
SOFTWARE Open Access

MAPI: towards the integrated exploitation of
bioinformatics Web Services
Sergio Ramirez1†, Johan Karlsson1,2† and Oswaldo Trelles1,3*

Abstract

Background: Bioinformatics is commonly featured as a well assorted list of available web resources. Although
diversity of services is positive in general, the proliferation of tools, their dispersion and heterogeneity complicate
the integrated exploitation of such data processing capacity.

Results: To facilitate the construction of software clients and make integrated use of this variety of tools, we
present a modular programmatic application interface (MAPI) that provides the necessary functionality for uniform
representation of Web Services metadata descriptors including their management and invocation protocols of the
services which they represent. This document describes the main functionality of the framework and how it can be
used to facilitate the deployment of new software under a unified structure of bioinformatics Web Services. A
notable feature of MAPI is the modular organization of the functionality into different modules associated with
specific tasks. This means that only the modules needed for the client have to be installed, and that the module
functionality can be extended without the need for re-writing the software client.

Conclusions: The potential utility and versatility of the software library has been demonstrated by the
implementation of several currently available clients that cover different aspects of integrated data processing,
ranging from service discovery to service invocation with advanced features such as workflows composition and
asynchronous services calls to multiple types of Web Services including those registered in repositories (e.g. GRID-
based, SOAP, BioMOBY, R-bioconductor, and others).

Background
The Web has become one of the most important sources
of information, opening access to a vast range of research
resources hosted throughout the world. Unfortunately, for
bioinformatics resources at least, this pleasant vision of
the Web as a gallery of resources that can be discovered,
combined and exploited to enhance our capacity to pro-
duce new knowledge, has a dark side. The current situa-
tion of bioinformatics services reflects a structure-chaotic
set of resources, publicly available, but through a variety of
mechanisms. In practical terms, each institution deploys
software using its own access and invocations mechanisms
and interfaces. Not only do the final users need to learn
how to use the different services interfaces, but software

developers spend their resources adjusting formats and
protocols when combining different services.
The most promising solution for these problems is

based on the notion of Web Services (WS). WS are appli-
cations deployed over the Internet providing a given func-
tionality, to other applications. WS technology resides in a
stack of XML-based protocols such as WSDL (Web
Service Description Language [1,2]) and SOAP (Simple
Object Access Protocol [3,4]) to allow automatic access to
software running on different platforms and implemented
in different programming languages. WS differ from Web
applications in that they generally involve application-to-
application communication, and are not intended to be
accessed via a Web browser. Instead, clients must be writ-
ten in a language that supports HTTP and SOAP, and
issue a message or remote method call a WS, etc, which in
turn processes the message and returns a response to the
client. In the context of bioinformatics, Web services pro-
mises easier integration and interoperability between
bioinformatics applications.

* Correspondence: ots@ac.uma.es
† Contributed equally
1Computer Architecture Department, University of Malaga, Campus de
Teatinos, 29071, Málaga, Spain
Full list of author information is available at the end of the article

Ramirez et al. BMC Bioinformatics 2011, 12:419
http://www.biomedcentral.com/1471-2105/12/419

© 2011 Ramirez et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:ots@ac.uma.es
http://creativecommons.org/licenses/by/2.0


However, even when WS represent a step forward in
process intercommunication, it is not mandatory to
use SOAP in the WS implementation. For example,
other WS use XML-RPC [5] based on a simpler com-
munication mechanism although it does not cover all
SOAP functionality; and REST [6] does not define the
structure, composition or content of the data inter-
changed. To overcome this problem, the bioinformatics
provider community has proposed complementary
solutions.
One specialized approach which aims to improve

metadata service annotation in bioinformatics is Bio-
MOBY [7]. This standard aims to facilitate the integra-
tion of services by using a metadata repository (MOBY
Central [8]) with service descriptions defined using a
service ontology. In this system, all the services use the
same format, and so the outputs can be directly con-
nected to other services.
One example of a successful service repository in

bioinformatics is the repository for BioMOBY services.
A repository stores definitions of WS entities and
related objects (e.g. I/O specifications), but does not
usually provide more functionality beyond making the
discovering of new services easier. Clients are still
responsible for tasks such as processing the inputs to
meet the needs of each service.
In this sense, data integration in bioinformatics remains

a problem, partly because many services declare inputs
and outputs as plain strings. In the discussion section, we
will give an example of how this can produce problems
when trying to integrate services.
Therefore, the problem of service integration and

