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Abstract

Background: Combining clinical and molecular data types may potentially improve prediction accuracy of a
classifier. However, currently there is a shortage of effective and efficient statistical and bioinformatic tools for true
integrative data analysis. Existing integrative classifiers have two main disadvantages: First, coarse combination may
lead to subtle contributions of one data type to be overshadowed by more obvious contributions of the other.
Second, the need to measure both data types for all patients may be both unpractical and (cost) inefficient.

Results: We introduce a novel classification method, a stepwise classifier, which takes advantage of the distinct
classification power of clinical data and high-dimensional molecular data. We apply classification algorithms to two
data types independently, starting with the traditional clinical risk factors. We only turn to relatively expensive
molecular data when the uncertainty of prediction result from clinical data exceeds a predefined limit.
Experimental results show that our approach is adaptive: the proportion of samples that needs to be re-classified
using molecular data depends on how much we expect the predictive accuracy to increase when re-classifying
those samples.

Conclusions: Our method renders a more cost-efficient classifier that is at least as good, and sometimes better,
than one based on clinical or molecular data alone. Hence our approach is not just a classifier that minimizes a
particular loss function. Instead, it aims to be cost-efficient by avoiding molecular tests for a potentially large
subgroup of individuals; moreover, for these individuals a test result would be quickly available, which may lead to
reduced waiting times (for diagnosis) and hence lower the patients distress. Stepwise classification is implemented
in R-package stepwiseCM and available at the Bioconductor website.

Background
Accurate prognosis of relevant cancer-related endpoints,
such as relapse, recurrence or metastasis, may lead to
more targeted treatment and avoid unnecessary che-
motherapy or surgery. One example is breast cancer
recurrence. A major clinical problem of breast cancer
recurrence is that by the time primary tumor is diag-
nosed, microscopic metastases may have already
occurred. For this, patients at high risk receive more
intensive chemotherapy, endocrine or radiotherapy. Yet,
the ability to predict metastasis still remains one of the
greatest clinical challenges in oncology.
Classifying cancer subtypes with high precision and

predicting treatment outcome are intensive research

topics. Traditional cancer prognosis relies on a complex
and inexact combination of assessment of clinical and
histopathological data. These classic approaches, how-
ever, may fail when dealing with atypical tumors or
morphologically indistinguishable tumor subtypes; most
cancers are both clinically and biologically heteroge-
neous diseases.
Various clinical or pathological factors have been eval-

uated as prognosis factors. For example, the treatment
of cancer is often based on factors such as age, lymph
node status, tumor size, etc. Although these factors pro-
vide valuable information about the risk of recurrence,
they are generally considered to be insufficient to pre-
dict individual patient outcomes and determine an indi-
vidual patients need for systematic adjuvant therapy.
Recent advances in biotechnologies allow us to generate
various types of molecular data for the same sample, e.g.
copy number aberrations as measured by array CGH,
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mRNA expression, SNPs, methylation, etc. Each of these
distinct data types provides one view of the molecular
machinery of the cancer cell. Molecular data allows for
adding information to the analysis of biological pheno-
types. For illustrating our stepwise approach, we assume
clinical data to be comparatively easy to collect and
cheap, whereas the molecular data is high-dimensional
and relatively expensive. This is, however, not a crucial
assumption for the method as such. Moreover, our
method is partly motivated by the common perception
that classification results from clinical data are more
stable than those from high-dimensional molecular data.
Although molecular data and clinical covariates are

likely to be correlated, they also contain partly indepen-
dent information. For example, the extent of lymph
node metastasis is currently the key predictor of tumor
state, aggressiveness and recurrence risk; this prognostic
value can until now not be replaced by any type of
molecular data [1]. On the other hand, molecular data
alone may supercede other non-genomic factors in
prognosis, based on refined and improved molecular
technologies that improve the capacity to characterize
complex oncogenic processes. Combining these comple-
mentary pieces of information may be expected to
enhance classification accuracy.
So far few methods have been proposed to integrate

