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Abstract

Background: Supervised classifiers for digital pathology can improve the ability of physicians to detect and
diagnose diseases such as cancer. Generating training data for classifiers is problematic, since only domain experts
(e.g. pathologists) can correctly label ground truth data. Additionally, digital pathology datasets suffer from the
“minority class problem”, an issue where the number of exemplars from the non-target class outnumber target
class exemplars which can bias the classifier and reduce accuracy. In this paper, we develop a training strategy
combining active learning (AL) with class-balancing. AL identifies unlabeled samples that are “informative” (i.e. likely
to increase classifier performance) for annotation, avoiding non-informative samples. This yields high accuracy with
a smaller training set size compared with random learning (RL). Previous AL methods have not explicitly accounted
for the minority class problem in biomedical images. Pre-specifying a target class ratio mitigates the problem of
training bias. Finally, we develop a mathematical model to predict the number of annotations (cost) required to
achieve balanced training classes. In addition to predicting training cost, the model reveals the theoretical
properties of AL in the context of the minority class problem.

Results: Using this class-balanced AL training strategy (CBAL), we build a classifier to distinguish cancer from
non-cancer regions on digitized prostate histopathology. Our dataset consists of 12,000 image regions sampled
from 100 biopsies (58 prostate cancer patients). We compare CBAL against: (1) unbalanced AL (UBAL), which
uses AL but ignores class ratio; (2) class-balanced RL (CBRL), which uses RL with a specific class ratio; and (3)
unbalanced RL (UBRL). The CBAL-trained classifier yields 2% greater accuracy and 3% higher area under the
receiver operating characteristic curve (AUC) than alternatively-trained classifiers. Our cost model accurately
predicts the number of annotations necessary to obtain balanced classes. The accuracy of our prediction is
verified by empirically-observed costs. Finally, we find that over-sampling the minority class yields a marginal
improvement in classifier accuracy but the improved performance comes at the expense of greater annotation
cost.

Conclusions: We have combined AL with class balancing to yield a general training strategy applicable to most
supervised classification problems where the dataset is expensive to obtain and which suffers from the minority
class problem. An intelligent training strategy is a critical component of supervised classification, but the
integration of AL and intelligent choice of class ratios, as well as the application of a general cost model, will help
researchers to plan the training process more quickly and effectively.
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Background
Motivation
In most supervised classification schemes, a training set
of exemplars from each class is used to train a classifier
to distinguish between the different object classes. The
training exemplars (e.g. images, pixels, regions of inter-
est) usually have a semantic label assigned to them by
an expert describing a category of interest or class to
which they belong. Each training exemplar serves as an
observation of the domain space; as the space is
sampled more completely, the resulting classifier should
achieve greater classifier accuracy when predicting class
labels for new, unlabeled (unseen) data. Thus, typically,
the larger the training set, the greater the accuracy of
the resulting classifier [1]. In most cases, the training set
of labeled data for each of the object categories is gener-
ated by a human expert who manually annotates a pool
of unlabeled samples by assigning a label to each
exemplar.
The use of computers in histopathology analysis,

known as digital pathology, is an increasingly common
practice that promises to facilitate the detection, diagno-
sis, and treatment of disease [2]. Supervised classifiers
have been applied in this context for a number of pro-
blems such as cancer detection and grading [3-8]. If the
objective of the classifier is to distinguish normal from
cancerous regions of tissue, exemplars corresponding to
each class need to be manually labeled by a domain
expert (typically a pathologist). Figure 1 shows an image
from such an annotation task, where a prostate tissue
sample stained with hematoxylin and eosin (H&E) has
been digitized at 40× optical magnification using a

whole-slide scanner. In this case, the goal of the super-
vised classifier is to identify regions of carcinoma of the
prostate (CaP, the target class). The black contour in Fig-
ure 1 indicates the target class and was placed manually
by an expert pathologist. We have previously shown [3]
that a supervised classifier can accurately distinguish
between CaP and non-CaP, but the annotation process
required to build a large training set is laborious, time
consuming, and expensive. The digitized images can be
over 2 gigabytes (several million pixels) in size, making it
difficult to quickly identify cancerous regions within the
digital slide. In addition, CaP often appears within and
around non-CaP areas, and the boundary between these
regions is not always clear (even to a trained expert).
These factors increase the time, effort, and overall cost
associated with training a supervised classifier in the con-
text of digital pathology. To reduce the cost and effort
involved in training these classifiers, it is important to
utilize an intelligent labeling strategy. In traditional
supervised classification, samples are chosen from an
unlabeled pool, annotated, and used to train a classifica-
tion algorithm. This is known as random learning (RL),
illustrated by the flowchart in Figure 2 (top row). In RL,
no prior knowledge about the nature of the unlabeled
samples is used, and it is possible that many non-infor-
mative samples (samples that will not have a positive
impact on classifier performance) will be annotated;
clearly a wasted effort. To improve training efficiency, a
strategy known as active learning (AL) was developed to
select only “informative” exemplars for annotation [9,10].
Informative samples are those which, if annotated and

added to the training set, would increase the accuracy of

Figure 1 Annotated Prostate Biopsy Tissue Image. Annotation of CaP (black contour) on digital histopathology. CaP tissue often appears
near and around non-CaP tissue, making annotation difficult and time-consuming.
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the resulting trained classifier. In this setup, illustrated
in Figure 2 (bottom row), the AL algorithm identifies
informative samples (those which are difficult to classify)
in an unlabeled dataset for annotation and addition to
the growing training set. AL generates training sets that
yield better classifier performance compared with train-
ing sets of the same size obtained via RL. The concept
of “informative” samples in this context is related to the
idea of margin-based classification in support vector
machines (SVMs) [11], where labeled samples close to a
decision boundary are used to classify unlabeled sam-
ples. In the AL context, informative samples are diffi-
cult-to-classify unlabeled data points that improve an
existing training set.
Several AL algorithms have been proposed to deter-

mine whether an unlabeled sample is informative.
These methods measure the “informativeness” of a

sample as the distance to a support-vector hyperplane
[12,13], the disagreement among bagged weak classifiers