interoperability remains unsolved and it is not difficult
to predict that new protocols are still appearing.
As a contribution towards solving the limitations of

working over specific repositories and service technolo-
gies, we have developed MAPI, which is a programma-
tic framework that integrates different repositories
schemas through a virtual definition and can be easily
extended to include different Web Service invocation
protocols.
The versatility and strength of MAPI has been demon-

strated by the implementation of different clients such as
JORCA [9], and Magallanes [10] which are able to access
repositories such as MOBY Central at the University of
Calgary that uses the BioMOBY-based repository http://
moby.ucalgary.ca/moby/MOBY-Central.pl, the National
Institute for Bioinformatics in Spain which uses an
extended BioMOBY repository http://www.inab.org/
MOWServ, the tool-metadata repository used in the
Advancing Clinico Genomic Trials EU-project http://www.
eu-acgt.org/, EBI web services [11], Biocatalogue [12],
EMBRACE [13], WABI-Japan [14] and others.

Implementation
Modularity
One of the most relevant challenges that the developers
have to face when developing software clients is the
diversity of types, such as clients, browsers, file
explorers, execution systems and catalogues. This per-
ception has driven the modular design of MAPI (see
Figure 1); gathering in each module a closely related set
of capabilities, e.g. service handling, execution, data con-
version, security. One benefit is to install exclusively the
modules the programmer needs (proportionality) for
each specific environment, avoiding the full library. The
core modules of MAPI manage the execution of distrib-
uted services, including: handling Tools (Services, Appli-
cations and Workflows) and their functional categories
or User Data.

General functionality
A core set of functions is always attached to each module
to support retrieval, query, editing and management of
the specific resources the module handles. Consequently,
the module related with data types is able to retrieve I/O
compatible services, the user module provides privacy
and user authentication; the tasks module can invoke ser-
vices, etcetera. Worthy of mention are the “Filter Lists“,
which modules return. The contents of these lists can
vary depending on the filters defined by the software
developers, providing an extensible and customizable
method to query the data sources. This is more flexible
than platforms which only provide fixed and pre-estab-
lished searches.
All MAPI components are available to system develo-

pers through a configuration file, yielding the access to
multiple data sources without any change in the applica-
tion (Client) code. Two different configuration levels can
be devised related to “where and how” the information is.
That is to say, the client can switch between BioMOBY-
like repositories wherever it is located, but also can
switch to work with WSDL definition of WS, such as the
WABI collection. In the line of customization, the config-
uration file can also be used to define the behaviour of
each module to fit specific requirements. In this sense, it
is possible to define some aspects such as delayed writing,
the usage of a cache system or the possibility of modify-
ing the information.

Accesses
In order to make each module independent of external
resources and their internal organization, each module
has a component, called Access, that defines the meta-
data resources and how they will be accessed, allocated
and connected according to the module functionality.
Therefore, one of the most important tasks covered by

Ramirez et al. BMC Bioinformatics 2011, 12:419
http://www.biomedcentral.com/1471-2105/12/419

Page 2 of 8

http://moby.ucalgary.ca/moby/MOBY-Central.pl
http://moby.ucalgary.ca/moby/MOBY-Central.pl
http://www.inab.org/MOWServ
http://www.inab.org/MOWServ
http://www.eu-acgt.org/
http://www.eu-acgt.org/


the Access components is the mapping of WS descrip-
tion into the internal data model used by MAPI.
The content of the internal data model was decided by

an exhaustive review of current implementations, such as
BioMOBY, WSDL, Grid Systems, etc. Naturally, this data
model can also become incomplete or obsolete when new
functionalities offered by WS would need additional
descriptors. To prevent against this problem, we devise
three different ways for rapid extension of functionality by:
(a) adding new modules with the new functionality (e.g.
for the management of “groups” of users); (b) for existing
modules, the extension is accomplished by inheritance of
the basic functionality and incorporating new methods,
attributes, information, etc.; and (c) the resource’s attri-
butes in any module can be extended by adding ‘type-
label-value’ fields (e.g. the location modules need different
fields for different protocols: BioMOBY needs the URL;
SOAP Web Services requires URL and namespace; Grid
services need authentication information, etc).
At the same time that MAPI can be extended to cover

new aspects in integration, it is imperative to ensure
backward compatibility, that is to say, existing clients will

continue to be valid, and new clients would exploit the
new functionality.

