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Analyzing 2D gel images using a two-component
empirical bayes model
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Abstract

Background: Two-dimensional polyacrylomide gel electrophoresis (2D gel, 2D PAGE, 2-DE) is a powerful tool for
analyzing the proteome of a organism. Differential analysis of 2D gel images aims at finding proteins that change
under different conditions, which leads to large-scale hypothesis testing as in microarray data analysis. Two-
component empirical Bayes (EB) models have been widely discussed for large-scale hypothesis testing and applied
in the context of genomic data. They have not been implemented for the differential analysis of 2D gel data. In
the literature, the mixture and null densities of the test statistics are estimated separately. The estimation of the
mixture density does not take into account assumptions about the null density. Thus, there is no guarantee that
the estimated null component will be no greater than the mixture density as it should be.

Results: We present an implementation of a two-component EB model for the analysis of 2D gel images. In
contrast to the published estimation method, we propose to estimate the mixture and null densities
simultaneously using a constrained estimation approach, which relies on an iteratively re-weighted least-squares
algorithm. The assumption about the null density is naturally taken into account in the estimation of the mixture
density. This strategy is illustrated using a set of 2D gel images from a factorial experiment. The proposed
approach is validated using a set of simulated gels.

Conclusions: The two-component EB model is a very useful for large-scale hypothesis testing. In proteomic
analysis, the theoretical null density is often not appropriate. We demonstrate how to implement a two-
component EB model for analyzing a set of 2D gel images. We show that it is necessary to estimate the mixture
density and empirical null component simultaneously. The proposed constrained estimation method always yields
valid estimates and more stable results. The proposed estimation approach proposed can be applied to other
contexts where large-scale hypothesis testing occurs.

Background
Complementing functional genomics, proteomics deals
with the large-scale analysis of proteins expressed by a
tissue under specific physiological conditions. A broad
range of technologies are used in proteomics, but the
central paradigm has been the use of a method for
separating mixtures of proteins followed by identifica-
tion of protein by mass spectrometry (MS). Two-dimen-
sional polyacrylomide gel electrophoresis (2D PAGE, 2D
gel, 2-DE) very popular, despite the availability of other
powerful separation techniques. With 2D PAGE [1],
proteins are separated in one dimension according to

their molecular mass and in the orthogonal dimension
according to their isoelectric charge. In theory, each
protein is uniquely determined by its location along the
two dimensions of separation. The separated proteins
are then stained with fluorescent dyes so that they are
amenable to imaging. Proteomic differences across mul-
tiple samples can be studied by comparing the expres-
sion profiles across sets of gels.
Figure 1 shows typical images of 2D gels. Each dark

spot with a smooth contour represents a different pro-
tein. The darkness of a spot is proportional to the quan-
tity of the corresponding protein on the gel. By
comparing spot intensities across images, we are able to
compare the volumes of the same protein under differ-
ent treatments or exposures or stages of tissue develop-
ment and identify protein spots that change in volume
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under conditions of interest. It would be unwieldy to do
this manually since there are thousands of spots to com-
pare and gels undergo distortions during the experimen-
tal process.
The main steps in differential analysis of two-dimen-

sional gels involve image de-noising, spot detection, spot
quantification, spot matching and statistical analysis,
which were discussed in detail in [2]. Unlike the analysis
of microarray data, the statistical differential analysis of
2D gel images is still in its infancy. The main difficulties
are the discrimination between actual protein spots and
noise, the quantification of protein expression levels
thereafter, and spot matching for individual comparison.
Although there are commercial software packages for
2D gel image analysis (e.g. PDQuest, Dymension), con-
siderable human intervention is required for spot
matching. Spot matching is the process by which one
maps a spot on a particular gel to the corresponding
spots on the other gels so that spots corresponding to
the same protein are identified. With a larger number of
images, this step becomes increasingly problematic as
fewer spots are matched and the analysis is performed
on sparser data [3]. Moreover, in available software
packages, the comparison of the quantitative features is

based on classical tests, such as the t-test or the F-test.
Attempts have been made to avoid image segmentation
and spot quantification. Models based on image pixels
[4] are not practical given the huge number of pixels,
high variation in the background intensity and sensitiv-
ity to misalignment.
Recently, academic software was developed to cope