clinical and molecular data to obtain accurate cancer
prognosis. In [2] a way of integrating microarray data
and clinical variables using a modular hierarchical
model to predict the outcome for diffuse large B-cell
lymphoma (DLBCL) is proposed. Separate modules are
constructed for microarray and clinical data. The micro-
array predictor module is formed by a neural network
classifier. For the clinical predictor, an existing clinical
prognostic model is converted to a Bayesian classifier.
The predictions of the two independent modules are
combined and fused to a single prediction. In [3] a
Bayesian tree-based approach for combining two data
types is proposed. At each node of a tree, the collection
of metagenes and clinical factors are sampled to deter-
mine which function optimally divides the patients at
the node. A split is made when significance exceeds a
specified level. An integrative approach in which clinical
factors combined with gene expression data using the
stepwise logistic regression procedure has been intro-
duced in [4]. The logit transformation of the patients 7-
year progression-free probability (PFP) calculated from
the nomogram is imposed as the first variable and gene
variables are added until optimal classification is
achieved. In [5] a study on how to quantify the additive
accuracy of the prognosis of cancer patients using gene
classifiers in addition to clinical characteristics is con-
ducted. In [6] a method which uses partial least squares
(PLS) dimension reduction on molecular data and

applies the random forest algorithm (RF) on both clini-
cal and reduced molecular data is proposed. In [7] a
mixture expert model to combine clinical and gene
expression using different functions to incorporate both
types of features has been proposed. Different gene
selection techniques are applied before applying an inte-
grative mixture expert model. More extensive overviews
on integrating clinical and high-dimensional molecular
data for the purpose of prediction are available in [8,9].
All these approaches require the presence of molecu-

lar data for all patients, which may be costly, impractical
or inefficient. Moreover, optimal combination of these
low and high-dimensional data are still under debate
[5]. The stepwise approach we propose requires molecu-
lar data to be available for a subset of patients only. At
the same time it aims to achieve high accuracy. More-
over, it applies classification to two types of data inde-
pendently, thereby eliminating the concern about
optimal combination. We illustrate the performance of
our methods using three publicly available data sets.

Method
What can we gain by the stepwise approach?
We aim to capture the distinct prediction power of each
data type in such a way that they are complementary
rather than redundant to each other. The ‘economic’
data type (e.g. standard clinical risk factors) is used in
the first stage, while the more expensive data type is
only used for user defined fixed proportion of samples
whose re-classification scores estimated from the first
stage are ranked on the top (descending order). We
show that this leads to both accurate and efficient clas-
sifiers. The initial motivation for our method was the
observation that, whatever algorithm was used, small
clusters of samples occurred, which were either misclas-
sified by the clinical classifier or the molecular one, but
not by both. This illustrates that the formation of clus-
ters of misclassified samples is not algorithm dependent,
but simply a consequence of the potential existence of
the subgroups within classes, a well-known phenom-
enon in complex diseases like cancer. The stepwise
approach tries to improve upon the accuracies of the
clinical classifier by capturing samples which lie at the
wrong side of the decision border. It initially classifies
samples using clinical data (see Figure 1) and detects
bad neighborhoods (subspaces of the clinical feature
space where the classification error is high). Then, it
only reclassifies a sample using the molecular data
when: 1) it is positioned in a bad neighborhood either
close to the decision border (ellipse) or relatively far
from it (rectangle), and 2) there is room for an
improvement when the sample will be re-classified by
molecular data. The second condition is further
explained in Section 2.2.3.
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The stepwise classification procedure
The procedure for the stepwise classification method is
as follows:

1. Obtain a prediction label for every sample in the
training set using two data types, separately.
2. Calculate a distance matrix for the training set
using the two data types independently.
3. Project the test set onto the clinical feature space.
4. Estimate the re-classification score (RS) for each
test sample. RS is a combination of the sample’s
local error rate in the clinical space and score for
the potential improvement when re-classifying it.
5. Rank the re-classification score in descending
order and reclassify a pre-defined proportion of sam-
ples which are ranked on the top with the molecular
data classifier.

In the following sections we give a detailed description
of each step.