[9,10], variation in feature distributions [14,15], and
model-based predictions [16]. In a bioinformatics con-
text, Lee, et al. [17] showed the benefits of using AL in
building a naive Bayes classifier to identify disease states
for several different datasets. Veeramachaneni, et al. [18]
implemented an AL training approach to build a classi-
fier identifying patient status from tissue microarray
data. Previously [19], we investigated the performance of
different AL algorithms in creating training sets for dis-
tinguishing diseased from non-diseases tissue samples.
Among the results of that study, we found that the

particular AL algorithm chosen for learning had no sig-
nificant effect on the performance of the supervised
classifier.
Another major issue in supervised training involves

the minority class problem, wherein the target class is
under-represented in the dataset, relative to the non-tar-
get classes. A labeled training set comprises two sets of

samples: Strω1
representing training samples from the

Figure 2 Random Learning vs Active Learning Flowchart. Comparison of Random Learning (RL, top row) and Active Learning (AL, bottom
row) training processes. In RL, unlabeled data (a) is sent to an expert (b), who assigns a label to each sample in the image (c): red regions
indicate cancer, and green indicates non-cancer. These labeled samples are used to train a supervised classifier (d). In AL, unlabeled samples (e)
are analyzed to find informative samples (f), and only informative samples (g) are annotated for training (h). The supervised classifier (i) can be
re-trained and used to identify new samples that may be informative. In the AL setup, only new samples that will improve classification accuracy
are added.
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target (minority) class, and Strω2
being the samples from

the non-target (majority) class. In the minority class
problem, | Strω1

|<<| Strω2
| , where |·| indicates set cardin-

ality. Several researchers [20-24] have shown that this
training set will likely yield a classifier with lower accu-
racy and area under the receiver operating characteristic
curve (AUC) compared with training sets where
| Strω1

|=| Strω2
| or | Strω1

|>>| Strω2
| . Weiss and Provost

[20] showed that for several datasets, varying the per-
centage of the minority class in the training set alters
the accuracy and AUC of the resulting classifiers, and
that the optimal class ratio was found to be significantly
different from the “natural” ratio. Japkowicz and Ste-
phen [21] found that the effect of the minority class
problem depends on a number of factors, including the
complexity of the target class and the size of the class
disparity. Chawla, et al. [22] proposed mitigating the
problem by over-sampling the minority class using syn-
thetic samples; however, this method may simply intro-
duce noise if the target class is too complex.
While some research has addressed the minority class

problem in biomedical data [17,25], there has been little
related work in the realm of digital pathology. Cosatto,
et al. [26] applied a SVM AL method [12] in training a
classifier for grading nuclear pleomorphism on breast
tissue histology, while Begelman, et al. [27] employed an
AL-trained SVM classifier in building a telepathology
system for prostate tissue analysis. However, these stu-
dies did not account for the minority class problem in
the training set, particularly relevant in the context of
digital pathology, since the target class (cancer) is often
observed far less often than the non-target class (non-
cancer) and occupies only a small percentage of the
overall tissue area. Ideally, an intelligent training strategy
for this domain would combine AL while simultaneously
addressing the minority class problem by maintaining a
user-defined class ratio (class balancing). Zhu and
Hovey [23] combined an entropy-based AL technique
with over-and under-sampling to overcome the minority
class problem for text classification, and found that
over-sampling the minority class yielded the highest
classifier performance. However, they did not investigate
different class ratios and did not discuss the increased
cost of the sampling techniques. Bloodgood and Vijay-
Shanker [28] focused on an AL and classification
method based on SVMs for unbalanced text and protein
expression data; their approach involves estimating the
class balance in the entire dataset, and then selecting
samples to overcome this bias (as opposed to overcom-
ing bias in the growing training set generated by AL).
While additional sampling can help to mitigate the

minority class problem, this process requires more
annotations compared to a training set with unbalanced

classes. Because the cost of obtaining each annotation is
high, it would be beneficial to be able to predict the
number of annotations required to obtain a class-
balanced training set of a pre-defined size. These predic-
tions are critical for determining, a priori, the amount of
resources (time, money, manpower) that will be
employed in developing a supervised classifier. An ana-
lytical cost model will enable us to predict the cost
involved in training the supervised classifier. Addition-
ally, such a model will provide some insight into the
relationship between (1) the size of a training set, (2) its
class balance, and (3) the number of annotations
required to achieve a predefined target accuracy.