Workers
In the same way as the different descriptions of resources
are homogenized by Access modules, we also have to take
care of the different invocation methods for WS New sim-
ple pieces of software named Workers performing the uni-
form invocation of services. In this case, different workers
can be plugged into the system and therefore the system is
able to invoke services with different calling protocol (in
the same session). This ability makes MAPI suitable to run
different types of services, which allows the creation of
new and more complex workflows, for instance to be able
to combine BioMOBY and EBI services. In this way, in
order to make it possible to launch new types of services,
such as REST, for example, only the implementation of a
new Worker is necessary.
The specific task of the workers is to deal with the dif-

ferent invocation protocols and formats in which the
data can be coded. The latter is provided by the data
module which is able to handle a set of plug-ins (named

Figure 1 The most important MAPI modules and their dependencies. The core module allows the definition of available data types in the
system. Two main branches of dependencies correspond to Tools (software components that consume and/or produce data) and handling of a
particular data type (Data). The Execution Module combines these two branches by sending the data to the tools for execution using the
information stored in the ToolLocation module. The modules for NameSpaces and Users are not shown for simplicity since they can be used
with all the other modules.

Ramirez et al. BMC Bioinformatics 2011, 12:419
http://www.biomedcentral.com/1471-2105/12/419

Page 3 of 8



Formatters) aimed at translating the data from their
native format to the generic one expected by the
Workers.
In Figure 2, all elements described in this section are

shown to give an overview of the MAPI architecture.

Results
For more in-depth exploration of MAPI’s capabilities, we
will walk you through the typical developer steps when
building integration software. Detailed information on this
exercise is available in the Supplementary Material (see
Additional file 1) and comprehensive material for training
is available on the MAPI web page.

Repository homogenization
The first integration requirement is to resolve heterogene-
ity in the web services definition. This is achieved through
Access, which recovers all necessary functionality from the
specific repositories. Thanks to this, in MAPI, the type of
system, the specific functionality provided or the way to
access to the information are not important. The develo-
per only has to learn how to use a single interface to
access all these systems.
Typically, writing an Access will demand the mapping of

the original data model into the one used by MAPI. This
task may require different times, depending on the differ-
ences between the modules, for example it took one per-
son one week to complete the mapping of WSDL services

(i.e. writing one tool Access for WSDL service information
and another for XML Schema). It is noteworthy to observe
that once the code for accessing information in WSDL
descriptions has been developed, any WS described using
WSDL will be accessible via MAPI. For example, we are
able to access web-services from European Bioinformatics
Institute (EBI) and the Web API for Biology (WABI) using
the same accesses.
The access implementation uses the API of the resource

in question. For example, if the API of the BioMOBY reg-
istry (MOBYCentral) changes, it is obviously necessary to
modify also the access code. However, in general, software
API specifications are stable and changes are minor. So
far, we have not needed to do major rewrites of the access
code on account of changes in repository APIs.
The developers can choose the access to use by using

the function ToolModule tools = new ToolMo-
dule ("X”), where “X” is the path to the configuration
file which defines the repository for use. At this point,
the differences between repositories are hidden, and the
developers can query the information in the same way,
independently of the type of repository.
Currently, MAPI is able to integrate the following

repositories:

• Several BioMOBY repositories (Central at http://
moby.ucalgary.ca, the IRRIA web services at http://
cropwiki.irri.org)

Figure 2 Full diagram of the framework developed. The figure shows the different software components that comprise the overall system.
Clients access global functionality using only those modules that handle the resources needed. Between the modules and the original data
repository there are specific accesses. Other accesses complete the functionality for Repository Mirroring, Cache. The Workers, Formatters and
Loaders (on the sides) complete the system, enabling the access to different service protocols and data formats.