The prediction step
In order to assess the performance of each of the two
data types, user defined classification algorithm(s) is
(are) applied to the two data types independently to
obtain the predictions of the training set. This is one of
the characteristics of our method. We apply existing
algorithms to construct independent prediction models
with the training set.
The distance metric
Since we try to determine the bad neighborhood in both
clinical and molecular data spaces, we need a distance
metric which can measure the similarity between sam-
ples in the heterogeneous data spaces. High-dimensional
molecular data are usually in ratio scale, while clinical
data often has continuous, binary and nominal features.
So, we are hampered by the distance calculation which
is suitable for both types of data. We could discretize
the continuous numeric features into the categorical fea-
tures to make the data homogenous, but this may lead
to loss of information [10]. Applying different weighting

Figure 1 Illustration of a bad neighborhood concept in the clinical data space using the linear discriminant analysis. A bad
neighborhood is a place in the data space where samples form a cluster on the wrong side of the decision border. It may be located near the
decision border (ellipsis) or far from it (rectangle).
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parameters for the categorical feature and the numerical
feature has been proposed [10], but the behavior of the
weighting parameter is not yet fully understood and it is
difficult to find an optimal one.
Inspired by the work of [11], we present a method

that overcomes the aforementioned problems by using
the Random Forest (RF) algorithm [12] for calculating
similarity (referred to as ‘proximity’) between samples.
Random Forest (a collection of decision trees) is origin-
ally introduced for the classification problem, but at this
stage we only use it for the distance matrix calculation.
The proximity matrix is a by-product of the tree con-

struction process. For a given forest ψ, we compute the
proximity between two samples X1 and X2 in the follow-
ing way. For each of the two samples we first propagate
their values down all the trees within ψ. Next, the term-
inal node position for each sample in each of the trees
is recorded. Let Z1i be the terminal node position of X1

in the ith tree and define Z2i analogously. Then, the
proximity between X1 and X2 is set to

S(X1,X2) =
1
T

T∑

i=1

I(Z1i == Z2i) (1)

T is the number of trees in ψ and I is identity func-
tion. The intuition is that similar observations should be
in the same terminal nodes more often than dissimilar
ones. For example, suppose we have a tree as in Figure
2. According to the first splitting criteria (say, BP > 91
or BP ≤ 91) these two patients go to the right node
(bold arrow). Second splitting criteria (say, age > 62.5 or
age ≤ 62.5) pass them to the left terminal node (bold
arrow). Since patient 1 and patient 2 end up in the
same terminal node, we increase their proximity value
by one. When a test set is present, the proximity of
each case in the test set to each case in the training set
is also computed. Decision trees and the randomization
strategy within the random forest can handle mixed
variable types well. Another main reason for using the
random forest is their ability to utilize the redundant
features (e.g. in molecular data), its invariance to the
monotonic transformations of the input variables and its
robustness to outlying observations. This is also impor-
tant in our case, since if a sample has values for one
redundant feature but not for others, we can still use
this feature for the proximity calculation process. Our
method uses both clinical and molecular data separately
to construct two random forests from the training set.

Figure 2 Illustration of proximity values calculation using the random forest algorithm.
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The resulting forests are used to determine the proximi-
ties in both spaces. The proximities from the RF are
intrinsic rather than an ad hoc measure [12].
Figure 3 illustrate the ranked proximity values of all

samples with respect to sample 1, as computed from
clinical (a) and molecular data (b), respectively. We
notice that the ranges of proximity values are different
in the two data types. In the clinical data space, the
ranked proximity values decrease quickly and level off
around zero. In the molecular data space, however,
none of the proximity values are zero. We speculate
that this is because of the high dimensionality of mole-
cular data. Similar behavior was observed when the
proximities were computed w.r.t. other samples. This
difference in proximity value distributions means that
direct use of the proximity values may not be appropri-
ate. Therefore, we prefer an approach which only
depends on the relative proximity values instead of the
numeric values. So, we choose to use the rank index of
the proximity value instead of the proximity value itself.
We observed that the rank-based approach is usually
superior.
Our method starts from the following information: a

training set for which true class labels are available, as
well as two predicted ones as obtained from user-
defined classifiers on clinical and molecular covariates,
separately. To correctly estimate the re-classification
score of test samples, we aim to efficiently use the infor-
mation hidden in the two training data sets. Our
approach tries to classify the incoming samples with
clinical data as often as possible (with reasonable

accuracy) and only turns to molecular data when the re-
classification score lies below a certain threshold. To
this end, for every test sample our approach acknowl-
edges that molecular information is not given. So, the
locality information borrowed from two training spaces
can not be weighted equally. Based on the work of [13]
where the concept of pseudo nearest neighbor is dis-
cussed, we introduce the rank-based pseudo nearest
neighbor score of the test sample in two data spaces,
separately. First, we introduce the pseudo nearest neigh-
bor score in the clinical data space