with difficulties in the analysis pipeline including protein
spot detection, quantification and spot matching [3,5,6].
To improve the spot-detection results and avoid spot
matching, the methods in [3,6] utilize the mean gel
image as the template for locating spots. The pinnacle
method [3] uses a fixed window for spot detection,
quantification and background separation. The
approaches in [5,6] rely on the watershed transform [7]
for spot segmentation and quantification. The RegStaGel
software [6] provides advanced statistical tools. Compar-
ison of different software for protein spot quantification
is beyond the scope of the current paper. We shall focus
on the statistical analysis, assuming that spot quantifica-
tion has been performed appropriately. For convenience,
we employ RegStatGel [6] to obtain spot quantification
for statistical analysis of the set of gel images considered
in this paper.
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Figure 1 Images of proteomes from rat spleens.
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Since hundreds or thousands of proteins are usually
featured on a gel, once proteins are quantified, we are
faced with a large-scale hypothesis-testing problem. The
RegStatGel software [6] applies the Benjamini-Hochberg
(BH-FDR) procedure [8] in combination with multivari-
ate analysis for identifying significantly changed pro-
teins. The BH-FDR procedure is widely used for
selecting the p-value threshold to control the false dis-
covery rate (FDR). Under the assumptions that tests are
independent or weakly dependent and the null distribu-
tion of the p-values is uniform, the BH-FDR procedure
controls the false-discovery rate at a given level. But in
practice, these two assumptions are often invalid. Strong
dependence usually exists, especially in the field of geno-
mics and proteomics [9], where the dependencies them-
selves are actually also of interest. Considerable effort
has been dedicated to the estimation of the proportion
of true null hypotheses and of the false discovery rate at
a given p-value threshold [10-19]. The empirical Bayes
methodology and closely related methods exploiting a
two-component mixture model [10,15,20,21] represent
typical examples of such effort. The two-component EB
models assumes that a test statistic follows either the
null or the non-null distribution.
It has been commonly assumed that the null distribu-

tion of the test statistics follows some distribution theo-
retically. However, Efron [12-15] pointed out that in
large-scale hypothesis testing the theoretical null distri-
bution often does not hold for reasons including incor-
rect model assumption, unobserved covariates and
correlations among test statistics. It is more appropriate
to estimate the null density of the test statistics directly
from the data instead of using the theoretical null den-
sity. Using the two-component empirical Bayes (EB)
model, Efron [12-15] proposed to estimate the mixture
density from the entire histogram and the null compo-
nent from data around the central peak of the mixture
density. The two-component EB model aims at separat-
ing a small subset interesting cases from a large group
of uninteresting cases. Efron’s innovative concept and
estimation approach have been throughly discussed
[22-26]. The locfdr R package [27] was developed to
estimate the two-component model using Poisson
regression and computing the local false discovery rate
(FDR).
Two methods [12,15] were proposed to estimate the

null component. One is based on finding an optimal
normal approximation to the mixture density around
the central peak of the histogram, and the other on
maximum-likelihood estimation. In both methods, the
mixture density and the null component are estimated
separately. The estimation of the mixture density does
not take assumptions about the null density into
account. Thus, there is no guarantee that the estimated

null component is no greater than the mixture density
over the entire domain. The two approaches may result
in the estimated local FDR having multiple peaks or its
being greater than 1 [25]; neither is desirable. We pre-
sent a modified estimation method for the two-compo-
nent EB model: the null and the mixture densities are
estimated simultaneously with a necessary constraint,
which can be achieved with a constrained iteratively re-
weighted least squares (IRLS) algorithm. The proposed
methodology is applied to the analysis of a set of 2D gel
images from a factorial experiment. Simulation studies
are conducted to further validate and investigate the
performance of the proposed approach.

Methods
Data
To investigate the effect of nicotine exposure on the
proteome of spleen cells of female and male rats, a 2 ×
2 factorial design with gender and treatment (nicotine
exposure) factors was used with 3 rats in each experi-
mental group. Spleen cells from the control and treated
rats were harvested on post-natal day 65 and then cul-
tured in the presence of convanavalin A. After 4 days in
culture, cell pellets were lysed and solubilized directly in
rehydration buffer. Lysates were aliquoted and stored
frozen at -80°C. Samples were thawed and 20 μg protein
from each sample applied to a pH 4-7 immobilized pH
gradient strip (IPG; Amersham Biosciences/GE Health-
care) by overnight rehydration. Isoelectric focusing was
performed using an IPGphor IEF system (Amershan
Biosciences/GE Healthcare) with voltage increased gra-
dually from 500 to 800 V and then kept constant at
8000 volts for 4 hours. Separation in the second dimen-
sion was performed on 12.5% Excel prepared gels speci-
fically made for the Multiphor II apparatus (Amersham
Biosciences/GE Healthcare) and run at 40 mA for 35
minutes followed by 100 mA for 1.25 hours. Gels were
silver stained (Amersham Plus One silver stain kit) and
imaged using a UMACS Power Look 3 scanner
(Amersham).
Figure 1 shows four images, each from a different

experimental group. The top row has examples of con-
trol rats and the bottom row of rats exposed to nicotine.
The left column has examples for female rats and the
right column of male rats. First, the images were aligned
using the algorithm described in [28]. After alignment,
boundaries for the interesting portion of the images
were set and the region outside these boundaries was
cropped.
The objective is to find proteins that changed in quan-