Ramirez et al. BMC Bioinformatics 2011, 12:419
http://www.biomedcentral.com/1471-2105/12/419

Page 4 of 8

http://moby.ucalgary.ca
http://moby.ucalgary.ca
http://cropwiki.irri.org
http://cropwiki.irri.org


• The National Institute for Bioinformatics Spain at
http://www.inab.org/MOWServ using an extended
version of BioMOBY central system, with additional
documentation and input/output examples.
• the ACGT Grid services developed in the frame-
work of the ACGT project at http://www.bitlab-es.
com/ACGTRepository
• WABI Japanese web services (Web API for Biology)
at http://xml.nig.ac.jp/index.html
• EBI WSDL services at http://www.ebi.ac.uk/Tools/
webservices

Finding the right resource
Browsing and searching for resources, such as services, are
typical functionalities offered by Clients. MAPI provides
multiple supports for querying the metadata to identify
the right resource. In this way, it is possible to search, for
example, by identifier (getTool, getTools), by name
(searchTool) or even create customized filters to fit the
requirements of each Client:
Tool tool = MOBY_Tools.getTool(“id”);//

Search by id
Tool tool = MOBY_Tools.searchTool

("name”);//Search by name
FilterList<Tool> tools = MOBY_Tools.get-

ToolList();//Custom filters
tools.addFilter(new Filter<Tool>() {
public boolean test(Tool element) {

return element.getName().startsWith
("analyze”);

}
});
tools.clearFilters();//remove the

filters
As can be seen in the code, the first lines show how to

retrieve tools by ‘id’ or by ‘name’ (general functions) and
also how to create a customized filter; in this case to
return all the tools whose name begins with “analyze”.
The power of these simple functions becomes evident

when Clients implement complex search algorithms based
on them. For instance, Magallanes; an application for the
discovery of services and datatypes, uses the primitives
provided by MAPI to develop Google-style ‘did you mean?’
methods.
Another service that is increasingly in demand is the

‘searching for compatible services’ (pipelining of services
through the Input-Output). To create a workflow it is
necessary to find those tools which accept the output
from another tool as input. MAPI provides the search-
ToolsCompatibleWith function, that returns a list of
Tools, compatible directly (child datatypes) or indirectly
(all the descendants) with a given Datatype. For instance,

Magallanes creates workflows automatically, based on
the initial and the final datatypes of the workflow. This
feature is also used by jORCA to provide the user with a
list of the Tools that can accept a specific file as input
data.

Invoking tools
Heterogeneity is not only a problem of repositories, but it
is also present in the service’s invocation procedures. The
execution module -that contains the mechanisms to
invoke the tools defined in the Tools module- includes the
addTask function to create a new task associated to the
appropriate worker (specific for each invocation protocol).
Using a simple function such as Task t1 = em.

addTask(tlm.getTool(“toolID”), input,
output) the developer does not have to worry about
the type of service or the underlying protocol. Clients
such jORCA exploit this functionality.

Handling data
However the homogeneous invocation of tools is not
enough to ensure tool integration, since services may
require data in different formats. MAPI handles user
data with a common model, regardless of the format in
which they come.
The Data module -in charge of the uniform handling of

datatypes- provides the functions to change the format of
data. Since these functions are coded in the Formatters,
the ability to extend the scope of data translation is always
available. Functions such as ‘Data data = data-
Module.newData(file, source)’ are able to under-
stand the data stored in a file in a given format and
transform the same data into a new target format using
data.getRawContent(target). Using this strategy,
the format of data can be modified as it is needed by the
service to be invoked.
In the cases in which the source format is unknown,

MAPI has also “Heuristics” components which include
different algorithms for managing in automatic way the
format of the information [15].
Data integration in bioinformatics remains a problem,

partly because many services declare inputs and outputs
as plain strings. In our opinion, the use of structured
information should be promoted, to simplify service
integration.

Cache
In the management of remote services, care must be
taken not only with the availability of the repositories,
but also in the response time of the Web. A cache is a
local copy of metadata that prevents against repositories’
availability and seriously reduces starting time and
speeds up access.

Ramirez et al. BMC Bioinformatics 2011, 12:419
http://www.biomedcentral.com/1471-2105/12/419

Page 5 of 8

http://www.inab.org/MOWServ
http://www.bitlab-es.com/ACGTRepository
http://www.bitlab-es.com/ACGTRepository
http://xml.nig.ac.jp/index.html
http://www.ebi.ac.uk/Tools/webservices
http://www.ebi.ac.uk/Tools/webservices


The configuration file is used to specify if a cache is
used or not. This means that the same source code can
be used in either case.