Contributions and Significance
In this work, we develop an AL-based classifier training
strategy that also accounts for the minority class pro-
blem. This training strategy is referred to as “Class-
Balanced Active Learning” (CBAL). We apply CBAL to
the problem of building a supervised classifier to distin-
guish between CaP and non-CaP regions on images of
prostate histopathology. For this particular problem,
training samples are difficult and expensive to obtain,
and the target class (CaP) is relatively sparse in relation
to the non-target class; thus, we expect CBAL to yield
large benefits in terms of training cost. Our mathemati-
cal model is used to predict the cost of building a train-
ing set of a pre-defined size and class ratio. This is, to
the best of our knowledge, the first in-depth investiga-
tion and modeling of AL-based training for supervised
classifiers that also specifically addresses the minority
class problem in the context of digital pathology. How-
ever, CBAL training can be easily applied to other
domains where obtaining annotated training samples is
a time-consuming and difficult task, and where the tar-
get and non-target class ratios are not balanced. The
rest of the paper is organized as follows. In Section 2 we
describe the theory behind CBAL, followed by a descrip-
tion of the algorithms and model implementation in
Section 3. In Section 4 we describe our experimental
design, and in Section 5 we present the results and dis-
cussion. Concluding remarks are presented in Section 6.

Methods
Modeling the Annotation Cost of Class Balancing in
Training
Notation and Symbols
A table containing commonly used notation and sym-
bols is presented in Table 1. Our data comprises a set
of square image regions r Î R on digitized prostate
images, represented by the red squares in Figure 2 (e).
The regions r Î R are divided into an unlabeled training
pool, Str, and an independent labeled testing pool, Ste.
Each sample has been identified as either belonging to
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the minority class ω1 (in this case the cancer class) or
the majority (non-cancer) class, ω2. We denote member-
ship of sample r Î R in the minority class ω1 as r ↪ ω1,
and these samples are “minority class samples.” At itera-
tion t Î {0, 1, ..., T } of AL, the labeled training set is

denoted as Strt,� , where F denotes the training metho-

dology and T is the maximum number of iterations. At
each iteration t, a set of M weak binary classifiers is

trained by Strt,� and used to build a strong classifier,

Tt(r) ∈ {0, · · ·, 1} . The selectivity of the AL algorithm is
parameterized by τ Î {0, ..., 0.5}, the confidence margin.
We denote by k̂1 and k̂2 the desired number of samples
r Î R in the final training set for which r ↪ ω1 and r ↪
ω2, respectively. The total number of samples annotated
at any iteration t is denoted as Nt.
Theory of CBAL
In this subsection, we describe the theoretical founda-
tion of the CBAL approach. Our goal in this section is
to precisely define an “informative sample,” identify the
likelihood of observing a sample of a target class, and
predict the number of samples that must be annotated
before a specified number of target samples is observed
and annotated. Our aim is to be able to predict a priori
the cost of the system in terms of actively-learned anno-
tations, which in turn represent an expenditure of
resources.
Definition 1. The set of informative samples (eligible

for annotation), SEt , at any iteration t is given by the set

of samples r Î R for which 0.5 − τ ≤ Tt(r) ≤ 0.5 + τ .
The value of Tt(r) denotes the classification confi-

dence, where Tt(r) = 1 indicates strong confidence that
r ↪ ω1, and Tt(r) = 0 indicates confidence that r ↪ ω2.

The number of samples r ∈ SEt for which r ↪ ω1 and r

↪ ω2 are denoted k1,t and k2,t, respectively. The likeli-

hood of randomly selecting a sample r ↪ ω1 from SEt is

Nt − k̂1. The number annotated in class ω2 is Nt − k̂1.
Proposition 1. Given the probability pt(r ↪ ω1) of

observing a sample r ↪ ω1 at any iteration t, the prob-
ability P̂t of observing k̂1samples from class ω1 after
annotating Nt samples is:

P̂t =
(
Nt + k̂1 − 1

Nt

)
[pt(r ↪→ ω1)]Nt [1 − pt(r ↪→ ω1)]k̂1 (1)

Proof Revealing the label of a sample r ∈ SEt is an

independent event resulting in either observation of
class ω1 or ω2. The probability of success (i.e. observing
a minority class sample) is pt(r ↪ ω1), and the probabil-
ity of failure is pt(r ↪ ω2) = 1 - pt(r ↪ ω1) in the two

class case. We assume that SEt is large, so pt(r ↪ ω1) is

fixed. The annotations continue until k̂1 successes are
achieved. Because of these properties, the number of
annotations Nt is therefore a negative binomial random
variable, and the probability of observing k̂1 samples
from class ω1 in Nt annotations is given by the negative
binomial distribution.
The consequence of Proposition 1 is that as Nt (i.e.

the training cost in annotations) increases, P̂t also

increases, indicating a greater likelihood of observing k̂1
samples r ↪ ω1. We denote as PΔ the target probability
for the model to represent the degree of certainty that,
within Nt annotations, we have achieved our k̂1 samples
r Î R for which r ↪ ω1.
Proposition 2. Given a target probability PΔ, the

number of annotations required before k̂1minority class
samples are observed in SE is:

Nt = argmin
k̂1≤x≤|Str |

[
P� −

(
x + k̂1 − 1

x

)
[pt(r ↪→ ω1)]

x[1 − pt(r ↪→ ω1)]
k̂1

]
. (2)

Proof We wish to find the value of Nt that causes
Equation 1 to match our target probability, PΔ. When