CR
ij = �R

ij × 1
j
, CW

ij = �W
ij × 1

j
(2)

where �R
ij(�W

ij ) denotes the rank of the proximity
value between the test sample i and its jth closest cor-
rectly (wrongly) classified neighbor. CR

ij and CW
ij denote

the weighted rank of the jth closest neighbor of the test
sample i from the correctly classified samples group and
the incorrectly classified sample group, respectively.
Next, we discuss how to use a similar concept in the

molecular space.
The main goal of our method is to determine a small

group of samples which potentially benefit most by
measuring the molecular features. In the stepwise classi-
fication approach, we initially do not use the molecular
information of a test sample, only use its clinical infor-
mation. So, we can not directly project the test samples
onto the molecular data space to determine its K nearest
neighbors in the same fashion as in the clinical space.

(a) (b)

Figure 3 Proximity values from the clinical data. Exemplary figure for the proximity values (with respect to Sample 1) using the clinical data
(a). X-axis: rank of the proximity values of the other samples w.r.t. Sample 1. Y-axis: values of the proximities. Figure (b) corresponds to the
proximity values (with respect to Sample 1) using the molecular data.
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To address this problem, we proposed an indirect map-
ping (IM) approach called Neighbor’s Neighbors. For
the sake of simplicity, we illustrate the IM in the two-
dimensional space (see Figure 4) where the two X1 and
X2 axis represent the imaginary continuous variables.
First project the test sample onto the clinical space to
find its K nearest neighbors among the training samples,
then map these K nearest neighbors to the molecular
data space one by one to determine their own K nearest
neighbors. The logic behind this is that, when the two
samples have similar clinical characteristics, then they
may also share the same molecular characteristics, due
to the potential association between the two types of
features. E.g. estrogen receptor (ER) status is a well-
known prognostic factor in breast cancer and it is also
well known that this factor is strongly associated with
the genomic features (amplification on the chromosome
17 and over-expression of the HER2-gene). This is
further illustrated in additional file 1. So, even if we do
not have the genomic information of a test sample, we
may approximately locate the position of test sample in
the genomic data space based on such correlation. The
indirect mapping we introduce tries to take advantage of
this correlation and creates a bridge between the two
data spaces. We conducted a small simulation study,
which indeed illustrates that a stepwise classifier with

the indirect mapping may be slightly superior to the one
without the indirect mapping when the correlations in
the range 0 - 0.5 are present (see additional file 1 for
more details). When the correlations are absent, the
indirect mapping adds some noise to the RS, equivalent
to blind mapping. However, use of a large neighborhood
in the molecular space implies that the contribution of
the ‘random’ molecular predictions to the RS is small,

because GR
CR(ij) and GW

CR(ij) (see Equations 3 and 4) will

be roughly equal and hence CR
ij and CW

ij will dominate
the RS. When the correlations are large, indirect map-
ping is also less useful (but harmless at the same time),
because the molecular information are not likely to
change the class assignment for the concerning test
samples, and hence the order of the RS remains largely
unchanged as well. The weighted rank-based pseudo
nearest neighbor in the molecular data space of the lth

nearest correctly classified neighbor found in the clinical
space is defined by

GR
l =

K∑

t=1

�̃lt × 1
t
, GW

l =
K∑

t=1

�̃lt × 1
t
,Gl = GW

l − GR
l(3)

where �̃R
lt denote the rank of the proximity value of

the sample l and its tth nearest correctly classified neigh-
bor in the molecular data space. Since l is a training

