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Abstract

Background: Current approaches of predicting protein functions from a protein-protein interaction (PPI) dataset
are based on an assumption that the available functions of the proteins (a.ka. annotated proteins) will determine
the functions of the proteins whose functions are unknown yet at the moment (a.k.a. un-annotated proteins).
Therefore, the protein function prediction is a mono-directed and one-off procedure, i.e. from annotated proteins
to un-annotated proteins. However, the interactions between proteins are mutual rather than static and mono-
directed, although functions of some proteins are unknown for some reasons at present. That means when we use
the similarity-based approach to predict functions of un-annotated proteins, the un-annotated proteins, once their
functions are predicted, will affect the similarities between proteins, which in turn will affect the prediction results.
In other words, the function prediction is a dynamic and mutual procedure. This dynamic feature of protein
interactions, however, was not considered in the existing prediction algorithms.

Results: In this paper, we propose a new prediction approach that predicts protein functions iteratively. This
iterative approach incorporates the dynamic and mutual features of PPI interactions, as well as the local and global
semantic influence of protein functions, into the prediction. To guarantee predicting functions iteratively, we
propose a new protein similarity from protein functions. We adapt new evaluation metrics to evaluate the
prediction quality of our algorithm and other similar algorithms. Experiments on real PPl datasets were conducted
to evaluate the effectiveness of the proposed approach in predicting unknown protein functions.

Conclusions: The iterative approach is more likely to reflect the real biological nature between proteins when
predicting functions. A proper definition of protein similarity from protein functions is the key to predicting
functions iteratively. The evaluation results demonstrated that in most cases, the iterative approach outperformed
non-iterative ones with higher prediction quality in terms of prediction precision, recall and F-value.

Background

Assigning biological functions to uncharacterized/un-
annotated proteins is one of the major challenges in
post-genomics due to the importance of proteins in var-
ious biological processes and the high cost of biological
experiments [1]. On the other hand, new technologies
in biology have generated various high-throughput pro-
tein-protein interaction (PPI) datasets. Meanwhile, func-
tion annotation schemes which give functional
descriptions/definitions of protein functions also have
been well developed, such as the Function Catalogue
(FunCat) [2] and the Gene Ontology (GO) [3]. The
research in protein interactions in living cells [4] shows
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that proteins interact with each other, rather than work-
ing alone, to perform their functions in various biologi-
cal processes. Therefore, with the available protein
interaction datasets and function annotation schemes, it
is possible and feasible to use computational methods to
predict functions for un-annotated proteins from protein
interactions [5].

The past decade has seen a rapid development of
computational methods for predicting protein functions
from PPI datasets. To predict functions computationally,
protein interactions in a PPI dataset are usually mod-
elled as an undirected acyclic network. The nodes in the
network represent unique proteins and the edges repre-
sent the interactions between proteins [6]. With this
network model of protein interactions, various
approaches have been proposed to predict functions of
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un-annotated proteins from the available information in
the network and other related resources such as gene
microarray profiles and the GO. In this paper, we focus
our discussion on the prediction methods that are based
on the protein and protein function similarities. The
early Neighbour Counting method proposed by Schwi-
kowski et al. [7] annotated an un-annotated protein
with the functions that occurred most frequently among
its neighbour proteins. This method could be considered
as a simple similarity-based prediction method as it sim-
ply assigned similarity 1 (100%) to two proteins that
have an interaction, or O if these two proteins have no
interaction. Therefore the function scores that were
used to predict functions were based on the function
frequencies in the neighbour. Hishigaki et al. [8]
improved Schwikowski’s method by using the Chi-
Square statistics instead of frequency as a scoring func-
tion. Brun et al. [9] improved the neighbour counting
method by using a measure in graph theory to assign
weights to the edges of a PPI network, and then used
the weights as the similarities when predicting functions.
In this method, the similarity was not 1 or 0 only any-
more, it was within the range [0,1] instead. Samanta et
al. [10] intended to improve the protein similarity defi-
nition by using a new distance metric and clustering
techniques to compute the distance between two pro-
teins. Chua et al. [11] extended Brun’s and Samanta’s
ideas by including indirect neighbour proteins when
predicting functions of an un-annotated protein. In
recent years, more and more research turned to predict-
ing protein functions semantically by combining the
inter-relationships of function annotation terms in a
scheme such as GO with the topological structure infor-
mation in the PPI network. The inter-relationships are
usually represented as functional similarities between
annotation terms in the annotation scheme. To predict
protein functions semantically, various methods were
proposed to calculate functional similarities between
annotation terms [12]. For instance, Resink [13] used
the concept of information content to calculate the
semantic similarity between two GO terms. Jiang et al.
[14] and Lin [15] improved Resink’s method by scaling
the similarity to a fixed range. With the protein and
protein function similarities, some methods were pro-
posed to incorporate these similarities into the predic-
tion, such as the k-Nearest Neighbour (kNN) based
methods in [16].

