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Abstract

Background: To utilize the large volume of gene expression information generated from different microarray
experiments, several meta-analysis techniques have been developed. Despite these efforts, there remain significant
challenges to effectively increasing the statistical power and decreasing the Type I error rate while pooling the
heterogeneous datasets from public resources. The objective of this study is to develop a novel meta-analysis
approach, Consistent Differential Expression Pattern (CDEP), to identify genes with common differential expression
patterns across different datasets.

Results: We combined False Discovery Rate (FDR) estimation and the non-parametric RankProd approach to
estimate the Type I error rate in each microarray dataset of the meta-analysis. These Type I error rates from all
datasets were then used to identify genes with common differential expression patterns. Our simulation study
showed that CDEP achieved higher statistical power and maintained low Type I error rate when compared with
two recently proposed meta-analysis approaches. We applied CDEP to analyze microarray data from different
laboratories that compared transcription profiles between metastatic and primary cancer of different types. Many
genes identified as differentially expressed consistently across different cancer types are in pathways related to
metastatic behavior, such as ECM-receptor interaction, focal adhesion, and blood vessel development. We also
identified novel genes such as AMIGO2, Gem, and CXCL11 that have not been shown to associate with, but may
play roles in, metastasis.

Conclusions: CDEP is a flexible approach that borrows information from each dataset in a meta-analysis in order
to identify genes being differentially expressed consistently. We have shown that CDEP can gain higher statistical
power than other existing approaches under a variety of settings considered in the simulation study, suggesting its
robustness and insensitivity to data variation commonly associated with microarray experiments.
Availability: CDEP is implemented in R and freely available at: http://genomebioinfo.musc.edu/CDEP/
Contact: zhengw@musc.edu

Background
Investigating transcription profile by microarray technol-
ogy has been one of the most promising genomic
approaches in the last decade. Thousands of microarray
experiments were performed for this purpose and their
data made available through databases such as Gene
Expression Omnibus, ArrayExpress and Stanford

Microarray Database [1-3]. To utilize this massive
amount of information, investigators have developed dif-
ferent meta-analysis techniques–parametric approaches
such as t-statistic [4,5]; Fisher’s inverse Chi-square
approach [6]; Bayesian [7-9], and non-parametric
approaches [10,11]. However, these approaches still face
many challenges in combining data from different
sources [12,13]. For example, parametric Bayesian mod-
els used in meta-analysis [7,8] are not appropriate due
to the small sample size for many datasets, as suggested
by Kong et al. [11]. On the other hand, non-parametric
methods such as RankProd-based meta-analysis
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approach (Meta-RankProd) [14,15] can be significantly
influenced by the size of the dataset and hence biased
toward genes that are only differentially expressed in a
dataset with a large number of samples–an undesirable
outcome for studies where the objective is to find genes
with differentially expressed patterns common across
the datasets. The method of Rhodes et al. [16], which
we refer to as Meta-Profile, combines a parametric and
non-parametric approach and gives equal weight to each
dataset when counting the number of times a gene is
identified as differentially expressed in all datasets. How-
ever, this is a significant simplification because the
resulting power to identify differentially expressed genes
and Type I error rate (i.e. false positive rate) vary by
dataset according to sample size and proportion of
genes truly differentially expressed [17]. The challenges
faced by these methods are particularly evident when
identifying genes differentially expressed across different
cancer types by pooling datasets from various sources.
These datasets typically have small sample sizes [18]
and the analyses are influenced by cancer-type and/or
cancer-subtype specific effects [16,19,20]. In addition,
some methods such as Meta-RankProd do not handle
varying numbers of differentially expressed genes from
different datasets–an issue that needs to be addressed
for a meta-analysis approach to be robust.
The objective of this study is to develop a robust

meta-analysis approach to identify genes with consistent
differential expression patterns across different datasets.
In our study, we combined FDR and the non-parametric
RankProd approach to estimate the Type I error rate in
each dataset. The estimated rates from all datasets were
combined using a Bernoulli likelihood to identify genes
with common expression pattern. The robustness of this
approach in obtaining high statistical power was shown
by simulation studies. We then applied the method to
analyze different microarray data that compared gene
expressions between metastatic and primary cancers and
identified a core gene set that is critical to cancer metas-
tasis across different cancer types. Our analysis identi-
fied many genes annotated in pathways that are related
to metastasis, as well as novel genes that have not been
shown to associate with, but may play roles in, metasta-
sis. Further sensitivity analysis indicates that the method
is robust and can be applied to other datasets for similar
analyses.