Table 1 Notation and Symbols

Symbol Description Symbol Description

r Î R Dataset of image patches t Î {0, ..., T} Iteration of ActiveLearn

Str, Ste Unlabeled training, testing pools F Training methodology

SEt , Ŝ
E
t

Eligible samples, annotated samples Strt,� Samples labeled via F at t

Tt Fuzzy classifier using Strt,� k1,t, k2,t Number of samples in SEt from ω1, ω2

M Number of votes used to generate Tt ω1, ω2 Possible classes of r

τ Confidence margin r ↪ ω1 Membership of r in class ω1

θ Classifier-dependent threshold for Tt k̂1, k̂2 Number of samples in Ŝ
E
t
from ω1, ω2

pt(r ↪ ω1) Probability of observing r ↪ ω1 Nt Samples added to training set at t

PΔ Model confidence P̂t Probability of observing k̂1 samples

At Accuracy of trained classifier at t L Total training cost after T iterations

List of the commonly used notation and symbols.
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that happens, P̂t = P� and P̂t − P� = 0 . Using a mini-
mization strategy, we obtain the value of Nt.
Proposition 2 gives us an analytical formulation for Nt.

Note that Equation 3 returns the smallest Nt that
matches the PΔ. The possible values of Nt range from

k̂1, in which case exactly Nt = k̂1 annotations are
required, to Nt = |Str|, in which case the entire dataset
is annotated before obtaining k̂1 samples. Note that we

are assuming that there are at least k̂1 samples in the
unlabeled training set from which we are sampling.

Algorithms and Implementation
AL Algorithm for Selecting Informative Samples
The CBAL training strategy consists of two algorithms
that work in tandem: ActiveTrainingStrategy, for select-
ing informative samples, and MinClassQuery, for main-
taining class balance. Algorithm ActiveTrainingStrategy,
detailed below, requires a pool of unlabeled samples, Str,
from which samples will
Algorithm ActiveTrainingStrategy
Input: Str, T

Output: StrT,� , TT
begin

0. initialization: create bootstrap training set Str0,� , set

t = 0
1. while t < T do

2. Create classifier Tt from training set Strt,� ;

3. Find eligible sample set SEt where Tt(r) = 1
2 ± τ ;

4. Annotate K eligible samples via MinClassQuery()

to obtain Ŝ
E
t
;

5. Remove Ŝ
E
t
from Str and add to Strt+1,� ;

6. t = t + 1;
7. endwhile

8. return TT , StrT,� ;

end
be drawn for annotation, as well as a parameter for

maximum iterations T. This parameter can be chosen
according to the available training budget or through a
pre-defined stopping criterion. The output of the algo-

rithm will be a fully annotated training set StrT,� as well

as the classifier trained using training set TT . The iden-
tification of the informative samples occurs in Step 3,
wherein a fuzzy classifier TT is generated from a set of
M weak binary decision trees [29] that are combined via
bagging [30]. Informative samples are those samples for
which half of the M weak binary decision trees disagree;
that is, samples for which 0.5 − τ ≤ Tt(r) ≥ 0.5 + τ .
This approach is similar to the Query-by-Committee
(QBC) AL algorithm [9,10]. While there are several
alternative algorithms available to perform AL-based

training [12,14-16], we chose the QBC algorithm in this
work due to its intuitive description of sample informa-
tiveness and its straightforward implementation. It is
important to note that poor performance of TT does
not degrade the ability of the algorithm to identify infor-
mative samples. We expect that at low t, the perfor-
mance of TT will be low due to the lack of sufficient
training, and much of the dataset will be identified as
informative.
However, even if TT identifies the majority of unla-

beled samples as informative, it is still more efficient
than RL. In the worst-case scenario, where all unlabeled
samples are considered informative, then we are forced
to choose training samples at random - which is equiva-
lent to traditional supervised training.
Obtaining Annotations While Maintaining Class Balance
Algorithm MinClassQuery is used by ActiveTraining-
Strategy to select samples from the set of eligible sam-

ples, SEt , according to a class ratio specified by k̂1 and

k̂2. Recall that K = k̂1 + k̂2, and so K >0. We expect that
there will be many more samples from ω2 (the majority
class) than from ω1. Because these
Algorithm MinClassQuery

Input: SEt , K > 0, k̂1, k̂2
Output: Ŝ

E
t

begin

0. initialization: Ŝ
E
t = ∅, k′

1 = 0 , k′
2 = 0

1. while |ŜEt | �= Kdo

2. Find class ωi of a random sample r ∈ SEt , i Î {1,

2};

3. if k′
i < k̂i

4. Remove r from SEt and add to Ŝ
E
t
;

5. k′
i = k′

i + 1 ;
6. else

7. Remove r from SEt ;
8. endif
9. endwhile

10. return Ŝ
E
t
;

end
samples are being annotated, they are removed from

the unlabeled eligible sample pool SEt in Step 7; how-

ever, since the resources have been expended to anno-
tate them, they can be saved for future iterations.
Updating Cost Model and Stopping Criterion Formulation
At each iteration, we can calculate Nt using Equation 1.
We can estimate p0(r ↪ ω1) based on the size of the tar-
get class observed empirically from the initial training
set (<10%); for t >0, we update the probability of obser-
ving a minority class sample using the following
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equation:

pt+1(r ↪→ ω1) =
k1,t − k̂1

k1,t + k2,t − Nt
, (3)

and Nt+1 is re-calculated via the minimization of
Equation 2. If {r Î Str|r ↪ ω1} = ⌀, then k1,t − k̂1 = 0
and thus pt+1(r ↪ ω1) = 0. If there are no remaining
samples in Str, then k1,t + k2,t = Nt and pt+1(r ↪ ω1) is
undefined. Essentially we must assume that (1) there are
at least some samples r Î Str for which r ↪ ω1, and (2)
Str ≠ ⌀. The cost of the entire training is calculated by
summing Nt for all t:

L =
T∑
t=1

Nt. (4)

ActiveTrainingStrategy repeats until one of two condi-
tions is met: (1) Str is empty, or (2) the maximum num-
ber of iterations T is reached. A stopping criterion can
be trained off-line to determine the value of T as the
smallest t that satisfies:

|At − At−1| ≤ δ, (5)

where δ is a similarity threshold and At is the accu-
racy of classifier TT (as evaluated on a holdout training
set). Thus, when additional training samples no longer
increase the resulting classifier’s accuracy, the training
can cease. An assumption in using this stopping criter-
ion is that adding samples to the training set will not
decrease classifier accuracy, and that accuracy will rise
asymptotically. The total number of iterations T corre-
sponds to the size of the final training set and can be
specified manually or found using a stopping criterion
discussed below. Classifiers that require a large training
set will require a large value for T, increasing cost.
Selection of Free Parameters
Our methodology contains a few free parameters that
must be selected by the user. The training algorithm
employs three parameters: the similarity threshold δ
(Equation 5); the confidence margin τ; and the number
of samples from each class to add per iteration, k̂1 and

k̂2. The choice of δ will determine the maximum num-
ber of iterations, T, the algorithm is allowed to run. A
small value of δ will require a larger final training set (i.
e. a larger T) before the algorithm satisfies the stopping
criterion. Additionally, if Eq. 5 is never satisfied, then all
available training samples will eventually be annotated
(Str will be exhausted).
The confidence margin τ defines the range of values of

Tt(r) for which sample r is considered informative (dif-
ficult-to-classify). Smaller values of τ define a smaller
area on the interval [0, 1], requiring more uncertainty

for a region to be selected. τ = 0.0 indicates that only
samples for which Tt(r) = 0.5 (i.e. perfect classifier dis-
agreement) are informative, while τ = 0.5 indicates that
all samples are informative (equivalent to random learn-
ing). The number of samples to add from each class
during an iteration of learning, k̂1 and k̂2, determines
how many annotations occur before a new round of
learning starts.
Consider the following two cases:

1. k̂1 = k̂2 = 10: in this case, 20 samples (10 from
each class) are annotated per iteration.
2. k̂1 = k̂2 = 1: in this case, 2 samples (1 per class) are
annotated per iteration.

In both cases, the learning algorithm for selecting
informative samples is only updated after each iteration.

In the first case, 20 samples are added to ŜEt before

new learning occurs, while in the second case, the learn-
ing algorithm is updated after each additional sample is
annotated. Thus, in case 2, we are sure that each addi-
tional sample is chosen using the maximum amount of
available information, while in case 1, several samples
are added before the learning algorithm is updated.
Although the second case requires ten iterations before
it has the same training set size as the first case, each
additional annotation is chosen based on an updated AL
model, ensuring that all 20 samples are informative.

Experimental Design
Data Description
We apply the CBAL training methodology to the pro-
blem of prostate cancer detection from biopsy samples.
Glass slides containing prostate biopsy samples are digi-
tized at 40× magnification (0.25 μm per pixel resolu-
tion). The original images are reduced in size using a
pyramidal decomposition scheme [31] to 6.25% of their
original size (4.0 μm per pixel resolution), matching the
resolution of the images used in [3]. Each image is
divided into sets of square regions, r Î R such that each
region constitutes a 30-by-30 pixel square area (120-by-
120 μm area). These image regions constitute the data-
set used for training and testing. Ground truth annota-
tion is performed manually by an expert pathologist,
who places a contour on tissue regions on the original
40× magnification image. Pathologists annotated both
cancer and non-cancer regions of tissue, and only anno-
tated regions were included in the dataset. A total of
100 biopsy images were analyzed from 58 patients,
yielding over 12,000 annotated image regions. All of the
58 patients exhibited prostate cancer, although cancer
was not present in all 100 images. The square regions
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were assumed to be independently drawn from the
images.

Feature Extraction
In [3], we built a classifier for discriminating between
cancer and non-cancer on a pixel level. We extracted
several hundred texture features, comprising three dif-
ferent classes of texture descriptors: Grey-level statistics
of image intensities, Haralick texture features based on
the co-adjacency of image intensities, and Gabor filter
features based on a filter bank utilizing phase and scale
parameters. Examples of these feature types are given in
Figure 3. We employed the Adaptive Boosting (Ada-
Boost) algorithm [32], which is a method of assigning a
weight to each feature based on its discriminating
power. Features with a higher weight are better able to
capture the differences between classes; a subset of
highly informative features can be selected as those with
weights above 0.05. In the current study, we employed
those 14 features under the assumption that the features
useful for pixel-wise classification would be similarly
useful in patch-wise classification of cancer. The feature
values were calculated in a pixel-wise fashion for each
30-by-30 region, and each region r was then represented
by the average value of the feature calculated over all
pixels.
First-order Statistical Features
First-order features are statistics calculated directly from
the pixel values in the image. These include the mean,
median, and standard deviation of the pixels within a
window size, as well as Sobel filters and directional gra-
dients. Of these features, two were included in the