The current approaches can predict functions effec-
tively to some extent for some but not all cases. In addi-
tion to the factors such as incompleteness and noisy
data of the PPI datasets, whether a computational algo-
rithm can more reasonably reflect the nature of protein
interactions will determine the quality of prediction. In
fact the existing approaches, whether they are semantic
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or not, are based on an assumption that the functions
to be predicted for an un-annotated protein are deter-
mined by the functions of annotated proteins in the
dataset. That means the prediction is mono-directed
from annotated proteins to un-annotated ones, and
once the functions of un-annotated proteins are pre-
dicted, the prediction is finished (i.e. a one-off proce-
dure). This assumption, however, only reflects one
aspect of protein interactions. As a matter of fact, in
real biological processes, proteins have high mobility
and have dynamic interplay that produces a framework
which is ever-changing but overall stable [17]. Proteins
exchange their biological signals and share functions in
a dynamic, rather than a static and mono-directed, cir-
cumstance. In other words, this dynamic feature of pro-
tein interactions should be reflected in function
prediction procedures. The existing approaches, unfortu-
nately, do not incorporate this dynamic feature into pre-
diction procedures, and therefore do not validate
whether the interactions between annotated and un-
annotated proteins have achieved a stable state after the
prediction is made.

Considering the above issues, in this paper, we pro-
pose an innovative approach to predict protein functions
iteratively. The iterative prediction method simulates the
dynamic process of protein interactions in terms of pro-
tein and function similarities when predicting functions.
Meanwhile, in our algorithm the local and global
semantic influence of the available protein functions in
the dataset is also taken into account, which more rea-
sonably counts the contribution of available functions to
the prediction results. The iterative prediction starts
with assigning initial predicted functions to the un-
annotated protein, and then calculates the initial simila-
rities between the un-annotated protein and its neigh-
bour proteins. With these initial similarities, a kNN-
based prediction method is applied to get the new pre-
dicted functions for the un-annotated protein. Replacing
the initial/old predicted functions of the un-annotated
protein, the new predicted functions are then used to
recalculate the similarities between the un-annotated
protein and its neighbour proteins for the next round of
prediction. This prediction process is repeated until the
similarities between the un-annotated protein and its
neighbour proteins reach a stable state, which represents
a dynamic stable status among the protein interactions
in terms of similarities. To guarantee the prediction
being conducted iteratively, a similarity between proteins
must be properly defined. This is also one of our contri-
butions in this paper.

The paper is organized as follows. In Section “Meth-
ods”, we present the iterative prediction algorithm in
detail. In Section “Results”, we provide the evaluation
results of our algorithm and the comparison results with
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the methods that are similar to our method. We discuss
the concerns and issues that are related to our algorithm
in Section “Discussion”. We finally conclude our work in
Section “Conclusions” and discuss some future work
about iterative approach improvement.