Results
Consistent differential expression pattern (CDEP)
The key components of CDEP are the application of: 1)
consistent FDR across datasets to identify significant
genes [16,21]; and 2) non-parametric rank product
(RankProd) approach to identify differentially expressed
genes from microarray experiments [10]. By first using a

consistent FDR to estimate the Type I error rates in
each dataset, CDEP avoids overemphasizing datasets
with large sample sizes–a drawback of a previous Rank-
Prod-based meta-analysis approach (Meta-RankProd)
[14]. CDEP then uses the error rates from all datasets to
identify genes with consistent differential expression pat-
terns. Figure 1 shows the workflow of CDEP.
Specifically, let dataset i, i = 1, 2, ..., D, consist of gene

expression levels for mi and ni samples in each of two
conditions, respectively (e.g. mi cases and ni controls).
For dataset i, the geometric mean rank of gene g = 1, 2,
..., G was computed across all mini = Hi pairwise com-
parisons for up-regulation:
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γ̄ down
gi =

(∏Hi

h=1
γgih

down
)1/Hi

(1b)

where ggih is the rank of fold change for gene g in the
hth comparison of dataset i, h = 1, 2, ..., Hi. Genes with
the smallest RankProd values (γ̄gi) are more likely to be
the differentially expressed genes.
We then computed the RankProd p-values and FDRs

for up- and down-regulations for each gene in every
dataset [10]. Briefly, we used permutation of the sample
labels (e.g. case/control) to estimate false positives and
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Figure 1 The workflow of CDEP. Each “plate” in the figure
represents an instance of gene (g = 1,2,...G), dataset (i = 1,2,...D), or
dataset local FDR threshold (l Î (0,1)). This workflow diagram only
illustrates how to identify consistently up-regulated genes, but the
same procedure was applied to identify consistently down-
regulated genes.
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the p-value by counting the number of times we
observed the permutations’ RankProd values smaller or
equal to the experiment’s RankProd value. The FDR of a
gene was then estimated by dividing the p-value by the
rank of the RankProd value [10]. Each gene in every
dataset was thus associated with an FDR, Fgiup(Fgidown),
for being up(down)-regulated. For genes not present in
the platform of a dataset, the median FDR value com-
puted for that dataset was assigned.
This computation in CDEP was performed using the

Bioconductor [22] package RankProd [15], as Hong and
Breitling [14] indicated that RankProd is more reliable
than other existing approaches (see also Additional File
1, Figure S1). The FDR threshold (l) is defined as the
proportion of false positives among the genes declared
to be positives for each dataset. Given an FDR threshold
(l), we counted the number of genes identified to be
up-regulated:

dil
up =

∑
g

I(Fupgi < l) (2a)

and down-regulated:

dil
down =

∑
g

I(Fdowngi < l) (2b)

Therefore, the number of false positives in a dataset
could be estimated as fil

up ≈ l ∗ dupil( fil
down ≈ l ∗ ddownil).

To estimate the proportion of genes that are up-regu-
lated, non-differentially expressed, and down-regulated,
we used a Beta mixture to model the genes’ p-values for
over (under)-expression in each dataset (see details of
the Beta mixture model in Methods). We adopted the
Beta mixture model because the p-values calculated
from our non-parametric approach do not have a uni-
form distribution for non-differentially expressed genes
(Figure 2), in contrast to a previous mixture model
based on this assumption [23]. The Beta mixture model
and the estimation of the proportion of differentially
expressed genes used the Markov Chain Monte Carlo
(MCMC) technique implemented in the BUGS program
[24]. Our implementation uses WinBUGS [25] on the
Windows platform, but OpenBUGS [26] can be used on
Linux or Mac platforms (with Wine).
For each dataset, the false positive rate is defined as

the probability of a non-up-regulated (non-down-regu-
lated) gene being falsely called as over-expressed
(under-expressed):

(r̂downil ≈ fil
down/Mdown

i)(r̂downil ≈ fil
down/Mdown

i), where

Mup
i (Mdown

i) are the number of genes that are not up
(down)-regulated in dataset i respectively, estimated by
the Beta mixture model. Based on this rate and using
independent Bernoulli distributions, we calculated the

likelihood of a gene to be falsely identified as over or
under-expressed among the datasets for each FDR
threshold l, that is, the likelihood for false positives
among the significant genes identified as
up-regulated:
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and down-regulated:
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where the binary variable δ
up
gil (or δdowngil ) indicates

whether gene g is identified to be up(or down)-regulated
in dataset i for threshold l. To prevent underflow during
computation, we worked with the minus log likelihood,

Q, e.g. for up-regulation Qup
gl = − ln[L(rupgl |Data)]. We

took into consideration of multiple FDR thresholds l by
specifying a probability density function (PDF) for l, p(l),
lÎ(0, 1) and using the expected value of Q(l) to assess
whether the gene is consistently over-expressed among
the datasets. In this assessment, low l values were
emphasized because low FDR represents a higher pro-
portion of true positives, and we used the linear
decreasing function: p(l) = -2l + 2. The expected log
likelihood across the FDR threshold is:

ELupg =
∫ 1
0 Qup

gl p(l)dl, which was approximated by discre-

tizing the range of FDR value (l) into one hundred bins

                          t-test (up-regulation)                                        t-test (down-regulation) 
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Figure 2 The distributions of p-values computed by t-test and
RankProd test. We compared the parametric t-test and the non-
parametric rank product approaches to test which of these p-value
(computed from one-sided test) calculation is robust for identifying
truly differentially expressed genes (p = q = 0.05; |Δ| = 0.5).
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with equal width and using the rectangular rule. The
same procedure was also performed for down-regula-
tion. The procedure was evaluated by estimating the
false discovery rate (FDRg) of observing the above
expected log likelihood. Here, the FDRg is the propor-
tion of false positives among the genes identified to be
consistently differentially expressed. The “null log likeli-
hood” was computed by permuting the Fgiup and Fgidown

values relative to the genes within each dataset and per-
forming the same above procedures to calculate the
expected value of the “null log likelihood” in each per-
mutation b for every gene (ELbg). In b permutations, the
FDRg of a gene could be determined as:

FDRg =
(1/B)

∑
b

∑
g′ I(ELg ≤ ELbg′)∑

g′ I(ELg ≤ ELg′)
(4)

The robustness of CDEP in distinguishing different
gene expression patterns is shown in Figure 3 where the
minus log likelihood value Q was plotted against l.
Genes that are not differentially expressed in all datasets
(GN) have the lowest Q values, while genes that are dif-
ferentially expressed only in some datasets (GC) have
higher Q values, and genes that are differentially

expressed in all the datasets (GM) have the highest Q
values. For GN, the Q values increase slightly with l.
This is because when l increases, the likelihood value
decreases as more GN are falsely called differentially
expressed. Moreover, even at high l many GN are not
declared differentially expressed. On the other hand, the
Q values of both GC and GM decrease when l increases.
As l increases, r and the likelihood (L) increase, giving
rise to a decreasing Q. Note that the Q values for all 3
types of genes go to zero when l = 1. This is because, in
this situation, all genes in the array would be declared
as differentially expressed and both r and L have values
of one. Figure 4 shows the expected minus log likeli-
hood (EL) for the three types of genes, indicating CDEP
is robust in identifying genes that show common differ-
ential expression pattern across different datasets. These
genes have higher EL values than the other two types of
genes.

Comparisons with other approaches
We compared CDEP with Meta-Profile and Meta-Rank-
Prod in a simulation study. Briefly, Meta-Profile is based
on the number of times a gene is declared differentially
expressed among the datasets, and Meta-RankProd uses
the rank product among all datasets. Both approaches
use permutation to estimate the false discovery rate for
the genes as being differentially expressed consistently
among the datasets. Simulation scenarios were deter-
mined by three key parameters: the proportion of

Figure 3 Log likelihood and FDR plot. Minus log likelihood versus
the FDR threshold (l) for different genes in one of the simulated
data (proportion of cancer-type specific and metastatic related
differentially expressed genes: p = q = 0.1; degree of effect: |Δ| = 1).
FDR is the proportion of false positives among genes declared to
be differentially expressed for each dataset. The dotted line
represents genes that are consistently differentially expressed, solid
line represents genes that are differentialy expressed only in specific
dataset, and dashed line represents non-differentially expressed
genes. The three lines show the mean, and the vertical bars show
the standard deviation of the Q values for the three types of genes
at the given FDR. For clarity, only the upper bars are shown.

Figure 4 Boxplots for the expected likelihood. The boxplots for
the expected likelihood (EL) of the three categories of genes: genes
that are consistently differentially expressed, genes differentially
expressed in only a certain dataset, non-differentially expressed
genes. The ranges and the quartiles are shown. The width of the
boxplot is drawn proportional to the square-root of the number of
observations. p = q = 0.1, |Δ| = 1.
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differentially expressed genes that are dataset-specific
(p), the proportion of genes that are consistently differ-
ently expressed (q), and the mean difference between
the expression values in the two conditions being com-
pared (Δ) (See “Simulation of Microarray data” in Meth-
ods and Simulation Section in Additional File 1 for
details). Table 1 reports the statistical power and Type I
error rate of the three meta-analysis approaches, where
statistical power is defined as the sensitivity of detecting
genes that have consistent differential expression pat-
terns across datasets. The results show that raising FDR
increases the statistical power and Type I error rate for
all three approaches. Increasing the mean difference (|
Δ|) between the two conditions (e.g. case vs. control) of
the differentially expressed genes also improves sensitiv-
ity. In addition, the impact of the proportion of GM on
CDEP and Meta-RankProd is obvious: the higher the
proportion of GM (i.e., q), the lower the statistical power
and Type I error rate. The reason is that obtaining FDR
for these two approaches requires permutation and
recalculation of ELgb and RPb

g. After permutation, origi-
nal GM genes would act as GC in CDEP and GN in
Meta-RankProd. As a result, when there is a higher pro-
portion of GM from the datasets, including these genes
to estimate FDR would potentially lead to over-estima-
tion because the variance of these genes is different
from the non-differentially expressed genes [27]. There-
fore, under the same FDR, the statistical power and the