tity under exposure to nicotine or show a gender effect.
The next steps would be to determine the genomic
sequence of the differrentially-expressed proteins by
mass spectrometry and to refer these sequences to a
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database of protein sequences in order to identify them
and investigate their functions.
The proteins were detected and quantified using the

the default settings of the RegStatGel software [6,29].
Specifically, the watershed algorithm was applied to the
mean image to generate a master watershed map which
is then imposed onto each individual gel image. Each
watershed region contains a single object, either a single
spot or an aggregate of two spots 9a seldom occurence).
The pixels in each region are then classified as either
belonging to the object or to the background using
Otsu’s method [30]. The mean intensity difference
between the object and background serves as a summary
statistic for each region and therefore for each protein
(or aggregate), and is used for comparison across
images. The RegStaGel software is fast, easy to use and
has comparable performance to commercial software
packages [29]. Note that other free programs such as
Pinnacle [3] can also be used for protein quantification.
For the dataset under consideration, there are a total

of 439 watershed regions containing proteins (including
overlapping spots). Now, we set up a statistical model
for comparing protein quantities across experimental
groups. Denote the log of the statistic of interest (e.g.
average pixel intensity, total pixel intensity, mean inten-
sity difference) for protein i, image l, experimental
group g by ygli, where g = 1, ..., nc, l = 1, ..., n, i = 1, ...,
K. For the dataset described above, we have nc = 4, n =
3, K = 439, and the experimental conditions (g = 1, ...,
4) correspond to the factorial combinations of treatment
and gender. We have the following linear model:

y1li = μi − τi − γi − (τγ )i + ε1li

y2li = μi − τi + γi + (τγ )i + ε2li

y3li = μi + τi − γi + (τγ )i + ε3li

y4li = μi + τi + γi − (τγ )i + ε4li

(1)

where τi, gi, (τg)i are, respectively, the treatment, gen-
der, and interaction effect for protein i. With the

assumption that εgli ∼ N(0, σ 2
i ) , the test statistic for

the treatment effect on protein i is

ti =
ȳ3.i + ȳ4.i − ȳ1.i − ȳ2.i

2
√
Si/n

,

where Si is the pooled sample variance and ti follows
the t-distribution with df = 4(n - 1) degrees of freedom
under the null hypothesis that τi = 0. The test statistics
for the gender and interaction effects follow the same t-
distribution under the null hypothesis. Let zi = F-1(Fdf
(ti)), where Fdf is the cumulative tdf distribution. Theore-
tically, under the null hypothesis, zi follows the standard
normal distribution.

Two-component Empirical Bayes Model
The two-component EB model assumes a mixture
model for the density of zi,

f (zi) = p0f0(zi) + (1 − p0)f1(zi),

where p0 is the prior probability that zi complies with
the true null hypothesis, f0(zi), is the null density and f1
(zi) is the density under the alternative hypothesis. This
model is very popular in the literature on differential
analysis of microarray data, where most authors assume
the null density is the theoretical null density.
Efron [10,15] defined the posterior probability that zi

is from the null hypothesis as the local FDR, which is
given by

fdr(zi) = Pr(H0i is true|Z = zi) = p0f0(zi)/f (zi).

It can be shown [12,15] that the relationship of the
local FDR to the usual FDR is

FDR(zi) = Ef {fdr(Z)|Z ≤ zi}.
To estimate the local FDR, we must estimate the

unknown p0, f0, f. Theoretically, f0 should be the N(0, 1)
density. However, for many reasons, this theoretical null
density may not be valid in practice. For example, strong
correlations among tests or covariates unaccounted for
in the model will invalidate the usual assumptions
[12-15]. Moreover, when the majority of tests show
small effects, it is sounder to select the relatively more
interesting effects by comparing larger effects to smaller
effects rather than to the theoretical zero effects. There-
fore, it is more appropriate to estimate the null density
of the test statistics directly from the data instead of
using the theoretical null distribution.
Efron [12,15] assumed the null distribution to be N(δ,

s2) and estimated the null distribution from the data.
The log of the mixture density log(f(z)) was estimated
by fitting a natural cubic spline or high-order polyno-
mial to the log of counts in the histogram bins via Pois-
son regression. Indeed, suppose the z-values have been
binned and the bin counts are

mj = #{zi in bin j}, j = 1, 2, . . . , J.

Assume the mj’s to be Poisson counts, i.e.

mj ∼ Po(νj), j = 1, . . . , J,

with the unknown νj proportional to the density f(xj)
at the midpoint xj of bin j, i.e. approximately

νj = N�f (xj),

where Δ is the width of the bin and N is the total num-
ber of tests. log(νj) can be modeled using a polynomial
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function at xj or a natural cubic spline and estimated
using standard generalized linear models (GLM) for Pois-
son observations.