Figure 4 The indirect mapping (IM). For visualization purpose, the IM is shown in the two-dimensional space. Here, X1 and X2 are the
imaginary continuous variables, used for illustrative purpose only.
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sample, we know its class label and hence we include it
in the neighborhood space (automatically with rank 1).
Positive Gl means that the lth sample is located in a
region of the molecular data space where the correctly
classified samples are closer to it than the incorrectly
classified samples. This further implies that sample l is a
neighbor of the ith test sample in the clinical space, the
ith test sample might fall in this safe region as well.
Aggregate the locality information with respect to the ith

test sample from the two different spaces as follows:

Righti =
K∑

j=1

[CR
ij × GCR(ij)], Wrongi =

K∑

j=1

[CW
ij × GCW(ij)], (4)

where CR(ij)(CW(ij)) is the sample index of the jth near-
est correctly (incorrectly) classified neighbor of the ith

test sample in the clinical space. Righti(Wrongi) denotes
the aggregated neighborhood information from correctly
(incorrectly) classified neighbors using clinical and
molecular data. A large value means that the ith test
sample is located in a relatively good (bad) neighbor-
hood. Finally, the re-classification score of the ith test
sample is defined by

RSi = Righti − Wrongi (5)

The large RSi means that the aggregated information
from the two spaces indicate that the ith test sample is
likely to benefit more when classified using molecular
data. After estimating the RS for all test samples, we
order these in descending order and only pass the top
ranked pre-defined proportion of samples to molecular
data for re-classification (see additional file 1 for an
example calculation of the RS). In practice, the test sam-
ples often arrive one at the time. In such cases, we
advise the following implementation of our procedure.
First, based on the classification curve, as obtained from
the study data, and practical (e.g. cost) considerations
decide upon the desired re-classification proportion.
Then, this proportion implies a cut point for the RS,
which is then used prospectively. If the study data is a
good reflection of the entire population, one may expect
that this strategy indeed prospectively reclassifies the
desired proportion. Naturally, one may monitor the re-
classified proportion for the given cut point, and adjust
if necessary.
We observe from the RS calculation step that there is

only one parameter in the whole procedure: the number
of nearest neighbors (K). We could use cross-validation
to find an optimal value for it in the training period.
But, to simplify the entire calculation, we eliminate this
parameter. We apply the inverse of the neighborhood
index as a weight, which suppresses the impact of the
proximity values of samples located far from the sample
under consideration. Based on this information, we

propose to use the fixed K, calculated as follows: let
NCW(NGW) be the number of misclassified training
samples in the clinical (molecular) data space and define
NCR (NGR) analogously for correct classification, then

K = min(NCW,NCR,NGW,NGR).

In case the data produce a perfect classification result,
which would set K = 0, we use K = 1. For consistency
reasons we prefer to use the same number of neighbors
for all the 2 * 2 = 4 instances (clinical/molecular; cor-
rect/wrong).

Results
Data
The stepwise classification method is evaluated on three
publicly available real data sets for which both clinical
and gene expression data were available. These three
data sets have also been analyzed in [7] using the inte-
grative approach. The first data set is a breast cancer
data set [14] containing 256 samples, 75 samples with
recurrence and 181 without recurrence metastasis
within 5 years. It consists of expression levels of 5537
genes. The available clinical variables are age (nominal),
number of positive nodes (nominal), tumor size (binary),
tumor grade (ordinal), estrogen receptor status (binary),
surgery type (binary), chemotherapy treated status (bin-
ary), hormonal therapy treated status (binary). The sec-
ond data set is a central nervous system (CNS) tumor
data set [15] which has been used to predict the
response of childhood malignant embryonal tumors of
CNS to the therapy. The data set is composed of 60
patients, 21 patients died and 39 survived within 24
months. Gene expression data has 7128 genes and clini-
cal features are Chang stage (nominal), sex (binary), age
(nominal), chemo Cx (binary), chemo VP (binary). We
also evaluated our method on prostate cancer data [4].
Analysis results of this data set are given in additional
file 1.