Discussion
In this section, the scope and efficiency of MAPI is
compared against different solutions for the integration
of Internet resources in the field of bioinformatics.
BioBroker [16] makes use of mediators to build up a

uniform view of data from different sources. This program
can be extended to use new data sources and programs,
but its rigid architecture and built-in definitions do not
allow the addition of new types of resource handlers.
The MyGrid [17] project provides a technology stack for

service oriented architectures with support for essential
tasks such as workflow editing and enactment (Taverna
[18]), workflow sharing (myExperiment) and service regis-
tration (BioCatalogue). Taverna is able to create workflows
using services from multiples sources; but the user has to
provide an additional code to convert the structure and
format of the data returned from a service into the format
required by the next service in the workflow. This is simi-
lar to formatters, but in MAPI, they are used automatically
without user intervention.
BioMOBY offers a solution to the integration of services,

based on the use of a taxonomy of data types, shared by all
the services registered on the same server, which supports
the identification of compatible services and their intero-
perability. These solutions provide a mechanism for the
rapid discovery of services, but do not support other kinds
of resources or extend to other kinds of services.
On the other hand, WSMX [19] allows the transparent

execution of different types of services and homogeneous
access to data. However, WSMX is limited to web-based
technology and is consequently unable to combine ser-
vices implemented with other technologies such as Grid
Services, local scripts, etc. unless a WSDL definition has
been provided.
Finally we must talk about Cactus [20]. This framework

is quite similar to MAPI, offering functional modularity,
configuration options and access to multiples data
sources. However, each change in the configuration
implies a re-compilation of the program and, with it, the
need to distribute the application source code, which
may not be possible in all situations. Furthermore, unlike
MAPI, the framework does not show a strong architec-
ture that allows identifying the components and the
dependencies among them.
As we can see, these solutions offer so many or so few

features focusing on solving very specific problems.
They do not provide the flexibility and extension fea-
tures than the modular architecture of MAPI. Also,
MAPI does not force the use of any format or particular

data source, and the developer can adapt the behaviour
of each independent module to his particular require-
ments and combine them in multiple ways to obtain the
desired functionality.
In any case, MAPI does not solve all of the problems

deriving from heterogeneity. One important limitation is
due to the existence of unilateral formats. Some formats
lose information during the transformation process.
This means that the original format cannot be recov-
ered, at least in its entirety. Take for example the case
in which a sequence is extracted from a GenBank [21]
file. We can obtain the sequence, but cannot retrieve
the entire file because the rest of the information is lost.
For further details, please see the additional material
where we have included a detailed example to illustrate
the concept of data mapping in MAPI.
Another example is the case of the use of different data-

types structures in several repositories. All the compatibil-
ity functions are based on the existence of two resources
which share the same datatype; but identifying two differ-
ent datatypes as the same one is no easy task. Features
such as the name or the identifier can vary through multi-
ples sources and have different meanings. For example, a
sequence is not the same in biology (amino acid sequence)
as in multimedia (video sequences). In the same way,
neither is the structure of a datatype an identifying ele-
ment. Each user could define every entity with a different
datatype; this does not have to agree with that of another
user. Moreover, two datatypes with an identical structure
could represent two completely different entities.
A practical example which illustrates the need for

structured information and semantic descriptions of ser-
vices is the set of services from WABI. Those services
declare strings as inputs and output and only provide
human-readable descriptions. After a careful analysis,
we mapped, by hand, the inputs/outputs of those ser-
vices to the structured data model used in MAPI. In our
opinion, if the service provider maps/links the service
inputs/outputs with semantic information, service inte-
gration is greatly simplified.
In all of these situations, human intervention is needed

in order to identify the similarities. MAPI provides
mechanisms (called Loaders) to integrate two repositories
once the differences have been determined. These
mechanisms allow changing the structure of a datatype
with the purpose of fitting user requirements. For exam-
ple, hiding some attributes which can be calculated from
others, or more importantly, changing the structure of one
datatype to fit that of another.
The current version of MAPI is more focused on

reducing the problems with syntactic heterogeneity. The
semantic heterogeneity is addressed manually in the
implementation of Access and Formatters, by for

Ramirez et al. BMC Bioinformatics 2011, 12:419
http://www.biomedcentral.com/1471-2105/12/419

Page 6 of 8



example mapping the information to the appropriate
fields in the data model used in MAPI or by loading the
information to the correct structure.
The support for semantics is limited in MAPI at this

moment but we plan to develop new modules to express
semantic relationships between the metadata used in
MAPI.
Despite these limitations, MAPI provides a flexible

and adaptable solution to most problems arising from
information heterogeneity.

