of
the oligo-peptides making up the prediction data sets
were unknown to the participants but released when the
CoEPrA contest has ended. Table 2 provides an overview
of all CoEPrA data sets used in this study.

Feature vectors
In order to build a predictor the given oligo-peptides
have to be transformed into a multidimensional

Table 2 Overview of used data sets.

CoEPrA task traininga testb Lc featuresd

1 89 88 9 6219

2 76 76 8 5528

3 133 133 9 6219

4 133 47 9 6219
a Number of ligands in training set. b Number of ligands in prediction set c

Lengths of oligo-peptides for the four regression tasks.d total number of
considered features.
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computer readable representation. For this purpose a
fixed number of features (molecular descriptors) col-
lected in a vector are generated for each oligo-peptide
of the training and test data sets. There are several pos-
sibilities to extract feature vectors from peptide
sequences. A simple method for encoding protein
sequences is to assume that all 20 native amino acids
have the same degree of pair-wise similarity. This so-
called sparse encoding represents each amino acid of
the oligo-peptide by sub-vectors of 24 components. The
first 20 components are used to identify one of the 20
native amino acids. The four additional components (*,
B,X,Z) are normally set to zero. However, if chemical or
crystallographic analyses of the peptide or protein yield
no conclusive information on the identity of the residue,
one of the four additional components is set to unity.
The components *,B,X,Z refer to a gap, uncertainty in
asparagine/aspartate, unspecified/unknown amino acid,
and uncertainty in glutamine/glutamate, respectively.
For the CoEPrA data sets, this results in 216 and 192
features for nona- and octo-peptides, respectively. Since
in the CoEPrA data sets all amino acids are specified,
the last four components of the corresponding sub-vec-
tors are always zero.
Ignoring chemical similarities between amino acids is

a quite abrasive way to describe sequences, as it is well
known that some amino acid pairs share more similarity
than others do. Hence, to account for chemical similari-
ties between amino acids BLOSUM matrices (BLOcks of
Amino Acid SUbstitution Matrix) [20] have also been
used to generate feature vectors. BLOSUM matrices are
commonly used to score the similarity of aligned
sequences. They are generated from multiple sequence
alignments of protein sequences comparing the number
of divergent sequences. The off-diagonal elements refer
to specific amino acid pairs. As more positive a BLO-
SUM matrix element is, as more likely can the corre-
sponding amino acid pair interchange in a point
mutation. There are several versions of BLOSUM
matrices, i.e. BLOSUM40, BLOSUM62, and BLO-
SUM90. The digits XX after BLOSUMXX stand for the
maximum percentage sequence identity of the sequences
used to generate the matrix. Hence, matrices with a
large XX value are suitable to compare closely related
sequences whereas matrices with a small XX value are
suitable to compare distantly related sequences. The
BLOSUM62 matrix yielded good performances in pre-
vious research [1] and has been used in many sequence
alignment applications [21]. Therefore, in this study the
BLOSUM62 matrix has been used, where every amino
acid is coded using the corresponding row of the BLO-
SUM matrix. Analog to sparse encoding the resulting
number of features for each nona- and octo-peptide
using BLOSUM matrices is 216 and 192, respectively.

BLOSUM encoding describes the similarity between
amino acids by a single value. A more detailed descrip-
tion can be achieved using physico-chemical descriptors
for each amino acid type. The CoEPrA organizers pro-
vided a set of physico-chemical features for all four data
sets. These features describe each amino acid by 643
physico-chemical properties taken from literature [22].
This results in a total number of 5787 or 5144 features
for nona- or octo-peptides, respectively.
The different encoding techniques have their own

advantages and disadvantages. Hence, a combination of
the presented three encoding types (physico-chemical,
sparse encoding and BLOSUM encoding) has been used
in this work which resulted in 5787+216+216 = 6219
and 5144+192+192 = 5528 features for nona- or octo-
peptides, respectively. Every feature encoding technique
represents a different property and therefore the features
are in different units. Thus, it is important to normalize
the feature vectors before training a classifier. For that
purpose all features with a standard deviation of zero
are removed as these features do not contain any infor-
mation. The remaining features are shifted and scaled
such that each feature possesses a mean of zero and a
standard deviation of one. The features of the test set
are scaled according to the parameters derived from the
training set. An overview of all used data sets together
with the number of generated features is shown in
Table 2.

Linear scoring function
After feature generation, each peptide i of the training
and predicting data set can be characterized using a cor-
responding feature vector �xi ∈ Rd in a d-dimensional fea-
ture space. In this space a hyperplane is determined such
that the distances of the training data points �xi to the
hyperplane are proportional to their target values, i.e. the
pIC50 values. The pIC50 values of new data points can
then be predicted by computing their distances to the
hyperplane. Determining the hyperplane parameters for a
given data set with known target values is called super-
vised training. Generally, an objective function is mini-
mized to determine the optimal hyperplane. The
structure of the objective function is as follows:

L(�w, b) = (1 − ∑
p λp)

N

N∑
{μig(f (�xi),mi)}

︸ ︷︷ ︸
model for prediction

+
∑
p

λp
∥∥�w∥∥

p

︸ ︷︷ ︸
regularization terms

,
(1)

where f (�xi) is a linear scoring function defined as:

f (�xi) = �wt · �xi + b. (2)

Here, �w ∈ Rd is the model parameter vector of the
scoring function (hyperplane normal) and b Î ℝ the
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threshold or bias (hyperplane offset from origin). g(f,m)
is a so-called loss function which introduces a penalty
whenever the current model does a wrong prediction on
the training set depending on the error margin. In this
work, we used the loss function

g
(
f ,m

)
= log

[
1 +

(
f − m

)2] . (3)

This function grows very slowly with deviations of the
scoring function f from the target value m and is there-
fore less sensitive to outliers than a quadratic loss func-
tion that is commonly used. Once a hyperplane is
determined, binding affinities (pIC50 values) of oligo-
peptides to a MHC receptor can be calculated using the
scoring function, eq. (2).