Methods

The idea of our prediction algorithm is to iteratively
count the contribution of the available functions in the
neighbours of the un-annotated protein to the final
determination of predicted functions. The contribution
of a function to the prediction is primarily dependent
on the number of neighbour proteins that have the
function and the similarities between the un-annotated
protein and these neighbour proteins. In our algorithm,
we also consider the similarities between the functions
in the neighbour, as well as the global and local influ-
ence of the functions, in the prediction. The details of
this iterative prediction algorithm are presented as fol-
lows. It can be seen that the base of our algorithm is
the definitions of protein similarity and protein function
similarity. Therefore, we firstly define these similarities,
and then give the prediction algorithm.

Suppose the un-annotated protein is p, we denote the
neighbour proteins of p as a set N(p). The neighbour
proteins of a protein p are those that have direct and/or
indirect interactions with p in the PPI network. In this
paper, we only select those proteins that have direct
interactions with p as the neighbour proteins of p. We
also denote the functions of a protein p’ as a set F(p’),
and the functions of all the neighbour proteins of p as
another set FN(p) = Uyen(pF(p'). We use the GO terms
[3] to annotate all the protein functions in our work.

Now we give the definitions of protein similarity and
protein function similarity. For any two proteins p and
p’, suppose the size of the set F(p) is m (i.e. the num-
ber of functions in F(p)), and the size of the set F(p’) is
n. The similarity between two proteins p and p’ is
defined as

1
i) = 5
SIm(p.P) = ax(m, n) 2 rerip) 2periy ¥ 1)

where d;p is an indicator function, i.e. if f and f are
the same, its value is 1, otherwise, it is 0.

For any two functions fand f, they can be represented as
two vectors ]7‘ and jf/ whose element values indicate the
occurrences of the GO notation terms that annotate the
functions. If the number of terms/notations in GO is ¢, the
dimension of each function vector f is then t. Since the
GO is represented as a directed acyclic graph in which a
GO term may have multiple parent GO terms, we call all
parent terms of a GO term the ancestors of the term. If a
function is annotated by a GO term, it is also annotated
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by the ancestors of the GO term. Therefore, the vector
element values at the index positions that correspond to
these ancestors are set to 1, otherwise set to 0. For exam-
ple, suppose we have five GO terms for functional annota-
tion (just for demonstration only), the function f is
annotated by the fourth term whose ancestors are the sec-
ond and third terms, and another function f is annotated
by the fifth term whose ancestors are the third and fourth
terms, then these two functions fand f can be represented

as two vectors ]7‘ =(0,1,1,1,0) and f/ =(0,0,1,1,1)
respectively.

The similarity between two functions f and f is then
defined as

fsim (f.£) = - F /AN - 1F') 2)
where fff’ is the dot production of two vectors and

||f|\ is the norm of the vector ]7 It can be seen from the

above definition that the similarity between two functions
is within the range 0 < f'sim (f,f) < 1. For the above two

function vectors ]7’ =(0,1,1,1,0) and f/ =(0,0,1,1,1)
for instance, f.# =2, [|f|| = ||f|| = +/3 and the similar-
ity between these two function is f sim (f,f) = 2/3.

With the above protein and protein function similari-
ties, the score of the un-annotated protein p being
annotated by a function fe FN(p), i.e. the contribution
of function fto the final prediction results, is defined as:

score(p.f) = 32 [sim(p.p') x (3

f'eF(p')

o fsim(f,f') x log f: N (3)

where N is the number of all proteins in the dataset
and np is the number of proteins in the dataset that
have the function f. It can be seen from the equation
(3) that the value of f sim (f,f) refers to the local impact
of available functions within the local domain N(p) on

N
the prediction results, while the value log " reflects the

f/

global impact of available functions on the prediction
results. Intuitively, if a function f is common to almost
all proteins, i.e. almost all proteins in the dataset have
the function f, then the importance as well as influence
of f decreases, otherwise it will increase.