Efron’s estimation methods for the empirical null
distribution
Both the central matching (CME) and the maximum
likelihood (MLE) methods of estimation are implemen-
ted in the locfdr R package [15,27]. MLE is somewhat
more stable but can be more biased than CME. Efron
[12] shows that CME yields nearly unbiased estimates.
Central matching
When zi is generated from a t-test, the central peak of
the histogram is assumed to coincide with the null den-
sity. To estimate the empirical null density from the
estimated mixture density, a quadratic curve

log
(
p̂0f0(z)

)
is fitted to the central peak of log

(
f̂ (z)

)
,

log
(
p̂0f0(z)

)
= β̂0 + β̂1z + β̂2z

2.

Assuming f0(z) ~ N(δ, s2), the log of the null compo-
nent is

log(p0f0(z)) = log p0 − 1
2

{
δ2

σ 2
+ log(2πσ 2)

}

+
δ

σ 2
z − 1

2σ 2
z2.

p0, δ, and s can be estimated from β̂0, β̂1 , and β̂2 .
The local FDR at z is then estimated by

f̂dr(z) = p̂0f0(z)/f̂ (z). The quadratic curve is obtained by

finding a least-squares approximation to the estimated

log
(
f̂ (z)

)
using bins in a selected interval [a, b] con-

taining null zi’s.
Maximum likelihood estimation
An alternative estimation method is based on the maxi-
mum-likelihood estimator of the parameters p0, δ, s.
Assume that the non-null density f1(z) is supported out-
side some given interval [a, b]. Let N0 be the number of
zi in [a, b], and define

P0(δ, σ ) = �

(
b − δ

σ

)
− �

(
a − δ

σ

)
and θ = p0P0.

Then the likelihood function for all the z-values in [a, b] is

fδ,σ ,p0(z) ∝
[
θN0 (1 − θ)N−N0

] ⎡
⎣ ∏

zi∈[a,b]

φδ,σ (zi)
P0(δ, σ )

⎤
⎦ ,

where j denotes the normal density. The estimates of
p0, δ, and s can be obtained by maximizing this
likelihood.

Constrained Estimation Approach
In the procedures described above, the mixture density
and its null component are estimated separately. The

estimated null component p̂0f0(z) may be greater than

the mixture density f̂ (z) . Thus, there is no guarantee

that we will have f̂dr(z) = p̂0f0(z)/f̂ (z) ≤ 1 for all z.

Indeed, we may end up awkwardly having that

f̂dr(z1) > 1 > f̂dr(z2) for some z1 <z2 < 0, as shown in

Figure 2, where both approaches were implemented on
the set of gels of interest.
Therefore, we propose to modify the CME approach

by estimating the mixture density and its null compo-
nent simultaneously. The log of the null component is
estimated via a quadratic approximation to the central

peak of log
(
f̂ (z)

)
using bins contained in the interval

[a, b]. We add the constraint that f̂ (xj) ≥ p̂0f0(xj) (for

all histogram bins xj) while maximizing the Poisson like-
lihood. To solve this problem, we utilize a constrained
iteratively reweighted least-squares algorithm, as shown
below. We approximate the bin counts of the mixture
histogram via Poisson regression using a natural cubic
spline with D knots. Assume the knots are x1 = h1 < ...
<hD ≤ xJ, where x1 and xJ are the two bins at the left
and right ends of the histogram. Denote the value of the
natural cubic-spline function at point x by s(x; θ), where
θ is the unknown parameter vector for the cubic splines.
Then

s(x; θ) =
D∑
d=1

Bd(x)θd = B(x)′θ

where θ = [θ1, ..., θD]’, B(x) = [B1(x), ..., BD(x)]’. Bd(x)
are the natural cubic spline basis functions [31]:

B1(x) = 1, B2(x) = x,

Bd(x) = φd−2(x) − φD−1(x), d = 3, . . . , D,

where φd(x) = [(x − hd)3+ − (x − hD)3+]/(hD − hd) and
(x - hd)+ = 0 if x <hd. We fit the log of the histogram
counts using the natural cubic spline assuming

log(νj) = log(N�) + log(f (xj)) = s(xj; θ).

Suppose the non-null density is close to zero in [a, b],
we have approximately for xj Î [a, b]

log(νj) ≈ log(N�) + log(p0f0(xj)) = q(xj;β)

where q(x; b) is a quadratic function with parameter b.
The constraint that log (f(xj)) ≥ log (p0 f0(xj)) leads to s

(xj; θ) ≥ q(xj; b) for all xj’s. Then, we only need to esti-
mate the parameters θ by maximizing the Poisson

Li and Seillier-Moiseiwitsch BMC Bioinformatics 2011, 12:433
http://www.biomedcentral.com/1471-2105/12/433

Page 5 of 14



likelihood with the constraint that s(xj; θ) ≥ q(xj; b),
which results in solving

max
∑

L(mj, xj; θ)

subject to s(xj; θ) ≥ q(xj;β), j = 1, . . . , J
(2)

where L(mj, xj; θ) = -exp{s(xj; θ)} + mj s(xj; θ). L(mj,
xj;θ) is the Poisson log likelihood for bin j, omitting the
constant term unrelated to the parameter θ. q(x; b) is
the best quadratic approximation to s(x; θ) based on
bins in [a, b]. To solve this, the parameter b must be
expressed as a function of θ. Below, we show how to re-
write the constraint in terms of the spline parameter θ.