Type I error would be lower for higher q in CDEP and
Meta-RankProd, especially when comparing q = 0.1 with
q = 0.2. In contrast, Meta-Profile takes a relatively con-
servative approach, and is insensitive to genes that do
not have consistent differential expression patterns.
However, the tradeoff is the loss in statistical power. As
shown in Table 1, even though the Type I error rate is
amongst the lowest of the three approaches, the Meta-
Profile method has the lowest statistical power. Overall,
CDEP emerges as a robust meta-analysis method that
obtains comparably high statistical power while main-
taining low Type I error rate under different simulated
conditions (see Additional File 1, Section 3: Comparison
Between Different Approaches for Genes Appearing in
Different Numbers of Datasets. More simulation results
can be found in Additional File 2).

Using CDEP to identify a core gene set that is
differentially expressed in Metastatic cancer
We used CDEP to investigate the hypothesis that there
exists a core gene set differentially expressed consis-
tently in different types of metastatic cancer cells. Six
different types of cancer were investigated for this pur-
pose (Table 2) [28-34]. Totally there are 220 samples, of
which 126 are from primary and 84 from metastatic
cancer, respectively. The diversity of these datasets (i.e.
a wide variety of labs, different numbers of samples and
probesets for different experiments, etc.) make them

Table 1 The Power and Type I error of CDEP, Meta-Profile and Meta-RankProd from simulation study.

CDEP Meta-Profile Meta-RankProd

p q |Δ| FDR Power (%) Type I error Power (%) Type I error Power (%) Type I error

0.05 0.05 1 0.05 28.7 1.64 × 10-4 6.40 1.92 × 10-6 23.7 1.21 × 10-2

0.1 31.0 3.52 × 10-4 9.10 1.92 × 10-6 24.5 1.23 × 10-2

0.2 70.2 2.21 × 10-3 11.9 1.35 × 10-5 27.2 1.27 × 10-2

2 0.05 33.4 2.02 × 10-4 15.4 1.35 × 10-5 33.2 1.18 × 10-2

0.1 34.3 4.22 × 10-4 15.6 1.73 × 10-5 45.0 1.24 × 10-2

0.2 74.9 2.28 × 10-3 18.2 2.31 × 10-5 56.3 1.38 × 10-2

0.1 0.1 1 0.05 26.2 2.29 × 10-4 8.93 2.84 × 10-6 23.6 2.29 × 10-2

0.1 27.8 5.31 × 10-4 11.4 4.88 × 10-6 24.4 2.31 × 10-2

0.2 33.1 1.84 × 10-3 13.4 1.12 × 10-4 26.7 2.36 × 10-2

2 0.05 32.8 2.99 × 10-4 15.6 5.90 × 10-5 27.0 2.34 × 10-2

0.1 33.1 6.02 × 10-4 18.2 1.16 × 10-4 32.2 2.39 × 10-2

0.2 36.8 2.08 × 10-3 23.6 2.32 × 10-4 46.4 2.56 × 10-2

0.05 0.1 1 0.05 28.2 1.61 × 10-4 8.00 8.12 × 10-6 24.3 1.16 × 10-2

0.1 29.5 3.11 × 10-4 10.7 1.83 × 10-5 25.7 1.18 × 10-2

0.2 66.5 1.78 × 10-3 13.0 2.64 × 10-5 29.7 1.22 × 10-2

0.1 0.2 1 0.05 21.8 9.36 × 10-5 10.3 4.35 × 10-5 23.3 2.33 × 10-2

0.1 26.3 4.68 × 10-4 12.5 9.14 × 10-5 23.5 2.34 × 10-2

0.2 31.7 1.61 × 10-3 14.0 1.94 × 10-4 24.3 2.36 × 10-2

p is the proportion of genes differentially expressed only in a certain dataset, and q is the proportion of consistently differentially expressed genes; Δ is the
simulated mean difference between the expression values in case and control condition for the differentially expressed genes. FDR is the proportion of false
positives among the genes identified to be consistently differentially expressed across all datasets. The results in the table are the mean values of 10 different
simulated datasets. Additional simulation results can be found in Additional File 2.