subset: the standard deviation and the range of pixel
intensities.
Second-order Co-occurrence Features
Co-occurrence image features are based on the adja-
cency of pixel values in an image. An adjacency matrix
is created where the value of the ith row and the jth col-
umn equals the number of times pixel values i and j
appear within a fixed distance of one another. A total of
thirteen Haralick texture features [33] are calculated
from this co-adjacency matrix, of which 5 were found to
be highly discriminating: information measure, correla-
tion, energy, contrast variance, and entropy.
Steerable Filter Features
To quantify spatial and directional textures in the image,
we utilize a steerable Gabor filter bank [34]. The Gabor
filter is parameterized by frequency and orientation
(phase) components; when convolved with an image, the
filter provides a high response for textures that match
these components. We compute a total of 40 filter
banks, of which 7 were found to be informative, from a
variety of frequency and orientation values.

Evaluation of Training Set Performance via Probabilistic
Boosting Trees

Evaluation of Strt,� is done by testing the trained classi-

fier’s accuracy. To avoid biasing the results, we wish to
use a different classifier than TT for evaluation; a prob-
abilistic boosting tree (PBT) [35], denoted T ′

t , is
employed. The PBT combines AdaBoost [32] and deci-
sion trees [29] and recursively generates a decision tree
where each node is boosted with M weak classifiers.

Figure 3 Examples of Feature Types. Examples of the feature types extracted on two ROIs from a biopsy sample (a), identified by black
squares. Shown are (b), (f) the original tissue image, (c), (g) a greylevel texture image (standard deviation value), (d), (h) a Haralick texture image
(entropy of the co-adjacency matrix), and (e), (i) a Gabor filter feature image. The top row (b)-(e) indicates a cancerous region, while the bottom
row (f)-(i) is a benign region.
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The classifier output, T ′
t (r) , is the probability that sam-

ple r belongs to the target class. The PBT is used to
classify an independent testing set Ste (where Ste ∩ Str = ⌀)
via area under the receiver operating characteristic curve
(AUC) and classifier accuracy. The hard classification for r
Î Ste is denoted as:

T̃ t(r) =
{
1 if T̃ t(r) > θ

0 otherwise,
(6)

where θ is a classifier-dependent threshold. For region
r, the ground truth label is denoted as G(r) ∈ {0, 1} ,
where a value of 1 indicates class ω1 and 0 indicates class
ω2. The resulting accuracy at iteration t is denoted as:

At =
1
|R|

∑
r

{
1 if G(r) = T̃ t(r)
0 otherwise.

(7)

We generate receiver operating characteristic (ROC)
curves by calculating the classifier’s sensitivity and speci-
ficity at various decision thresholds θ Î {0, ..., 1}. Each
value of θ yields a single point on the ROC curve, and
the area under the curve (AUC) measures the discrimina-
tion between cancer and non-cancer regions. The accu-
racy can then be calculated by setting θ to the operating
point of the ROC curve. Again, it should be noted that it
is possible to evaluate the performance of the training set
using any supervised classifier in place of PBT. A pre-
vious study [36] used both decision trees [29] and SVMs
[11] as supervised evaluation algorithms in an AL train-
ing experiment, and found that the trend in performance
for both algorithms was similar. In this study we imple-
mented PBTs because the algorithm was different from
TT , which avoids biasing results; however, alternative
evaluation algorithms could certainly be employed.
Although the classifier performance values may

change, the goal of these experiments is to show that
the performance of an actively-learned, class-balanced
training set is better than a randomly generated unba-
lanced set.

List of Experiments
We perform three sets of experiments to analyze differ-
ent facets of the active learning training methodology.
Experiment 1: Comparison of CBAL Performance

with Alternate Training Strategies We compare the
performance of CBAL with four alternative training stra-
tegies to show that CBAL training will yield a classifier
with greater performance versus a training set of the
same size trained using an alternative method.

• Unbalanced Active Learning (UBAL): The class ratio

is not controlled; eligible samples SEt determined via

AL are randomly annotated and added to Ŝ
E
t
.

• Class Balanced Random Learning (CBRL): All
unlabeled samples in Str are eligible for annotation,
while holding class balance constant as described in
MinClassQuery.
• Unbalanced Random Learning (UBRL): All unla-
beled samples are queried randomly. This is the clas-
sic training scenario, wherein neither class ratio nor
informative samples are explicitly controlled.
• Full Training (Full): All available training samples
are used. This represents the performance when the
entire training set is annotated and available (an
ideal scenario).