The iterative function prediction is conducted based
on the equation (3). In fact, for each available function f
€ FN(p), its contribution to the final prediction results
is calculated by the score defined in (3). Therefore, all
the functions in FN(p) can be ordered by their scores
from the highest to the lowest, and then the first k func-
tions with the k highest scores are selected as the pre-
dicted functions of the un-annotated protein p. The
value of k is determined empirically or by the prediction
requirements. In this paper, we select k as the average
number of functions each protein has in the dataset.
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With the predicted functions of the un-annotated pro-
tein p, the similarities between the un-annotated protein
p and its neighbour proteins, i.e. sim (p,p’) in (3), as well
as the function scores are recalculated. With the recal-
culated scores, all the available functions in FN(p) are
re-ordered and a new prediction is made. This proce-
dure is repeated until the similarities between the un-
annotated protein p and its neighbour proteins achieve
a stable state.

To start the above iterative prediction procedure, we
need to assign initial functions to the un-annotated pro-
tein p, so that the similarities between the un-annotated
protein p and its neighbour proteins in (3) can be calcu-
lated. The selection of initial functions for the un-anno-
tated protein p is determined by the initial function
scores calculated by the equation (3) but with the simi-
larity sim (p,p’) = 1 for any p’ € N(p), i.e. for each func-
tion fe FN(p), its initial score is

N
(0) = i i
520 (0:) = 3 ey ey U UL < log 1 (4)

We set the threshold for initial function selection as
follows:

1
= (0)
£ size(FN(p)) ZfeFN(p) score™ (p. f) (5)

where size (FN (p)) is the number of functions in the
set FN(p). The functions whose scores calculated by (4)
are over the threshold (5) are selected as the initial pre-
dicted functions of the un-annotated protein p.

It is observed from the above iterative prediction algo-
rithm that the similarity definition of two proteins sim (p,
p)) is the key to conducting the function prediction itera-
tively. If the protein similarity is defined in other ways
rather than from protein functions, the prediction algo-
rithm based on (3) is just a normal weighted kNN algo-
rithm and the prediction cannot be conducted iteratively.
So the prediction does not reflect the dynamic features of
protein interactions, and it is just a one-off process. What
makes our algorithm different from existing algorithms is
that our protein similarity sim (p,p’) of two proteins p,p’ is
defined from their functions. With this similarity defini-
tion, the prediction algorithm based on (3) can go through
an iterative process to predict functions until the similari-
ties achieve a stable state. In other words, the prediction
algorithm with our protein similarity definition reflects the
dynamic features of protein interactions.

Results

To evaluate the effectiveness of our iterative prediction
algorithm, as well as to compare our method with other
related methods, we used a real S. Cerevisiae protein-pro-
tein interaction (PPI) dataset derived from the BioGrid site
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(http://thebiogrid.org/) to build a protein interaction net-
work for computational experiments. This dataset con-
tained 232,239 interactions. To reduce the influence of
noise data, we removed from the dataset the duplicated
interactions, self interactions and all proteins that do not
have GO annotation information. The filtered dataset for
the experiments then contained 4,905 proteins, 3,260 GO
terms and 155,662 interactions. The GO terms [3] and
GO annotation dataset [18] used in the experiments were
downloaded from http://www.geneontology.org/. We only
used the biological process ontology and the GO annota-
tions of S. Cerevisiae in our experiments.

Usually, the quality of a prediction algorithm is evalu-
ated by its precision, recall and F-value, which are
defined as follows:

L N 2 x Precision x Recall
Precision = (6)