Algorithms used
For the sake of comparing accuracy and efficiency of
our stepwise approach with the fully integrative classifier
in the MAclinical R-package [6] we apply the random
forest (RF) for clinical data and the Plsrf-x (partial least
square dimension reduction plus RF) and the Plsrf-x-pv
(pre-validated PLS dimension reduction plus RF) for
molecular data, separately. Besides that, we also use a
variety of well-known classification algorithms, e.g.
penalized logistic regression, top scoring pair (TSP) [16]
and support vector machine (SVM) (see additional file
1). We use full molecular data without any pre-filtering.
To achieve more stable results prediction accuracy is
estimated using 10 times 10-fold CV evaluation.
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Moreover, 5-fold inner-CV is applied to each training
set for each classification algorithm for the purpose of
parameter tuning.

Results
Our approach is expected to be most useful when the
molecular data classifier has higher classification accu-
racy than the clinical one. We also present scenarios
where clinical data classifier has better performance
than molecular data classifier and the scenario where
both data sets have equal performances to illustrate how
our approach adapts to the situation. Note that the rele-
vant scenario for a given study depends on the data, but
also on the pre-specified classification algorithms for
both data types. Therefore, we illustrate the three sce-
narios by combinations of data sets and algorithms that
lead to the given scenario. To come to a fair comparison

between approaches (clinical, molecular, fully integrated
or stepwise) we fix the classification algorithm used on
clinical and the one used on molecular data in each
illustration.

The scenario where molecular data classifier performs
better than clinical data
As a benchmark, we first calculate the classification
accuracy of each data types separately. We apply the RF
algorithm on clinical data and the PLS-RF on molecular
data. We also show the results from the two fully inte-
grative approaches. First, the integrative mixture expert
[7] with three different feature selection techniques and
second, the Plsrf-xz [6]. For reasons of comparability
with the IntegrativeME methods, we do not use the
Plsrf with PV (pre-validation) here. Figure 5a illustrates
the performance of the classifiers for the breast cancer

(a) (b)

(c) (d)

Figure 5 Classification performances comparison. Figure (a) shows the classification results for the breast cancer data. The X-axis represents
the percentage of samples that are classified using the expression data and the Y-axis represents the corresponding accuracy at that point. For
example, the third point from the left in the black curve denotes, 75% accuracy is achieved by classifying 20% percent of samples using the
expression data. Clinical(RF) denotes the accuracy curve from the RF algorithm using the clinical data. Genomic(Plsrf-x) denotes the accuracy curve
from the plsrf using the expression data. Step with rank(RF+Plsrf-x) denotes the accuracy curve from our approach. Plsrf-xz denotes the accuracy
curve from [6] and last three denote to the accuracy curves from [7] with three different feature extraction criteria. Figure (b) shows the results
from the CNS cancer data with the same algorithm settings as in (a). Figure (c) shows the result from the breast cancer data when Plsrf with PV
is applied to the expression data; the algorithm used for the clinical remains unchanged. Since the result from IntegrativeME is not available for
the Plsrf with PV setting, here we only compare our approach with the one from [6]. The last Figure (d) corresponds to the result from the
breast cancer data. Here GLM is applied to the clinical data and the algorithm for the expression data remains unchanged.
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data. We observe that none of the integrative classifiers
achieves the accuracy close to the one from molecular
data alone (75.43%). The result from the IntegrativeME
approach with the RF as a feature selection is even
worse (close to the clinical classifier accuracy). The
accuracies from the rank-based stepwise approach
quickly reach the accuracy of the molecular data classi-
fier at 30% of reclassified samples. The highest accuracy
is reached when re-classifying 50% samples. Figure 5b
illustrates the result from the CNS cancer data. In this
data setting, both clinical and the molecular data classi-
fier have very low accuracies (53% and 63%, respec-
tively). All three methods from the IntegrativeME
perform better than the molecular data classifier, but
the difference is very small (in particular in an absolute
sense, given the small sample size). The stepwise classi-
fier attains almost the same accuracy as the purely inte-
grative approaches without fully using molecular data.
Hence, in the context of the given classification algo-
rithms, the stepwise classifier is an efficient alternative
to the fully integrative classifier for both data sets.