In random learning (RL), all samples in the unlabeled
pool Str are “eligible” for annotation; that is, SE = Str. In
unbalanced class experiments, the MinClassQuery algo-
rithm is replaced by simply annotating K random sam-
ples (ignoring class) and adding them to Ŝ

E. The full
training strategy represents the scenario when all possi-
ble training data is used.
The classifier is tested against an independent testing

pool, Ste, which (along with the training set) is selected at
random from the dataset at the start of each trial. In
these experiments, T = 40, the confidence margin was τ =
0.25, and the number of samples added at each iteration
was K = 2. In the balanced experiments, k̂1 = k̂2 = 1 . A
total of 12,588 image regions were used in the overall
dataset, drawn from the 100 images in the dataset; 1,346
regions were randomly selected for Ste, and 11,242 for Str

in each of 10 trials. The regions are assumed to be inde-
pendent samples of the overall image space due to the
heterogeneity of the tissue and appearance of disease.
Because the goal of classification is to distinguish
between cancer and non-cancer regions of tissue rather
than individual patients, the training and testing was
drawn randomly from the overall pool of available
regions. The true ratio of non-cancer to cancer regions in
Str was approximately 25:1 (4% belonged to the cancer
class). A total of 10 trials were performed, with random
selection of Str and Ste at the beginning of each trial.
Experiment 2: Effect of Training Set Class Ratio on

Accuracy of Resulting Classifier To explore the effect
of training set class ratio on the performance of the
resulting classifier, the CBAL methodology was used,
setting K = 10 and varying k̂1 and k̂2 such that the per-
centages of the training set consisting of minority sam-
ples vary from 20% (k̂1 = 2, k̂2 = 8) to 80%

(k̂1 = 8, k̂2 = 2). Each set of parameters was used to
build a training set, which in turn was used to build a
classifier that was evaluated on the same independent
testing set Ste.
Experiment 3: Comparison of Cost Model Predic-

tions with Empirical Observations At each step of the

Doyle et al. BMC Bioinformatics 2011, 12:424
http://www.biomedcentral.com/1471-2105/12/424

Page 9 of 14



AL algorithm, we estimate Nt for obtaining balanced
classes as described in Section 2. The goal of this
experiment was to empirically evaluate whether our
mathematical model could accurately predict the cost of
obtaining balanced classes at each iteration, and could
thus be used to predict the cost of classifier training for
any problem domain. For these calculations, we set the
initial class probability p0(ω1) = 0.04, based on the
observations of the labeled data used at the beginning of
the AL process. Additionally, we set the desired sample
numbers to correspond with the different class ratios
listed in Experiment 2, from 20% minority class samples

(k̂1 = 2, k̂2 = 8) to 80% (k̂1 = 8, k̂2 = 2). The aim of
this experiment was to investigate the relationship
between the cost of a specific class ratio and the perfor-
mance of T ′

T .

Results and Discussion
Experiment 1: Comparison of CBAL performance with
Alternate Training Strategies
Examples of confidence or likelihood scenes generated
by T ′

T are shown in Figure 4, obtained at iteration T =
40 (since K = 2, these images represent the classifier’s
performance using 80 total samples). Figures 4(a) and 4
(d) show images with benign regions marked in red
boundaries and cancerous regions in black. Figures 4(b)
and 4(e) show the confidence scenes obtained via the
CBAL training strategy, and (c) and (f) are obtained via
CBRL training. High intensity regions represent high
classifier confidence that r ↪ ω1, while dark regions
indicate confidence that r ↪ ω2. In both cases, the
CBRL training fails to properly find the cancer regions,
either returning large numbers of false positives (Figure

4(c)) or failing to fully identify the cancer area (Figure 4
(f)). This difference (high false positives in one case,
high false negatives in another) is most likely due to the
inability of random learning to accurately define the
classes, given the small training set size. Thus, given the
constraints on training set size, a CBAL-trained classifier
can out-perform a randomly-trained classifier.
Quantitative classification results are plotted in Figure

5 as accuracy (Figure 5(a)) and area under the ROC
curve (Figure 5(b)) as a function of the number of train-
ing samples in the set Strt for 1 ≤ t ≤ 40. In each plot,

the “full” training set corresponds to the straight black
line, CBAL is the red triangle line, CBRL is a black
dashed line, UBAL is a green squared line, and UBRL is
a blue circled line. Note that the “full” line indicates the
maximum achievable classifier accuracy for a given
training set; thus, the closer a training set gets to the
straight black line, the closer it is to optimal
performance.
The AUC values for CBAL approach the full training

with 60 samples (t = 30) while CBRL, UBRL, and UBAL
have approximately 0.05 lower AUC at those sample
sizes. Accuracy for CBAL remains similar to other meth-
ods until t = 30, at which point CBAL out-performs
other methods by approximately 3%. CBRL, UBRL, and
UBAL do not perform as well as CBAL for the majority
of our experiments, requiring a larger number of samples
to match the accuracy and AUC of CBAL.

Experiment 2: Effect of Training Set Class Ratio on
Accuracy of Resulting Classifier
Figure 6 shows the effects of varying training class ratios
on the resulting classifier’s performance for the prostate

Figure 4 Qualitative Results of the Probabilistic Boosting Tree Classifier. Qualitative results of the final PBT classifier T ′
T . Shown in (a), (d)

are the segmented cancer region, (b), (e) show the probability scene obtained through the CBAL classifier, and (c), (f) show the probability
scene obtained via CBRL. The intensity of a region is determined by T ′

T(r) .
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cancer detection problem. Shown is the performance of
the PBT classifier at each iteration of the AL algorithm
using 20% minority samples (blue line), 40% (green line),
50% (red line), 60% (cyan line), and 80% (magenta line),
for both accuracy (Figure 6(a)) and AUC (Figure 6(b)).
The AUC curves are similar for all class ratios, although
the training set that uses 80% minority class samples tends
to perform slightly better. Thus, by over-representing the
minority class, we achieve greater performance in terms of
accuracy. Noted that while changing the class ratio had
different effects on accuracy and AUC a similar trend was
reported by Weiss and Provost [20], who found that alter-
ing the class ratio of a training set for a classifier affected
AUC and accuracy differently (although there was no spe-
cific trend across multiple datasets).