Conclusions
Considering the diversity and multitude of web services
for bioinformatics, it is becoming increasingly compli-
cated to develop efficient and generic client software to
take advantage of these important web resources. The
reason is that these web services are made available using
different web-service styles and consume/produce differ-
ent data formats. Moreover, metadata for discovering
and exploiting web services are registered in different
types of metadata repositories. In this scenario, the need
for a unifying software framework for client development
is clear.
This paper reports a software framework, called MAPI,

which aims specifically at simplifying client software
development in bioinformatics. The framework provides
functionality to connect to various metadata repositories,
invoke web tools and translate between various data
formats.
Client development is simplified since MAPI provides a

unified view of different web resources (services, reposi-
tories, data etc). By dividing functionality in modules, it is
also possible to combine these modules to only include
the functionality required by the client in question.
Each module is divided into several layers: the top layer,

which is the layer which software developers use, and one
or more access layers, which contain the specific instruc-
tions for accessing the web-resource (for example a meta-
data repository etc). In some cases, the access layer uses
other components. For example, communication with web
services is accomplished through software components
called workers and data format translation is done using
formatters.
MAPI thereby provides a stable base for developing cli-

ent software (i.e. developers use the top layer) which, at
the same time, can be extended to deal with new service
protocols or metadata repositories (by adding new workers
or accesses). The framework is complete in the sense that
developers obtain abstractions of all crucial client-related
tasks when using bioinformatics services. Although other,
specialized solutions are available which, in some senses,
provide more advanced functionality than the current
implementation of MAPI does, it is important to note that

the top layer is abstract, meaning that the underlying soft-
ware code, which performs the actual work (reading meta-
data from various repositories, caching data, executing
services etc) can, in most cases, be modified or even com-
pletely replaced with improved versions without affecting
top level client software.
The support for several existing web service architec-

tures is included by default within the framework. This
allows client software to discover resources and invoke
web-services from several important architectures in
bioinformatics, including BioMOBY, simple SOAP-ser-
vices described using WSDL and Grid-services (specifi-
cally in the ACGT project). A clear indication of the
usefulness of mAPI is that it has already been used as a
basis for developing several novel clients in bioinfor-
matics; see for example jORCA, Magallanes and the
ACGT grid architecture.
In summary, we believe that this software framework

is an important step towards the integrated exploitation
of bioinformatics web services.

Availability and requirements
MAPI, including the complete installation procedures,
user manuals and tutorials is freely available at http://
chirimoyo.ac.uma.es/mapi/ and http://www.bitlab-es.
com/mapi/
The code requires Java version 6 or above to compile.

Additional material

Additional file 1: Supplementary material. The file contains extended
explanation of the features that MAPI provides including schemas about
how the information is modelled, code examples and a section
answering the most frequently asked questions.

Acknowledgements
This work has been partially supported by the National Institute of
Bioinformatics (INB), Spain (a platform of the ISCIII) and the RIRAAF network
(RD07/0064/0017). We would also like to thank our colleagues for their
contributions and comments which have helped to improve MAPI, in
particular Javier Rios, Maximiliano Garcia and Victoria Martin Requena.

Author details
1Computer Architecture Department, University of Malaga, Campus de
Teatinos, 29071, Málaga, Spain. 2Fundación IMABIS, Hospital Carlos Haya,
Avda. Carlos Haya (Hospital), 29010, Malaga, Spain. 3Instituto Nacional de
Bioinformatica; Melchor Fernández Almagro 6, 28029 Madrid, Spain.

Authors’ contributions
SR has designed the complete MAPI framework and has implemented the
execution module and the workers. JK has advised on MAPI design and
coordinated ACGT Implementation. OT has coordinated and organized the
entire development process. He has support the development by providing
ideas and making development decisions. All authors have read, participated
in and approved the final manuscript.