Tsoi et al. BMC Bioinformatics 2011, 12:438
http://www.biomedcentral.com/1471-2105/12/438

Page 5 of 12



ideal for assessing the robustness of CDEP and explor-
ing our hypothesis. We used RMA [35] to pre-process
the raw data for each dataset, and the median expres-
sion value of the probesets matching to the same Entrez
gene id was used as the expression level for the gene.
At FDR ≤ 0.05, CDEP identified 239 genes that are

differentially expressed consistently between the primary
and metastatic cancer conditions across different cancer
types. Out of these 239 genes, 141 were up-regulated
and 98 down-regulated (Additional File 3). Table 3
shows the 5 most significantly up- and down-regulated
genes identified. Using the same FDR criterion, we also
performed meta-analysis by Meta-Profile and Meta-
RankProd. Both CDEP and Meta-RankProd recovered
the same two significant genes (BSG and SLC25A1)
identified by Meta-Profile, and 180 genes were identified
by both CDEP and Meta-RankProd (Meta-RankProd
identified 2,967 significant genes. See Additional File 1,
Figure S7 for details). A list of these genes identified by
the three methods can be found in Additional File 4.
These results further support using CDEP for meta-ana-
lysis to select candidate genes: Meta-Profile has insuffi-
cient statistical power, and Meta-RankProd tends to
have high false positive rates. On the other hand, CDEP
has the advantages of maintaining statistical power and
keeping low false positive rates for identifying genes that
are differentially expressed consistently.
The functional annotation of the 239 genes identified by
CDEP is consistent with previous findings that many of
them are involved in cancer metastasis. For instance,
GPNMB overexpresses in a breast cancer cell line that
could aggressively metastasize to bone [36], and SPP1’s
expression level (also called Osteopontin) is elevated in
a variety of metastatic cancers [37], including colon

cancer [38], hepatocellular carcinoma [39], and gastric
cancer [40]. Among the down-regulated genes, the
expression level of SERPINB5 is negatively associated
with the depth of invasion, metastasis, and TNM stage
in gastric cancer [41]. Interestingly, SERPINB5 also inhi-
bits invasion and metastasis of epithelial ovarian cancer,
which suggests its down-regulation could promote
metastasis [42]. MX1 was also predicted to have an inhi-
bitory effect on tumor cell motility and invasion, an
essential attribute for metastatic behavior. While most
of these previous findings are specific to different cancer
types, analysis from CDEP indicates that these genes
could play important roles in metastatic mechanism
common to all types of cancers.
The function of these 239 genes were further investi-

gated by DAVID [43] through Gene Set Enrichment
Analysis, using all genes present in the microarray plat-
form as background. The results indicate that the up-
regulated genes in metastatic cancer cells are enriched
in extracellular matrix (ECM) receptor interaction, focal
adhesion, and angiogenesis, while down-regulated genes
are enriched in genes functioning in immune and
inflammatory response (Table 4), and these include
laminin, fibronectin, collagen, multimerin, caveolin, etc..
Figure 5 shows the CDEP identified genes mapped to
the ECM receptor interaction and focal adhesion path-
ways. It is widely recognized that these pathways contri-
bute to the aggressiveness and the metastatic behavior
of cancer cells [44].
Not only had CDEP identified genes known to be

involved in cancer metastasis, but also it discovered
novel genes that have not been implicated in metastatic
mechanism. For example, AMIGO2 , a gene identified as
differentially expressed by only CDEP out of the three

Table 2 Description of the six microarray datasets used

Cancer Type Number of samples Number of Metastatic samples Affymetrix Platform Number of probesets Number of genes

Cervical 33 12 HG-U133 P2 5,4675 20,271

Prostate 90 25 HG-U95Av2 1,2625 9,000

Gastric 22 15 Hu6800 7,129 5,526

Colon 6 3 HG-U133A 22,283 13,069

OSCC* 27 19 HG-U133A 22,283 13,069

RCC# 32 10 HG-U133A 22,283 13,069

Raw data were downloaded from the NCBI GEO database. *OSCC = oral squamous cell carcinoma; #RCC = renal cell carcinoma

Table 3 Five most significant genes identified by CDEP as related to common metastatic mechanism across different
cancer types by using FDR < 0.05 as threshold

Up-regulated genes Down-regulated genes

Glycoprotein (transmembrane) nmb (GPNMB) Serpin peptidase inhibitor, clade B (ovalbumin), member 5 (SERPINB5)

Secreted phosphoprotein 1 (SPP1) proteasome (prosome, macropain) subunit, beta type, 9 (PSMB9)

Transforming growth factor, beta-induced (TGFBI) myxovirus (influenza virus) resistance 1, interferon-inducible protein p78 (MX1)

Heat shock 27kDa protein 1 (HSPB1) interferon-induced protein with tetratricopeptide repeats 1 (IFIT1)

Mesoderm specific transcript homolog (MEST) ubiquitin D (UBD)
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meta-analysis approaches, is involved in anti-apoptosis
[45] and cell adhesion [46], and CDEP shows that this
gene is up-regulated under metastases conditions. Gem
is also differentially expressed consistently in metastatic
cancer cells, even though no current literature indicates
its role in metastasis. However, the gene interacts with
microtubule network [47] and regulates actin dynamics
[48]. Such activities are highly related to the migratory
and invasive properties of cancer metastasis [49].
Another gene, CXCL11, was shown to be consistently
down-regulated by CDEP analysis. Given that this gene
has angiostatic property [50], our results suggest that its
down-regulation in metastatic cancer might interrupt
the angiostasis process and promote angiogenesis–an
important aspect of cancer metastasis.