Denote the values of the natural cubic spline at all the
bins x1, ..., xJ as a vector S(θ). We have

S(θ) = [B(x1)′, · · · ,B(xJ)′]θ = �θ ,

where Γ, a J × D matrix, has entry in row j and col-
umn d Γ(j, d) = Bd(xj). Similarly, we denote the values
of the spline at bins in [a, b] in a vector form as S0(θ) =
Γ0θ, where Γ0 is the corresponding sub-matrix of Γ. S0
(θ) approximates the null component of the mixture
density. Let q(x; b) = ω(x)’b be a quadratic function,
where ω(x) = [1, x, x2]’ and b = [b1, b2, b3]’. The values
of the quadratic function at all bin midpoints can be
written in a vector form as Q(b) = Ωb, where Ω is the J
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Figure 2 Estimation results using unconstrained approaches. Estimates of mixture densities and their null components from the CME and
MLE methods, and the local FDR. Upper panel: solid green curves are the spline-fitted mixture densities; the blue dashed and red dotted curves
are the empirical null densities from the CME and MLE methods, respectively. Lower panel: the local FDR estimates from the CME (blue solid
curve) and MLE (red dotted curve) methods.
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× 3 matrix with jth row as ω(xj) for j = 1, ..., J. Similarly,
we denote the values of the quadratic function at bin
midpoints n [a, b] as Q0(b) = Ω0b, where Ω0 is the sub-
matrix of Ω corresponding to bins in [a, b].
We want to obtain the best quadratic approximation

to the natural cubic spline s(x; θ) based on the bin mid-
points xj Î [a, b]. The least-squares solution minimizing
(Γ0θ - Ω0b)’(Γ0θ - Ω0b) is given by

β̂ = (�′
0�0)−1�′

0�0θ .

Thus, maximizing the likelihood (2) is equivalent to
solving

max
∑

L(mj, xj; θ)

subject to (� − �(�′
0�0)−1�′

0�0)θ ≥ 0.
(3)

The above problem is solved by means of non-linear
programming. A simple computational algorithm for
estimating the null and mixture densities is to modify
the iteratively reweighted least-squares (IRLS) procedure
[32] for Poisson regression by adding the constraint to
the weighted least-squares regression. The IRLS algo-
rithm converges very fast, based on our experience.
The pseudo code for the modified IRLS algorithm is

as follows:

/* Initialization of deviance Dev and oldDev */
Dev = 100000, oldDev = 0
/* Initialization of estimation of νk

*/νj = (mj + 1
J

∑
mj)/2

Where (|Dev-oldDev| > tolerance)
{
/* Update weights */
wj = νjm̃j = log(νj) + (mj − νj)/νj
/* Constrained weighted regression

*/
θ = argmin

∑
wj(s(xj; θ) − m̃j)

2

s.t. (� − �(�′
0�0)

−1
�′

0�0)θ ≥ 0
νj = exp{s(xj; θ)}
/* Update Poisson deviance */
oldDev = Dev
Dev = 2Σ{mj log(mj) - mj - (mj log(νj) - νj)}
}

The local FDR can then be estimated using

f̂dr(z) = exp
{
q(z; β̂) − s(z; θ̂)

}
, where

β̂ = (�′
0�0)−1�′

0�0θ̂ .

Results and Discussion
In this section, we implement the two-component EB
model on the set of 2D gel images described previously.
Both Efron’s estimation approach and the proposed one

will be applied for comparison. These approaches will
be further compared using simulations.