Received: 17 May 2011 Accepted: 27 October 2011
Published: 27 October 2011

Ramirez et al. BMC Bioinformatics 2011, 12:419
http://www.biomedcentral.com/1471-2105/12/419

Page 7 of 8

http://chirimoyo.ac.uma.es/mapi/
http://chirimoyo.ac.uma.es/mapi/
http://www.bitlab-es.com/mapi/
http://www.bitlab-es.com/mapi/
http://www.biomedcentral.com/content/supplementary/1471-2105-12-419-S1.PDF


References
1. Christensen E, Curbera F, Meredith G, Weerawarana S: Web services

description language (WSDL) 1.1. 2001.
2. Web Services Description Working Group. [http://www.w3.org/2002/ws/

desc/].
3. Box D, Ehnebuske D, Kakivaya G, Layman A, Mendelsohn N, Nielsen H,

Thatte S, Winer D: Simple object access protocol (SOAP) 1.1. 2000.
4. SOAP Specifications. [http://www.w3.org/TR/soap/].
5. Winer D, et al: Xml-rpc specification. 1999.
6. Richardson L, Ruby S: RESTful web services O’Reilly Media, Inc; 2007.
7. Wilkinson M, Links M: BioMOBY: an open source biological web services

proposal. Anal Briefings in bioinformatics 2002, 3(4):331.
8. MOBY Central. [http://moby.ucalgary.ca/gbrowse_moby].
9. Martin-Requena V, Rios J, Garcia M, Ramirez S, Trelles O: jORCA: easily

integrating bioinformatics. Bioinformatics 2010, 26(4):553.
10. Ríos J, Karlsson J, Trelles O: Magallanes: a web services discovery and

automatic workflow composition tool. BMC bioinformatics 2009, 10:334.
11. Labarga A, Valentin F, Anderson M, Lopez R: Web services at the European

Bioinformatics institute. Nucleic acids research 2007, 35(suppl 2):W6.
12. Bhagat J, Tanoh F, Nzuobontane E, Laurent T, Orlowski J, Roos M,

Wolstencroft K, Aleksejevs S, Stevens R, Pettifer S, et al: BioCatalogue: a
universal catalogue of web services for the life sciences. Nucleic Acids
Research 2010, , 38 Web Server: W689.

13. EMBRACE Network of Excellence. [http://www.embracegrid.info].
14. Web API for Biology (WABI). [http://xml.nig.ac.jp].
15. Martínez Alfredo, Gordon Paul, Sensen Christoph W, Trelles Oswaldo:

Towards closing the gap between user data and standardized input.
(Congress) Network Tools and Applications in Biology (NETTAB 2009) Catania,
Sicily, Italy; 2009.

16. Aldana J, Roldán-Castro M, Navas I, Roldán-García M, Hidalgo-Conde M,
Trelles O: Bio-Broker: a tool for integration of biological data sources and
data analysis tools. Software: Practice and Experience 2006,
36(14):1585-1604.

17. Stevens R, Robinson A, Goble C: myGrid: personalised bioinformatics on
the information grid. Bioinformatics 2003, 19(Suppl 1):i302.

18. Oinn T, Addis M, Ferris J, Marvin D, Greenwood M, Carver T, Pocock M,
Wipat A, Li P: Taverna: a tool for the composition and enactment of
bioinformatics workflows. Bioinformatics 2004.

19. Haller A, Cimpian E, Mocan A, Oren E, Bussler C: WSMX-a semantic service-
oriented architecture. 2005.

20. Goodale T, Allen G, Lanfermann G, Massó J, Radke T, Seidel E, Shalf J:
Structure, The cactus framework and toolkit: Design and applications.
High Performance Computing for Computational Science. VECPAR 2002 2003,
15-36.

21. Benson D, Boguski M, Lipman D, Ostell J, Ouellette B: GenBank. Nucleic
acids research 1998, 26:1.

doi:10.1186/1471-2105-12-419
Cite this article as: Ramirez et al.: MAPI: towards the integrated
exploitation of bioinformatics Web Services. BMC Bioinformatics 2011
12:419.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Ramirez et al. BMC Bioinformatics 2011, 12:419
http://www.biomedcentral.com/1471-2105/12/419

Page 8 of 8

http://www.w3.org/2002/ws/desc/
http://www.w3.org/2002/ws/desc/
http://www.w3.org/TR/soap/
http://moby.ucalgary.ca/gbrowse_moby
http://www.ncbi.nlm.nih.gov/pubmed/20047879?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20047879?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19832968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19832968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17576686?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17576686?dopt=Abstract
http://www.embracegrid.info
http://xml.nig.ac.jp
http://www.ncbi.nlm.nih.gov/pubmed/12855473?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12855473?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9399790?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Modularity
	General functionality
	Accesses
	Workers

	Results
	Repository homogenization
	Finding the right resource
	Invoking tools
	Handling data
	Cache

	Discussion
	Conclusions
	Availability and requirements
	Acknowledgements
	Author details
	Authors' contributions
	References