Recall = NP, F — value = .
R Precision + Recall

where Np is the number of correctly predicted func-
tions for a given protein p, N, is the number of all pre-
dicted functions for protein p, Ny is the number of real
functions of protein p. For these evaluation metrics, Np
is usually the number of predicted functions that exactly
match the real functions. However, the function annota-
tions of proteins have their specific features in the con-
text of an annotation scheme such as the GO. It is
known that the GO terms are organized in a hierarchi-
cal structure with the nodes representing the GO terms
and the edges representing ancestor-child relationships.
If a protein p is annotated by a node, it is also annotated
by all ancestor nodes of that node. The ancestors of a
node mean the more general function categories in biol-
ogy. In other words, if two functions share some ances-
tors in the GO structure, even if they are not exactly
the same, they are still similar to some extent at higher
levels of functional categories. Therefore in our evalua-
tions, in addition to evaluating how many functions we
can predict that exactly match the real functions, we
also evaluated to which extent the predicted functions
are similar to the real functions over the function ances-
tor terms in GO. For this purpose, we adapted the eva-
luation method in [19] with our function similarity for
algorithm evaluations. Actually, for a protein, suppose
its real functional annotations are {f,1, foo fo3,-» fon}, and
the predicted functional annotations are {f,1, fp2, fp3) s
Jfom}- The success of the prediction for a real function f,
(i = 1, ..., n) is defined as:

RecallSuccess(foi) = max;f sim (foi, fpi)

and the success of a predicted function f,; (j = 1, ...,
m) is defined as:

PrecisionSuccess(fy;) = max;f sim(foi, fp;)
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The measures of new recall and precision are defined
as follows:

3" RecallSucess(fyi)
i f sim(foi, foi)

> PrecisionSucess(fy;)

Recall = 2 f sim(fyj. f) @

Precision =

The new F-value is defined as before but with the
above new recall and precision definitions. These new
recall and precision measures do make sense in biology
because although two proteins interact with each other,
they do not necessarily have the exact same functions,
but they might be in more general function categories
(i.e. the ancestors in GO). Therefore, the above new
measures of recall and precision are more reasonable
when assessing prediction quality in real biological
applications.

Since our iterative algorithm is based on the cosine
similarity between two function vectors, we named our
algorithm the Cosine Iterative Algorithm (CIA). Due to
the lack of existing similar iterative prediction algo-
rithms, in our evaluation, we compared our CIA with
two algorithms that were also based on the kNN
method. One is Neighbour Counting (NC) [7] which
predicted functions in the same way as the initial func-
tion prediction in our algorithm, but without iterations.
Another one is the Iterative Neighbour Counting (INC)
algorithm. The details of INC algorithm are as follows.
We intended to evaluate whether the iterative approach
(i.e. CIA and INC algorithms) produced better predic-
tion results than the non-iterative approach (i.e. NC),
and whether the cosine similarity based iterative algo-
rithm (i.e. CIA) was better than the neighbour counting
based iterative algorithm (INC).

With the INC algorithm, the score of a function f e
FN(p) being assigned to the un-annotated protein p is
calculated as follows:

score(p,f) =) lsim(p.p') x Iy

p'eN(p)

where the function I, is defined as follow

C[1feF@)
by = {Of ¢ F(p)

The initial score is calculated as follows:

score(p.f) =Dl £ € EN(p).

The initial function selection for kicking off the itera-
tive function prediction, as well as the iterative predic-
tion procedure, is similar to our algorithm described
above.

In our previous work [20], we have already compared
the INC algorithm with another iterative algorithm that
was based on Lin’s similarity [15] of protein functions,
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i.e. the Iy, in the above INC algorithm was replaced by
the Lin’s similarities between functions. Our previous
evaluation results showed that the INC algorithm out-
performed the Lin’s similarity-based iteration algorithm
in terms of precision, recall and F-value when predicting
protein functions from different protein interaction
datasets. Therefore in this paper, we focused on the
comparison of CIA algorithm with the INC algorithm
with respect to the iterative prediction quality.