Analyzing 2D Gel Images
At first, we analyze the zi values for the treatment, gen-
der, and interaction effects using Efron’s locfdr R pack-
age. The upper panel of Figure 2 shows the histograms
(50 bins) of the corresponding z-values, the mixture
density from the Poisson regression, and the null com-
ponent estimated using CME and MLE. For estimation
of the null component, we chose the intervals [-1.25,
0.25], [-2.5, -1.2] and [-0.5, 1.2] for the treatment, gen-
der and interaction effects, respectively. The degrees of
freedom of the splines were chosen to minimize the
AIC criterion [33], which were 5, 10 and 10 respectively.
The green solid curves in the upper panel of Figure 2
are estimates of the mixture densities from the Poisson
regression. The blue dashed and red dotted curves in
the upper panel represent the empirical null component
estimated using the CME and MLE methods, respec-
tively. The lower panel of Figure 2 shows the local FDR
at different z-values based on the empirical null compo-
nent from the CME (blue solid line) and MLE (red
dotted line) methods. Figure 2 clearly conveys the mes-
sage that the theoretical null, the standard normal den-
sity N(0, 1), is not appropriate for the proteomic data at
hand. Taking the treatment effect as an example, the
empirical null distribution is N(-0.595, 0.9152) by CME
and N(-0.48, 0.8912) by MLE with proportions of true
null hypotheses close to 1 for both, which indicates
nicotine exposure effect affects similarly all proteins
expressed by spleen cells. Clearly, the empirical null
density is even further from its theoretical form for the
gender effect. The central peak of the z-values is to the
left of -1.
Figure 2 also demonstrates that neither CME nor

MLE yields a desirable empirical null estimate. The esti-
mated null components are not below the estimated
mixture density throughout the range of z-values. Con-
sequently, the estimated local FDR has multiple peaks
and values greater than 1 at many z’s. The estimate for
the proportion of true null hypotheses can also be
greater than 1, which is not a desirable outcome. There
is significant discrepancy between the results from CME
and MLE, as demonstrated by plots for the gender
effect. We tried alternative specifications for the inter-
vals used for estimating the empirical null density and
different degrees of freedom for the splines: all yielded
very similar results. Moreover, we found that MLE is
more sensitive to the choice of the interval [a, b] as also
observed in [24]. Next, we applied the proposed con-
straint estimation approach with the same choices of
null intervals. The degrees for the splines that minimize
the AIC were 5, 9 and 5 for the treatment, gender and
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interaction effects, respectively. Figure 3 displays the
results. The green solid and blue dashed curves in the
upper panel represent the mixture and empirical null
densities, respectively. The lower panel shows the esti-
mated local FDR at different z-values.
Comparing with Figure 2, we see that the proposed

constrained estimation approach yielded results similar
to those obtained with CME. However, now, the empiri-
cal null component is below the mixture density, and
the local FDR estimate is no greater than 1, smooth and
non-increasing at both tails. For treatment and interac-
tion effects, the null proportion is nearly one, indicating

that there is no apparent differential effect of nicotine
exposure. The treatment and interaction effects follow
approximately N(-0.459, 0.892) and N(0.284, 0.9152),
respectively. The empirical null distribution for the gen-
der effect s N(-1.511, 1.072) with the null proportion
about 0.84. The results for the gender effect show that
we need to interpret results from large-scale hypothesis
testing with caution. The bulk of the histogram is cen-
tered around -1.5, indicating that the majority of pro-
teins have higher expression in female rats. The local
FDR plot for the gender effect reveals that there is a
small group of proteins with higher expression in males.

treatment effect

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
5

10
15

20
25

30
35

treatment effect

delta: −0.459 sigma: 0.89 p0: 0.997

gender effect

F
re

qu
en

cy

−4 −2 0 2 4

0
5

10
15

20
25

30
35

gender effect

delta: −1.511 sigma: 1.07 p0: 0.835

interaction effect

F
re

qu
en

cy

−2 −1 0 1 2 3

0
5

10
15

20
25

30
35

interaction effect

delta: 0.284 sigma: 0.915 p0: 0.998

−2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z−values

Lo
ca

l F
D

R

−2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z−values

Lo
ca

l F
D

R

−2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z−values

Lo
ca

l F
D

R

Figure 3 Estimation results using the constrained approach. Estimates of mixture densities and their null components from the constrained
estimation approach and the corresponding local FDR estimation. Upper panel: the solid green curves are the spline-fitted mixture densities; the
blue dashed curves are the empirical null densities from constrained estimation approach. Lower panel: the blue solid curves represent the local
FDR estimates.
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This group of proteins is clearly separate from the rest
as evidenced by the small local FDR. The local FDR is
therefore more indicative of how different the gender
effect is on a protein compared to the majority of the
proteome, and less indicative of how significant the gen-
der effect is. Should the theoretical null distribution be
used, there would be a large number of effects at the
left tail. Overall, we note that the estimated means of
the null components are far from zero, especially for the
gender effect, which may indicate the need to further
normalize the data to remove some systematic bias.