Discussion
Meta-analysis provides a cost-efficient way to approach
biological problems. However, the heterogeneous nature
of the data is always a significant challenge. CDEP aims
to overcome this hurdle to identify genes that have a
common differential expression pattern across different
datasets. We illustrated that CDEP can: (i) obtain higher
statistical power than existing meta-analysis approaches
while maintaining low Type I error rate in the simula-
tion study, and (ii) identify genes that are potentially
involved in common metastatic behaviors and relevant
biological pathways. CDEP borrows information from
each dataset to identify genes differentially expressed
consistently–a flexible approach that can be generalized
to problems other than metastasis. The high statistical
power under diverse sets of parameters considered in
the simulation study also suggests robustness of CDEP
to the diversity of data sources.
In CDEP, the minus log likelihood Q for different FDR

values (l) was used because CDEP does not intend to
“filter out” genes in each dataset before performing
meta-analysis. This is in contrast to Meta-Profile where
genes that only met the threshold (l) in each dataset
were used for the meta-analysis. In CDEP, we empha-
sized low l values to calculate EL and thus employed a

linearly decreasing PDF for the log likelihood to: 1) bal-
ance the “filtering” behavior that would result from a
convex decreasing PDF; and 2) emphasize small l. The
PDF used in CDEP outperformed Meta-Profile and
Meta-RankProd in obtaining high statistical power and
lowering Type I error rate.
CDEP, Meta-Profile, and Meta-RankProd use differ-

ent permutation approaches to estimate FDRg. Meta-
RankProd permutes gene expression values relative to
the gene ID for each array while Meta-Profile and
CDEP permute FDR relative to gene ID for each data-
set examined. The null distribution produced by Meta-
RankProd permutation would lead to RPg representing
genes that are non-differentially expressed in any data-
set, while Meta-Profile and CDEP would simply
increase the proportion of genes that are differentially
expressed in only a single dataset after permutation.
Therefore, Meta-RankProd tends to under-estimate
FDRg, as it ignores genes that are only differentially
expressed in a single dataset. On the other hand,
Meta-Profile and CDEP would over-estimate FDRg

because they have a higher proportion of GC genes in
the null distribution compared to Meta-RankProd.
Even though inaccurate estimation of FDRg is inevita-
ble due to the lack of prior knowledge about the pro-
portion of genes only differentially expressed in one
versus multiple datasets, both CDEP and Meta-Profile
employed a more conserved approach than Meta-
RankProd to obtain high precision.

Conclusion
CDEP is a flexible meta-analysis approach that borrows
information from each dataset in order to identify genes
that are consistently differentially expressed. CDEP
obtains higher statistical power than two existing
approaches under a variety of scenarios considered in
the simulation study, suggesting its robustness and
insensitivity to data variation. By application to meta-
static cancer datasets as a case study, CDEP allows iden-
tification of genes differentially expressed consistently in
different types of metastatic cancer cells. These

Table 4 Gene Set Enrichment Analysis to identify functional groups from CDEP identified genes

Functions (source) Annotated genes FDR

ECM-receptor interaction (KEGG) COL4A2,COL4A1,TNC,COL3A1,COL5A2,COL5A1,COL6A3,COL1A2,COL1A1,LAMB1,COL11A1,THBS2,
FN1,SPP1

1.84 × 10-8

Focal adhesion (KEGG) CAV1,COL4A2,COL4A1,TNC,COL3A1,COL5A2,COL5A1,MYL9,VEGFC,VEGFA,COL6A3,COL1A2,
COL1A1,LAMB1,THBS2,COL11A1,FN1,SPP1

2.02 × 10-7

Blood vessel development
(GO)

PLAT,CAV1,IL8,COL3A1,COL15A1,COL5A1,VEGFC,APOB,APOE,CTGF,VEGFA,COL1A2,SEMA3C,LOX,COL1A1,CYR61 1.10 × 10-5

Immune response (GO) CXCL1,POU2AF1,CCL2,BST2,CXCL3,IGJ,CXCL2,CXCL9,IL32,IFI44L,CCL5,CXCL11,HLA-DMA,
HLA-DQA1,PSMB8,CXCL10,PSMB9,CXCL13,TAP1,DEFB1,GBP1

2.06 × 10-6

Inflammatory response (GO) CXCL1,CCL2,NMI,CXCL3,CXCL2,CXCL9,ANXA1,IDO1,CXCL11,CCL5,CXCL10,FOS,SAA2,CXCL13 5.95 × 10-5

The functional enrichment for the genes identified as consistently differentially expressed between primary and metastatic cancers.
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identified genes could be further developed into univer-
sal biomarkers for cancer staging and diagnosis.