Figures 1, 2 and 3 give the experimental results of the
algorithms CIA, INC and NC regarding the recall, preci-
sion and F-value evaluations respectively. We chose five
functions that had the first five highest scores as the
prediction results in the evaluation, as the average num-
ber of functions each protein had in the dataset was
around five. The evaluation was conducted on randomly
selected test datasets with different sizes, ranging from
20 to 200. It was observed from the experimental results
that iterative algorithms, CIA and INC, outperformed
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Figure 3 F-value chart of three algorithms. Figure 5 Recall-Precision chart of three algorithms using new
evaluation metrics in cross-validation experiments.

the non-iterative algorithm NC. For the iterative algo-
rithms, the CIA algorithm performed better than the
INC algorithm in terms of precision, recall and F-value.
Meanwhile, the CIA algorithm was stable across the
datasets, especially the large datasets.

To further evaluate the effectiveness of our algorithm,
we conducted ten-fold cross-validation experiments.
The original protein dataset was randomly divided into
ten parts in the experiments. For each round of valida-
tion, one part was treated as a testing dataset and the
remaining nine parts were treated as training datasets.
The evaluation results for the three algorithms in terms
of precision-recall are shown in Figures 4 and 5 respec-
tively, where Figure 4 used the original definitions of
precision and recall (6) and Figure 5 used the new defi-
nitions of precision and recall (7). The results demon-
strated that the overall performance of our iterative
prediction algorithm CIA was better than the other
algorithms for both original and new definitions of pre-
cision and recall.
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Figure 4 Recall-Precision chart of three algorithms using
original evaluation metrics in cross-validation experiments.
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We also conducted cross-validation experiments on
the protein interaction networks inferred by Affinity-MS
and Two-Hybrid assays in the original BIOGRID data-
base. The evaluation results for the three algorithms in
terms of precision-recall are shown in Figures 6 and 7
respectively. The results also demonstrated that our
algorithm CIA outperformed the other algorithms.

To demonstrate the effectiveness of our iterative
approach, in Table 1 we provide some randomly
selected sample prediction results from our iterative
algorithm and the NC algorithm. It can be clearly seen
from Table 1 that for most of the proteins, the iterative
algorithm predicted an increasing number of correct
functions when compared with the non-iterative
algorithm.

Discussion
In this section, we discuss the concerns and issues
related to our algorithm. The first concern is about the
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convergence of our iterative prediction algorithm. As
stated in the section “Methods”, the iterative prediction
is based on iteratively updating the function scores cal-
culated by equation (3). It can be seen from equation
(3) that the score of a function fis determined by two
factors, one is the influence of the function f, i.e.

N
sim(f,f) x log ", anoth is the similar-
Zf/EF(p/)f (f.f) g ny another one is the similar

ity between the un-annotated protein p and its neigh-
bour proteins, i.e. sim (p,p’). For a given function fe FN
(p), its influence is fixed and will not be changed with
the iterations. Therefore, the convergence of the algo-
rithm depends on whether the similarities sim (p,p’),
where p’ € N(p), will be stable after finite iterations. In
fact, according to equation (1), the similarity between
two proteins depends on the functions they possess.
Once their functions, especially the functions of the un-
annotated protein p, are fixed, their similarity is fixed or
stable. From the iterative algorithm, it can be seen that
the final predicted functions should be those that have
the highest influence and are highly similar to the func-
tions of those proteins that are highly similar to the un-
annotated protein p. However, those functions with an
average influence but are highly similar to the functions
of those proteins that are highly similar to the un-anno-
tated protein p, or those functions with a higher influ-
ence but are on average similar to the functions of those
proteins that are highly similar to the un-annotated pro-
tein p, are also the candidates of predicted functions.
The initial function selection of the iteration algorithm
only selects the most frequent functions that have the
higher influence, without considering the impact of the
protein similarity on the prediction results. After the
first round of iteration, those functions are selected that
have the highest influence and are highly similar to the
functions of those proteins that are highly similar to the
un-annotated protein p. As indicated above, since the
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neighbour of the protein p and the influence of the
selected functions are fixed, the functions with the high-
est scores after the first round of iteration will still keep
the highest scores in other iterations once they are
assigned to the protein p, because the highest scored
functions and protein similarities endorse each other in
the iterations. Therefore, the second round of iteration
is to select those candidate functions that have the sec-
ond highest scores, and so on. That means the highest
scores from the previous iteration will not be changed
in the next iteration. Since the number of predicted
functions is finite, after finite iterations (the number of
iterations is less than or equal to the predefined number
of predicted functions) the similarities between the un-
annotated protein p and its neighbour proteins will not
be changed any more, i.e. be stable. Therefore, the itera-
tive algorithm is convergent. Our experiments also
demonstrated that usually after two or three iterations,
the predicted functions are stable.