Regularization and feature selection
Without further knowledge, it is difficult to decide
which features describe the real world objects best for a
particular prediction problem. Hence, generally all fea-
tures, which can be computed for the specific task, are
used resulting in high dimensional feature vectors. On
the other hand, the available amount of data points is
quite limited especially for some biological problems.
The “curse of dimensionality” states that the volume of
the feature space increases rapidly as more features are
added [23]. However, in many classification and regres-
sion tasks only a comparatively small number of data
are available. Hence, in most cases the high dimensional
feature space will be almost empty. This makes it diffi-
cult to build a model that is able to generalize for
unknown data, while it may work well for the training
data. Using only relevant descriptors furthermore accel-
erates the whole prediction process and reduces the sto-
rage space needed. Models that only depend on few
features are also much easier to interpret than models
with hundreds or thousands of parameters and may
allow gaining more insights to the underlying chemical
processes allowing chemist to modify a compound
amplifying favorable properties and weakening unfavor-
able ones. Hence, the goal is to reduce the dimension of
the feature vector space by filtering irrelevant and
redundant information.
The CoEPrA competition provided such prediction

problems involving many features with comparatively
few data points. The participants of the CoEPrA contest
used various established and new feature selection tech-
niques such as Principal Component Analysis [24], ran-
dom forests of decision trees by a genetic algorithm [25]
and hybrid ant colony optimization/random forest meth-
odology [26]. These methods vary in their complexity as
well as in the number of additional algorithm specific
parameters that need adjustment to obtain an optimal
result. Often long-term experience and expert knowledge

are necessary to set these parameters to the right values.
Therefore, embedded feature selection strategies recently
gained interest in the research community. In these
methods feature selection and model building is com-
bined into one single optimization step. For this purpose,
the objective function contains a regularization term that
constrains meaningless and redundant features to have
zero weights, thus switching them effectively off. Com-
monly used regularization terms are related to p-norms
‖ �w ‖p of the parameter vector �w, namely

‖ �w ‖p =
(∑N

i=1
| wi |p

)1/p
. (4)

The regularization terms used in the present study are
with p = 1 and p = 2 called L1 (Lasso) and L2 (Ridge
regression) regularization, respectively. Because of the
quadratic form of the L2 regularization term none of
the model weights will be set exactly to zero during
learning and hence no explicit feature selection is done.
On the other hand, Lasso regularization leads to sparse
models due to its linear form where the weights of
many features are set to zero rigorously, resulting in
efficient feature selection.
In this work, these two regularization techniques have

been used in a two-step procedure. At stage 1, the para-
meters are optimized using an objective function with
L1 regularization. At this stage, irrelevant and redundant
features are filtered out. The remaining features are
used in the second stage to build a model using only L2
regularization. It is obvious that for this procedure the
regularization parameters lp will have a large influence
on the results and are therefore chosen carefully. In this
work, both parameter values are determined automati-
cally by evaluating the prediction performance observing
the error in k times n-fold cross validation. For that pur-
pose, the training set is randomly divided into n parts.
One part is retained as a validation set, while the other
n-1 parts are used to train the prediction model. This
process is repeated n times such that each part is used
exactly once as validation set. The whole procedure is
repeated k times and the average over these k times n-
fold validation errors is the estimated performance. The
lp value that reveals the smallest validation error is then
used to train the prediction model for the whole train-
ing set. In this work we set k = 5, n = 10 and the candi-
date sets l1 Î [0.001, 0.005, 0.01, 0.05, 0.08, 0.1, 0.2,
0.3] and l2 Î [0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 0.93].

Parameter optimization
When using a least square loss function with L2 regular-
ization the minimum of the objective function can be
obtained with exact numeric solving a corresponding set
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of linear equations [27] with the Cholesky decomposi-
tion algorithm [28]. For all other loss functions, the
parameters minimizing the objective function can only
be determined approximately using for instance a gradi-
ent descent procedure.
When using the L1 regularization the objective func-

tion possesses a discontinuous derivative whenever a
parameter reaches zero. Various highly optimized algo-
rithms are capable of minimizing an objective function
involving the L1 regularization term. However, the pro-
vided implementations are limited to certain program-
ming languages and loss function types complicating re-
implementation and modification of the original algo-
rithm. In this work the simple Resilient propagation
(Rprop) algorithm [11] is used to approximate the opti-
mal L1 regularized solution. The Rprop algorithm is a
quite simple though effective minimization procedure,
which can be implemented in just a few lines of code.
Using Rprop in conjunction with a linear regularization
term does not lead to weights exactly set to zero. Never-
theless, many weights are set to nearly zero values
approximating the exact solution quite well. Hence,
these features can be filtered out using a low threshold.
In our work, all features with an absolute weight below
10-8 after the first training stage using L1 regularization
have been removed before proceeding with stage 2.

Quality assessment
Prediction performances of CoEPrA tasks I to III have
been measured by the CoEPrA organizers using the
coefficient of determination (q2) which is defined as

q2 = 1 −
∑n

i=1 (pIC50
i
exp − pIC50ipred)

2

∑n
i=1 (pIC50iexp− < pIC50exp >)2

, (5)

where pIC50iexp and pIC50ipred are the measured value

provided by CoEPrA and the predicted value for peptide
i, respectively, and < pIC50exp > is the mean of all mea-
sured values. CoEPrA task IV has been evaluated using
the Spearman Rank Correlation Coefficient (SRCC) [29].
However, in order to simplify comparison of prediction
performances with other tasks q2 has been computed as
well for task IV.
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