Experiment 3: Comparison of Cost Model Predictions with
Empirical Observations
Figure 7(a) shows the results of cost modeling simula-
tions. The predicted cost, found by solving for Nt in
Equation 1, is plotted as a function of t (solid black line)
with p0(r ↪ ω1) = 0.04 along with the empirically
observed costs of CBRL (blue dotted line) and CBAL
(red triangle line) with k̂1 = k̂2 = 5 . At each t, the plots
show how many annotations were required before class
balancing was achieved. We can see that the simulation
predicts the number of annotations required to achieve
class balance at each iteration within approximately 10-
20 annotations. Additionally, we see that the empirically
observed costs are greatly varied, particularly for t <50;
this is due to the fact that the number of annotations

Figure 5 Quantitative Results of the Probabilistic Boosting Tree Classifier. Quantitative results of the classifier, T ′
T , for t Î {1, 2, ..., T}.

Shown are (a) accuracy and (b) AUC values for the PBT classifier, evaluated at each iteration.

Figure 6 Performance of the PBT Classifier Trained on Different Target Class Ratios. Performance of the PBT classifier trained using
training sets with different percentages of samples for which r ↪ ω1. Shown are the (a) accuracy and (b) AUC values for the trained classifier at
each iteration, using p0(r ↪ ω1) = 0.04.
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required to achieve class balance depends greatly on (1)
the current training set, (2) the remaining samples in
the unlabeled pool, and (3) the order in which eligible
samples are chosen for annotation.
While it may seem from Figure 6 that the strategy

yielding best performance would be to over-sample the
minority class as much as possible, we also plotted the
empirical cost values Nt for each of the class ratios from
Experiment 2 in Figure 7(b). We find that as the percen-
tage of the minority class increases, the cost associated
with each iteration of the AL algorithm also increases.
This is due to the fact that as the minority class is over-
sampled, more annotations are required to find addi-
tional minority samples. While there is some increase in
accuracy by over-sampling the dataset, the annotation
cost increases by an order of magnitude. Thus, the opti-
mal strategy will need to balance the increase in accu-
racy with the constraints of the overall annotation
budget.

Conclusions
In this work we present a strategy for training a super-
vised classifier when the costs of training are high, and
where the minority class problem exists. Our strategy,
Class-Balanced Active Learning (CBAL), has the follow-
ing characteristics: (1) Active Learning (AL) is used to
select informative samples for annotation, thus ensuring
that each annotation is highly likely to improve classifier
performance. (2) Class ratios are specifically addressed
in this training strategy to prevent the training set from
being biased toward the majority class. (3) A mathemati-
cal model is used to predict the number of annotations
required before the specified class balance is reached.
We applied these techniques to the task of quantitatively

analyzing digital prostate tissue samples for presence of
cancer, where the CBAL training method yielded a clas-
sifier with accuracy and AUC values similar to those
obtained with the full training set using fewer samples
than the unbalanced AL, class-balanced random learn-
ing, or unbalanced random learning methods. Our
mathematical cost model was able to predict the num-
ber of annotations required to build a class-balanced
training set within 20 annotations, despite the large
amount of variance in the empirically observed costs.
This model is critical in determining, a priori, what the
cost of training will be in terms of annotations, which in
turn translates into the time and effort expended by the
human expert in helping to build the supervised classi-
fier. We found that by specifying class ratios for the
training set that favor the minority class (i.e. over-sam-
pling), the resulting classifier performance increased
slightly; however, the cost model predicted a large
increase in the cost of training, as a high percentage of
minority class samples requires more annotations to
build. Thus, an optimal training strategy must take into
account the overall training budget and the desired
accuracy.
Some of the specific findings in this work, such as the

observation that over-representing the minority class
yields a slightly higher classifier performance, may be
specific to the dataset considered here. Additionally, the
observation that the AL algorithm has a large amount of
variance in the empirically-observed costs (particularly
at the beginning of training) indicates that the eligible
sample set is unpredictable with respect to class compo-
sitions. This behavior may not necessarily be duplicable
with different datasets or AL strategies, both of which
will yield eligible sample sets with different class

Figure 7 Cost of Class Balance. (a) Plot of annotations Nt required for class balance as a function of t; shown are CBAL (blue line), CBRL (red
dashed line), and the predicted Nt from Equation 1 (black line). (b) The cost of obtaining a specific class ratio as iterations increase. If a high
percentage of minority class samples is desired, the cost increases.
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compositions. Additionally, we do not claim that our
choice of AL algorithm (QBC), our weak classification
algorithm (bagged decision trees), or our evaluation
classifier (PBT) will out-perform the available alterna-
tives. However, by combining AL and class balancing,
we have developed a general training strategy that
should be applicable to most supervised classification
problems where the dataset is expensive to obtain and
which suffers from the minority class problem. These
problems are particularly prevalent in medical image
analysis and digital pathology, where the costs of classi-
fier training are very high and an intelligent training
strategy can help save great amounts of time and
money. Training is an essential and difficult part of
supervised classification, but the integration of AL and
intelligent choice of class ratios, as well as the applica-
tion of a general cost model, will help researchers to
plan the training process more quickly and effectively.
Future work will involve extensions of our framework to
the multi-class case, where relationships between multi-
ple classes with different distributions must be taken
into account.
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