Another concern about the iterative algorithm is
whether the prediction results are sensitive to the initial
function selection and the value of parameter k which
determines the number of predicted functions. As ana-
lyzed above, the algorithm predicts functions by iteratively
adjusting the similarities between the un-annotated pro-
tein and its neighbour proteins, and calculating the func-
tion scores. This iterative process has no specific
constraints on the selection of initial functions, provided
the candidate functions for iterations are selected as many
as possible. Theoretically, we can select all available func-
tions within the neighbour of the un-annotated protein as
the initial functions for iterations. In our algorithm, we
select initial functions according to their influence. This
selection method is based on our prediction algorithm
and an assumption that functions with higher influence
are more likely to be the candidates of predicted func-
tions. Therefore, this initial function selection method
concentrates on those most likely candidate functions and
reduces the computational cost. Our observation from
the experiments demonstrated the effectiveness and effi-
ciency of this initial function selection method, as we did
not see significant differences between the prediction
results produced from the method that selects all available
functions in the neighbour as the initial functions and the
prediction results produced from our initial function
selection method. We believe that other existing predic-
tion algorithms can also be used to select initial functions
for our algorithm. Regarding the value of parameter k in
the prediction, it is obvious that its value has impact on
the prediction precision and recall, as well as the F-value.
Ideally, this parameter value should be determined objec-
tively. We tried to determine this value to be the number
of functions whose scores were above the average score,
or by ranking the function scores first and then
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Table 1 Sample prediction results
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Protein Real Function NC Iteration GO description

YGR285C GO:0006417 GO:0006417 GO:0006417 Regulation of translation
GO:0006450 X GO:0006450 Regulation of translational fidelity
GO:0006457 X X Protein folding

YGLO22W GO:0006486 X GO:0006486 protein amino acid glycosylation
GO:0006487 GO:0006487 GO:0006487 protein amino acid N-linked glycosylation
G0:0018193 GO:0018193 GO:0018193 peptidyl-amino acid modification
G0:0009100 X GO:0009100 glycoprotein metabolic process

YPR180OW GO:0006974 X GO:0006974 response to DNA damage stimulus
GO:0008152 X X metabolic process

YKL18TW GO:0006015 GO:0006015 GO:0006015 5-phosphoribose 1-diphosphate biosynthetic process
GO:0009117 GO:0009117 GO:0009117 nucleotide metabolic process
GO:0009156 GO:0009156 GO:0009156 ribonucleoside monophosphate biosynthetic process
GO:0009165 GO:0009165 GO:0009165 nucleotide biosynthetic process
G0:0031505 GO:0031505 GO:0031505 fungal-type cell wall organization
G0:0043093 X GO:0043093 cytokinesis by binary fission

YGLO78C GO:0006364 GO:0006364 GO:0006364 rRNA processing
GO:0000027 X G0:0000027 ribosomal large subunit assembly
GO:0009451 X X RNA modification

YDR306C GO:0006511 X GO:0006511 ubiquitin-dependent protein catabolic process

YGR043C GO:0005975 GO:0005975 GO:0005975 carbohydrate metabolic process
GO:0008152 GO:0008152 GO:0008152 metabolic process
GO:0006098 X GO:0006098 pentose-phosphate shunt
GO:0006914 X X Autophagy