Simulation Validations
Numerical simulation
In this section, we compare the proposed constrained
estimation procedure with the CME approach without
constraint using numerical simulations. The simulation
model consists of zi ~ N(-1, 1), i = 1, ..., 5000, and zi ~
N(3, 1), i = 5001, ..., 5500. Thus, the first 5000 z′is

belong to the null distribution and the last 500 z′is to
the non-null distribution, and the null proportion p0 =
0.909. The interval [-2, 0] was used for estimating the
null component. The estimated mixture density and its
null component are displayed in Figure 4, with the left
column showing the results from the CME approach
without constraint and the right column showing the
results from the proposed constrained estimation
approach. The upper panel shows the histogram of the
simulated z-values from one run, the estimated mixture
density (solid green curve) and the empirical null com-
ponent (blue dashed curve). The lower panel shows the
estimated local FDR from each approach.
Even when the true null distribution is normal and

there is a large number of observations, the uncon-
strained estimation approach generated undesirable
results. The null component is greater than the mixture
distribution at some points around the peak of the his-
togram. Moreover, the left tail of the local FDR is close
to 0, indicating that some true null values will be
declared as non-null depending on the threshold of the
local FDR. The estimated null density follows N(-1.013,
0.8762) with the null proportion p̂0 = 0.837 , which is
quite different from the values in the simulation model.
In contrast, the empirical null density estimated using
the constrained estimation approach is more accurate.
The estimated empirical null density follows N(-1.011,
0.9792) with p̂0 = 0.905. The right tails of the estimated
local FDR are similar under the two approaches, which
indicates that both have similar sensitivity. The left tail
of the local FDR has much larger values in the con-
strained method, indicating a lower chance of a true
null value being declared as a non-null.

We performed 100 simulations to compare the bias
and standard deviation of estimates of the null para-
meters from both approaches. We chose different num-
bers of bins (50 bins or 100 bins) as well as different
numbers of observations (N = 550 or N = 5500). Table
1 shows the mean and standard deviations (SD) of the
estimates of the null parameters from both approaches.
From Table 1, we see that both approaches yielded

estimates that are nearly unbiased. The estimates from
the proposed approach have much smaller standard
error, especially for s and p0. The superior performance
of the constrained procedure continues as the total
number of observation increases. The constrained
approach is not sensitive to the number of bins used for
estimation when this number is large enough (50 or
100) for the histogram counts to be roughly propor-
tional to the density in the bins. The unconstrained
approach is more affected by the number of bins, with a
smaller number leading to increased variability for the
estimates of s and p0. The simulation results clearly
demonstrate that the constrained approach is better at
estimating the null component.
Next, we compare the performance of both

approaches for estimation of the local FDR at points
close to the non-null component. To do that, we choose
several z’s on the right tail to compare the local FDR
estimates with the true values. The results are shown in
Table 2. The comparison is based on the ratio of the
average of the local FDR estimates at a given z to the
true value and on the relative SD of the estimates from
the two approaches for the 100 simulations. The relative
SD was computed as the SD from the constrained
approach divided by the SD from the unconstrained
approach.
Table 2 clearly shows that the estimate of the local

FDR from the proposed procedure has smaller bias,
much less variability, and converges to the true value
faster when N increases. The bias (relative to the magni-
tude of the true values) in the unconstrained approach
increases with greater values of z (smaller local FDR),
and larger number of bins when N is fixed. The bias of
both approaches decreases when N increases. When N
is not so large and the number of observation per bin is
small, the unconstrained approach leads to much larger
variability and bias for smaller true local FDR values.
Overall, the performance of constrained estimation is
much more stable and not sensitive to the number of
bins as well as to the magnitude of the true local FDR
values.
Validation using Simulated Gels
To further validate the proposed approach, we analyzed
a set of simulated 2D gel images, which was generated
by randomly perturbing an actual gel image as described
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Figure 4 Estimation results for simulated z-values. Histogram of simulated z-values, estimated mixture densities (green solid curves) and null
components (blue dashed curves) using the CME approach (left column) and the constrained estimation approach (right column). The lower
panel displays the estimated local FDR for each approach.

Table 1 Comparison of Estimates for Null Parameters (δ = -1, s = 1, p0 = 0.909; 100 simulations).

50 bins, N = 550 100 bins, N = 550 100 bins, N = 5500

mean, SD unconstrained constrained unconstrained constrained unconstrained constrained

δ -1.008 -1.001 -1.002 -0.995 -0.999 -1.000

SD 0.089 0.056 0.097 0.058 0.032 0.020

s 0.997 0.992 1.000 0.991 1.004 0.994

SD 0.164 0.043 0.125 0.043 0.045 0.017

p0 0.914 0.905 0.916 0.906 0.913 0.907

SD 0.108 0.011 0.076 0.012 0.025 0.005
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in [29]. The 20 simulated gels were divided into two
groups of 10. To simulate the group (treatment or inter-
vention) effect, we artificially altered 11 manually
selected spots such that these 11 spots were significantly
differentially expressed across groups. Figures 5 and 6
show two simulated gel images from different groups
with the 11 altered spots circled. The test statistics for
the 147 spots were obtained using the RegStatGel soft-
ware. We applied both estimation approaches. The
results are shown in Figure 7. The interval [-2.5, 2.5]
was used for estimating the null component. The left
column shows the results from the CME approach with-
out constraint and the right column shows the results
from the proposed constrained approach. The upper
panel shows the histogram of z values, the estimated
mixture density (solid green curve) and the empirical
null (blue dashed curve). The lower panel shows the
estimated local FDR from each approach. The ‘+’ signs
in the lower panel locate the observed points. Both

approaches identified all and only the 11 spots. Both
approaches yield local FDR estimates for the 11 spots
much lower than for the other proteins. Again, the
unconstrained approach shows a bizarre local FDR
curve.