Methods
Microarray data
We searched the published microarray datasets compar-
ing primary and metastatic cancer samples from the
NCBI Gene Expression Omnibus (GEO) database

(http://www.ncbi.nlm.nih.gov/gds/). To ensure high
quality, the included datasets and the associated publica-
tions needed to have clear descriptions about primary
and metastatic cancer samples, and only single channel
oligonucleotide array from Affymetrix was considered.
In addition, we selected only datasets that provide raw
data so we could apply the same pre-processing method
for consistency. Since the goal of this study was to

A                                                                                             

B
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 CDEP identified differentially expressed genes map to biological pathways relevant to cancer metastasis. A) ECM-receptor
interaction pathway. B) Focal adhesion pathway. Up-regulated genes are annotated with red color, and down-regulated genes are in green.
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identify common genes across different cancer types,
only one dataset from each cancer type was used to
avoid biases. If a cancer type had multiple datasets that
met our criteria, the dataset with the most precise and
detailed description of the samples was included.

Simulation of Microarray data
We used simulation to evaluate the performance of CDEP.
Simulated data were generated to mimic the real experi-
mental datasets retrieved. Specifically, the retrieved raw
datasets listed in Table 2 were pre-processed using the
Robust Multichip Average (RMA) algorithm [35] to gener-
ate the summarized probe readings of the probesets in
logarithmic values. The resulting probesets were then
matched to the corresponding NCBI Entrez gene id using
the annotations from Affymetrix [51]. Because each gene
will be matched to multiple probesets, the median expres-
sion value of these matched probesets was used for each
gene. Overall, for each of the six different cancer types we
selected, we generated a simulated dataset for meta-analy-
sis. Each simulated dataset represented comparison of
metastatic and primary cancer cells for the corresponding
cancer type. The simulation was done using a modified
version of a model described in Stevens and Doerge [52]:

ygijk =μ + Li + Ggi + αgi(Tgjk)

+ βgij(Mgijk) + εgijk
(5)

where ygijk is the expression value of gene g in experiment
k conducted by laboratory i in cancer condition j (j = 1 for
metastatic; j = 0 for primary), μ is the universal background
reading, and Li and Ggi are the effects of laboratory i and
gene g from laboratory i, respectively. We also incorporated
binary variables agj and bgij to distinguish genes that have
common differential expression pattern from genes that are
differentially expressed pertinent only to a specific dataset:
differentially expression of gene g owing to the cancer-type
specific effect is indicated by agj = 1, and owing to the
mechanism of the common metastatic behavior across dif-
ferent cancer types is indicated by bgij = 1. These indicators
are used in the model to determine the contributions of
cancer type specific and metastatic effects (Tgik and Mgijk,
respectively) to the gene expression value. The detail for
the simulation model is as followed:

μ = a1
Li ∼ N(0, b2)

Ggi ∼ N(0, b3i)

αg1 ∼ Bern(p)

βgi1 ∼ Bern(q)

Tgjk ∼ N(�,ψ), where � �= 0

Mgijk ∼ N(�,ψ), where � �= 0

εgijk ∼ N(0, ei)

In the simulation, we assumed that different datasets
have different numbers of probesets and experiments. In
each dataset, genes selected to be involved in cancer-
specific effect (i.e. αg1 = 1) were randomly assigned as
up- or down-regulated to make such behavior depen-
dent on dataset (cancer type). Genes selected to be
involved in the metastatic behavior common to all can-
cer type were also randomly assigned as up- or down-
regulated genes to make it independent of dataset (can-
cer type). However, a gene could only be in at most one
of these two categories, i.e. we required that αg1 + βgi1 is
contained in the set {0, 1}. The above simulation para-
meters were estimated from microarray datasets com-
paring primary versus metastatic cancer cells (Table 2).
During simulation, we used different values for the pro-
portion of cancer-type specific (p) and metastatic related
differentially expressed genes (q). We also examined dif-
ferent cancer-specific and metastatic-related effects Δ.
We then applied CDEP to identify genes involved in
metastatic behavior in this simulation study.

Bayesian mixture model for p-value
We used a mixture of beta distributions to model the p-
values arising from the RankProd method. Because the
p-values correspond to genes that are up-regulated,
non-differentially expressed, or down-regulated, we used
a 3-component mixture model. The p-value for gene g,

yg, is represented as yg =
3∑

k=1

Tgkpk,where Tg = (Tg1, Tg2,

Tg3) ~ Multinomial(θ, 1) so that exactly one element of
Tg is one and the remaining elements are zero. The
value pk arises from the kth component of the mixture:
pk ~ Beta(ak, bk), k = 1, 2, 3. We used a Dirichlet prior
for θ, θ ~ Dir(1, 18, 1) and further assigned prior distri-
butions as a1 = b3 = 1; a2 ~ Gamma(4, 2); a3, b1 ~
Gamma(400, 20), and b2 ~ Gamma(1, 1), where the
Gamma(a, b) is parameterized so that the mean is a/b.