YJR140C GO:0006350 GO:0006350 GO:0006350 Transcription
G0O:0045449 GO:0045449 GO:0045449 regulation of transcription
GO:0006368 X GO:0006368 RNA elongation from RNA polymerase Il promoter
G0O:0006336 X X DNA replication-independent nucleosome assembly
GO:0000083 X X regulation of transcription involved in G1/S phase of mitotic cell cycle

YLRO86W GO:0007076 G0O:0007076 GO:0007076 mitotic chromosome condensation
GO:0007049 GO:0007049 GO:0007049 cell cycle
G0:0007067 GO:0007067 GO:0007067 Mitosis
GO:0051301 GO:0051301 GO:0051301 cell division
GO:0000070 GO:0000070 GO:0000070 mitotic sister chromatid segregation
G0:0030261 X GO:0030261 chromosome condensation
G0:0070058 X X tRNA gene clustering
GO:0051276 X X chromosome organization

YJR065C G0:0048308 GO:0048308 G0:0048308 organelle inheritance
GO:0007015 GO:0007015 GO:0007015 actin filament organization
GO:0000001 GO:0000001 GO:0000001 mitochondrion inheritance
G0:0030833 X G0:0030833 regulation of actin filament polymerization
GO:0034314 X X Arp2/3 complex-mediated acting nucleation

Note: X stands for a not-predicted function. These sample results show that the iterative approach predicted more correct functions than the non-iterative
approach. For instance, the NC algorithm predicted only one correct function for protein YGR285C, while the iterative algorithm predicted two correct functions;
the NC algorithms failed in predicting any correct functions for protein YPR180W, however one function was correctly predicted by the iterative algorithm.

determining the value of k to be the number of functions
whose scores did not decrease sharply (e.g. less than 50%)
between two adjacent functions in the ranking list. Our
experiments showed that the current method of deter-
mining the value of &, i.e. the value of k is the average

number of functions each protein has in the neighbour,
achieved the best prediction results compared with other
methods we tried. Whether there are better methods for
determining the value of k is an issue we will address in
the future research.
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Conclusions

This paper proposed a novel iterative approach trying to
incorporate dynamic features of protein interactions
into the protein function prediction. The iterative pre-
diction algorithm also takes into account the local and
global semantic influence of available functions within
the protein interaction dataset on the prediction results.
Therefore our approach is more likely to reflect the real
biological nature between proteins when predicting
functions. We adapted new evaluation metrics accord-
ingly to evaluate the prediction quality of our algorithm
and other similar algorithms. The evaluation results
demonstrated that in most cases, the iterative approach
outperformed non-iterative ones with higher prediction
precisions and recalls. The prediction results also
showed the feasibility and effectiveness of the proposed
iterative approach. Since the iterations of the prediction
algorithm occur within the neighbour of the un-anno-
tated protein only, our iterative prediction algorithm can
be scaled to other larger protein databases. It is con-
cluded that the functions of an un-annotated proteins
are mainly determined by the functions within the local
domain (e.g. the neighbour) of the un-annotated protein,
and those functions that are highly similar to all func-
tions in the local domain and rare within the whole
dataset are more likely to be the predicted functions of
the un-annotated protein.

As we noticed, in our algorithm the prediction is
based on the neighbour proteins of the un-annotated
protein and their available information. In this paper,
we only select those proteins that directly interact with
the un-annotated protein as the neighbours. This neigh-
bour selection method might lead to the genuine func-
tions of the un-annotated protein being excluded from
the final predicted functions. Further research is needed
to select neighbours more reasonably to improve the
prediction quality while reducing the impact of noise
data. Another issue that comes to our notice is that in
our algorithm we use a simple method to calculate the
similarity of two proteins from their functions. Although
this similarity calculation method significantly reduces
the computational cost, it might not be able to precisely
reflect the real similarity between proteins. Certain
aggregation methods that make use of different data
sources could be used to derive a more precise and rea-
sonable protein similarity, and in turn, improve the pre-
diction quality.
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