Conclusions
Similar to microarray data analysis, proteomic analysis
leads to large-scale simultaneous hypothesis testing and
thus carries similar challenges. The two-component
model plays an important role in the microarray litera-
ture. We applied a two-component EB model for analyz-
ing a set of 2D gel images. As demonstrated by the 2D
gel data, the true null density can be very different from
its theoretical form, which supports Efron’s innovative
idea of choosing the empirical null distribution for
hypothesis testing. The problem of estimating the null
density is important and fundamental in the two-com-
ponent EB model. Efron generalized the theoretical null

Table 2 Comparison of Estimates for Local FDR (100 simulations).

50 bins, N = 550 100 bins, N = 550 100 bins, N = 5500

z unconstrained constrained unconstrained constrained unconstrained constrained

2 ratio 1.42 1.04 3.80 1.20 1.17 1.00

relative SD 0.24 0.05 0.40

2.5 ratio 1.99 1.17 1.25 1.30 1.30 1.00

relative SD 0.23 0.02 0.25

3 ratio 3.16 1.14 62.0 1.30 1.48 0.95

relative SD 0.14 0.003 0.15

3.5 ratio 8.98 1.17 535.6 1.30 1.94 0.97

relative SD 0.04 0.0004 0.10

4 ratio 35.9 1.34 764.6 1.60 2.81 1.00

relative SD 0.01 0.00004 0.06
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Figure 5 A simulated gel image from group 1. A simulated gel
image from group 1. The 11 altered spots are circled.
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Figure 6 A simulated gel image from group 2. A simulated gel
image from group 2. The 11 altered spots are circled.
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N(0, 1) to N(δ, s2) and proposed two methods, CME
and MLE, for estimating the null density, which are con-
venient to use.
However, as shown here, neither method is devoid of

problematic results, which are hard to interpret in prac-
tice. To improve the estimation of the null density, we
proposed a constrained estimation approach based on
the central matching method. This novel procedure
naturally takes the shape of the null density and its rela-
tionship to the mixture density into account for estima-
tion, and explicitly constrains the estimated mixture
density to being no less than the null density. Both the
unconstrained and constrained approaches are nearly
unbiased. The constrained method yields more stable

and desirable estimation, as demonstrated by our simu-
lation results. It can be generalized to include the situa-
tion where the null density comes from a family broader
than the normal. The proposed approach can certainly
be applied to any context where large-scale hypothesis
testing occurs. Here, we have constrained the null com-
ponent to be no greater than the mixture density for the
histogram bins. It is a simplified version of the con-
straint that the null component is no greater than the
mixture density over the entire real line, which is much
more complicated. We note that, given the smoothness
of the mixture density, the simplified constraint suffices
in practice. It is reasonable to assume that the local
FDR is a non-increasing function near the tail areas
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Figure 7 Estimation results for simulated 2D gel images. Histograms of z-values from simulated gels, estimated mixture densities (green
solid curves) and null components (blue dashed curves) using the CME approach (left column) and the constrained estimation approach (right
column). The lower panel displays the estimated local FDR for each approach. The ‘+’ signs in the lower panel locate the observed points.
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where the z-values are farther away from the null com-
ponent. To impose this non-increasing property on the
estimation of the local FDR, the monotone spline
regression technique [34] should be utilized. We will
tackle this in our future work.
The choice of the interval [a, b] may be influential for

the estimation, especially if it is misspecified. When it is
appropriately specified, i.e., the non-null component is
nearly zero in the interval, our limited experience
showed that the proposed approach is not sensitive to
the choice of [a, b]. However, how the interval [a, b]
can affect the estimation in general needs further
research.
A quite different method for empirical null estimation

is based on Fourier analysis [35]. Rather than modeling
the mixture density, an attractive method for modeling
the local FDR directly has also been proposed [25]. The
former is non-parametric and the latter relies on para-
metric model assumptions. Both methods yield good
estimates.
We have focused on estimating the local FDR based

on test statistics. The two-component EB model is
robust to correlation effects among the test statistics. It
may be more informative to model the structure inher-
ent in the data, which is certainly a challenging problem
and relies on model assumptions. Further research is
certainly needed here.
We utilized the protein quantifications from software

RegStatGel with default settings. It should be noted that
different software may generate different quantifications
[36]. It is beyond the scope of the current paper to com-
pare different quantifications.
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