The scenario where clinical and the molecular data
classifier perform equally well
In this scenario, the desired result is that the stepwise
classifier produces an accuracy somewhat higher than
those of both the molecular and clinical data classifiers.
Besides that, the maximum accuracy should be attained
without fully using the molecular data. Since the clinical
and the molecular data classifiers have equal perfor-
mance, passing samples to the molecular classifier may
help less in terms of accuracy than in the previous sce-
nario. We illustrate this scenario by using the breast
cancer data again, but with different classification algo-
rithms. In the first setting we use RF on clinical data
and the RF-PLS with pre-validation on molecular data.
In the second setting we use GLM on clinical data and
the same molecular data classifiers as in the first setting.
Here, we did use the plsrf with PV and only compared
it with the stepwise approach that includes the PV (the
IntegrativeME does not apply in this setting). We prefer
to use the PV in this comparison, because, conceptually,
it should be useful (see [6,17].) We observe in Figures
5c and 5d that in both settings the stepwise classifier
accuracy curves behave as expected.

The scenario where the clinical data classifier performs
better than the molecular data classifier
The results of our approach when the clinical data clas-
sifier alone performs better than the molecular data
classifier are presented in additional file 1. The optimal
result from the stepwise approach in this scenario is
high accuracy at the beginning and decreasing accuracy
following the increase of the proportion of re-classified

samples with molecular data. As expected, the accuracy
from the stepwise approach reaches its top at the begin-
ning. Accuracy is close to the one from the Integrati-
veME, keeping in mind that the IntegrativeME is a fully
integrative approach.

Discussion
The efficiency gain of the stepwise approach is consider-
able when the molecular data classifier performs better
than clinical data. Our approach nicely adapts to the
more powerful data type in an economically efficient
manner. After applying the different classification algo-
rithms, we find that when the performances of the two
data types are close, the stepwise classification perfor-
mance is similar to the integrative classifier. If two types
of data have unequal performances, then the stepwise
approach may outperform the integrative classifier in
terms of the accuracy. If the two data type are equally
powerful, then a fully integrative approach may outper-
form our stepwise approach in terms of the accuracy.
This is not surprising, because the integrative
approaches treat the two data types in a more sym-
metric way than we do. In the latter case, one should
consider whether the gain in accuracy outweighs the
loss in efficiency.
The accuracy plots suggest that in many cases it is suf-

ficient to re-classify only a part of the samples. The actual
choice of the percentage to be re-classified may depend
on the estimated accuracies, but also on the available
budget, which might restrict the maximum percentage of
samples prospectively re-classified. In such a case several
scenarios are possible. Suppose the accuracies of the
separate clinical and molecular classifiers are available. If
the clinical data classifier is clearly outperforming the
molecular data classifier, simply use 0%: no re-classifica-
tion. If the molecular data classifier is clearly better: use
the maximum proportion allowed by the budget or use
the percentage where the accuracy curve starts to flatten
to save the costs. If the two are competing: take the per-
centage lower or equal to the maximum that performs
best, provided it is allowed by the available budget. We
are aware that the reported accuracy rate of the latter
procedure might be slightly optimistic (because the best
percentage is chosen). However, the bias should be very
modest, because it concerns a maximization over very
positively correlated quantities: they only differ by the
portion of data re-classified.
Other attractive properties of our method are adaptiv-

ity and stability w.r.t. the classification algorithms used.
Figure 6 illustrates the performances of the stepwise
approach after applying the different classification algo-
rithms. The left end of each curve corresponds to the
accuracy from clinical data alone and the right end cor-
responds to the accuracy from molecular data alone. As
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expected, the accuracy fluctuates more and more when
we push more samples to the molecular data stage. In
each curve there is a point which has the same (or
higher) accuracy as the molecular data classifier, but
without fully using molecular data and with less var-
iance. It indicates two promising features of our
approach. First, for all the six classifiers efficiency can
be gained (with respect to 100% re-classification). Even
for the best performing molecular classifier SVM, it
seems sufficient to re-classify only 60-70%. Second, our
method allows to adapt the re-classification percentage
to the performance of the molecular data classifier
(compare TSP: 0% with SVM 60-70%), leading to more
robust (less variable) performance of the entire proce-
dure with respect to the choice of the molecular data
classifier as compared to use of a molecular classifier
alone. The latter is still true for a fixed percentage like
50%. Note that the robustness with respect to the choice
of the classification algorithm is convenient, because
optimizing the choice of the algorithm and estimating
the accuracy rate of that algorithm using the same data
may lead to over-optimism [18,19].