Comparison with other approaches
To assess the robustness of CDEP, we compared it with
Meta-Profile and Meta-RankProd [14-16,21]. Meta-Profile
is one of the pioneering methods to investigate common
cancer signatures at large scale. This approach first identi-
fies a dataset-specific “differential expression signature"–a
list of differentially expressed genes for each dataset deter-
mined by the pre-defined threshold of FDR (l) [5]. The
number of signatures each gene appeared in is then
counted and permutation is performed to estimate the
false positives of this count. The Meta-RankProd approach
is a relatively recent approach that uses the rank product
to identify genes differentially expressed between two con-
ditions from multiple datasets. In this method, the rank
fold change, ggih, is computed as the ranking of gene g in
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the hth comparison in the ith study, and the rank product
for gene g was calculated as the geometric mean across all
comparisons. The null rank product was obtained by per-
muting expression values within each single array. This
method was shown to outperform both the parametric t-
based modeling approach [53] and the Fisher’s inverse Chi-
square approach [6] in terms of sensitivity and specificity.
CDEP, Meta-Profile and Meta-RankProd were applied to
analyze the simulated datasets to evaluate their perfor-
mances in terms of: i) the statistical power to identify
genes with common differential expression pattern across
datasets; and ii) Type I error rate of falsely identifying
genes without common differential expression. In this ana-
lysis, we tested the effect of different proportions of differ-
entially expressed genes attributed to cancer-type specific
(p) and metastatic-related (q). We also examined the effects
of the detectable difference (Δ) of differential expression.
For RankProd and CDEP, genes absent from a dataset
were assigned the median rank value of that dataset.

Additional material

Additional file 1: Supplementary materials for the analysis. Detailed
descriptions about: 1) Datasets Used (Suppl. Table 1); 2) The comparisons
between p-values computed by the parametric t-test versus the non-
parametric RankProd (Suppl. Figure 1); 3) The Bayesian mixture for the p-
value distribution (Suppl. Figure 2, Table 2 and Table 3); 4) Comparisons
of different approaches for handling genes appearing in different
numbers of datasets based on simulation (Suppl. Figure 3, Figure 4,
Figure 5 and 6); and 5) Comparisons of the three approaches using the 6
cancer datasets as case study (Suppl. Figure 7).

Additional file 2: Results from the simulation data. The statistical
power and Type I error rate are compared for the three meta-analysis
approaches on simulation data.

Additional file 3: Metastases-related genes identified by CDEP.
Statistically significant genes identified by CDEP as related to metastatic
behavior by using FDR = 0.05.

Additional file 4: Comparison of Significant Genes Identified by
CDEP, Meta-Profile and Meta-RankProd. List of genes that are
differentially expressed consistently in metastatic cancer cells as identified
by CDEP, Meta-Profile and Meta-RankProd from six data sets used.
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Symbol Range Annotation

dil 1,2,...,G Number of genes in a dataset with FDR lower than the threshold l

ELg (0,Inf) Expected value of the log likelihood with respect to the FDR threshold

fil 1,2,...,
dil

Number of false positives using the FDR threshold l

Fgi (0,1) Gene-specific false discovery rate in dataset i: proportion of false positives among the significant calls

FDRg (0,1) Gene-specific false discovery rate for having consistently differentially expressed patterns among the datasets studied

g 1,2,...,G Index for a gene from the union of gene sets across all datasets

h 1,2,...,Hi Index for fold change comparison between a case and a control from a dataset, where mi * ni = Hi

i 1,2,...,D Index for a gene expression microarray dataset (consists of mi cases and ni controls)

l (0,1) FDR threshold used to enumerate number of genes with FDR lower than this threshold in a dataset and to estimate the
number of false positives under this threshold

L(rgl|Data) (0,1) Gene- and FDR threshold- specific likelihood of observing the differential expressed pattern among the datasets

Mup
i(Mdown

i) 1,2,...,G number of genes that are not up(not down)-regulated in dataset i

Qgl (0,Inf) Minus log likelihood

r̂upil (r̂
down
il ) (0,1) False positive rate: the probability of a non-up-regulated (non-down-regulated) gene being falsely called as over-expressed

(under-expressed)

δ
up
gil (or

δdowngil )
0[1] Binary variable indicating gene g is identified as up(or down)-regulated in dataset i for threshold l

ggih 1,2,...,G rank of fold change for gene g in the hth comparison of dataset i
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