As an alternative to the presented stepwise classifier,
we also considered the case where the second stage uses
both molecular and clinical data. We experienced that
adding clinical data in the second stage may worsen the
performance of the stepwise classifier, as illustrated
using the case corresponding to Figure 5a (molecular
data classifier performs better than clinical one; see
additional file 1). The reason for this might be that the
stepwise approach passes the sample to the second stage
when the sample has relatively high RS. High RS means
that the prediction from clinical data for this particular
sample is likely to be unreliably. So, adding clinical data
to the second stage may do more harm than good in
addition to molecular data. We also ran the analysis for
the case where molecular and clinical data have equal
performances (corresponding to Figure 5d), but no
improvement is observed either (result not shown).

Conclusion
In this paper, we introduce a new classification method
which takes advantage of the distinct prediction power
of the comparatively cheap traditional clinical risk

Figure 6 The stabilization effect (breast cancer data). Accuracy curves from the stepwise approach with different algorithms settings. In each
curve, the right end corresponds to an accuracy from the expression data and the left end corresponds to an accuracy from the clinical data.
The closer to the right end of the curve, the larger the differences in accuracy curves that are observed. This is not unexpected, because closer
to the right end more and more samples are classified using the high dimensional expression data and vice versa.
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factors and high-dimensional molecular data. Robust
proximity calculation for mixed features and the neigh-
borhood information in the two different data spaces is
used to determine a group of samples which are likely
to benefit most by measuring and using the compara-
tively expensive molecular covariates. Our approach not
only utilizes the locality information in the clinical data
space, but also tries to extract information from the
molecular data space by the indirect mapping (IM). We
believe that the IM will be useful in the integration
field, as it maybe used to quantify the potential benefit
of molecular data without actually measuring it. All the
calculation steps take place in the clinical data space
(for the prospective samples), there is no need to mea-
sure the molecular characters for new samples unless
sample’s re-classification score falls in the user define
range. We demonstrated that the stepwise approach
may save a considerable amount of samples to be mole-
cularly profiled without losing accuracy. Moreover, our
method has the ability to decrease the variation from
algorithm to algorithm (adaptivity and stabilization
effect). This is a very useful property when one does not
have the prior knowledge about the the most suitable
algorithm for the data at hand, which is the most com-
mon case.
The stepwise classification method fulfills all the cri-

teria for the ideal integrative classifier enumerated in
[6]. The self-tuning ability of the stepwise approach
deals with different configurations by adjusting itself
to the performance of the good data type. How many
samples are assigned to which data type depends on
the classification performances of the two data types.
Our approach aggregates information regarding the
classification powers of the two data types and the
sample distribution in the two different spaces to
compute a re-classification score for every sample.
The stepwise approach has the following distinct char-
acters:

1. Efficient while keeping the reasonable classifica-
tion accuracy
2. Very generally applicable. It is able to work with

• any classification algorithm
• any type of data

The latter implies that our stepwise approach is also
applicable when a cheap, standardized molecular plat-
form is available. In such a case, it may be of interest to
either reverse the role of the clinical and (cheap) mole-
cular classifier or use the cheap molecular data instead
of or in addition to the clinical data in the first stage
while keeping the expensive molecular data for the sec-
ond stage.

One possible drawback of the proposed approach is
that the indirect mapping is based on the correlation
between clinical and molecular data. If the correlation is
very weak, then the indirect mapping does not provide
much information. Future work includes the study of
more indirect mapping schemes. Another possible
extension of our method will be a multi-step approach,
where after estimating the re-classification scores in the
clinical data space, one is allowed to choose the most
optimal data types for re-classification from the available
multiple molecular data types.
In short, we develop a flexible and powerful classifier

which is based on a multi-objective (cost efficiency and
accuracy) formulation of the classification problem. It
utilizes the data in a more economical way than other
integrative classifiers, while still achieving relatively high
accuracy.

Additional material

Additional file 1: This document provides supplementary
information for the calculation of re-classification score, motivation
of the indirect mapping and results from our stepwise classifier
using different algorithm combinations not included in the paper.
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