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Abstract

Background: The biological phenotype of a cell, such as a characteristic visual image or behavior, reflects activities
derived from the expression of collections of genes. As such, an ability to measure the expression of these genes
provides an opportunity to develop more precise and varied sets of phenotypes. However, to use this approach
requires computational methods that are difficult to implement and apply, and thus there is a critical need for
intelligent software tools that can reduce the technical burden of the analysis. Tools for gene expression analyses
are unusually difficult to implement in a user-friendly way because their application requires a combination of
biological data curation, statistical computational methods, and database expertise.

Results: We have developed SIGNATURE, a web-based resource that simplifies gene expression signature analysis
by providing software, data, and protocols to perform the analysis successfully. This resource uses Bayesian
methods for processing gene expression data coupled with a curated database of gene expression signatures, all
carried out within a GenePattern web interface for easy use and access.

Conclusions: SIGNATURE is available for public use at http://genepattern.genome.duke.edu/signature/.

Background
Gene expression signatures are powerful tools that can
reveal a range of biologically and clinically important
characteristics of biological samples. In recent years, sig-
natures have been developed that can differentiate dis-
tinct subtypes of tumors, identify important cellular
responses to their environment (hypoxia), predict clini-
cal outcomes in cancer, and model the activation of sig-
naling pathways [1]. The power of gene expression
signatures derives from their ability to connect an in
vitro experimental state with an in vivo one in a quanti-
tative manner. Commonly, the term gene expression sig-
nature has been used in two ways. In one, the signature
is comprised of a set of genes that share a common pat-
tern of expression. Sometimes this can be reported as
genes that increase or decrease in expression, but the
basic characteristic of the signature is the identity of the
genes. Because of this, these signatures are often called
gene sets. Gene sets have been curated from the litera-
ture and collected into databases such as MSigDB and

GeneSigDB [2,3]. Tools have been developed that can
analyze gene sets by looking for shared function or
characteristics such as Gene Ontology terms [4] or drug
sensitivity [5]. Another tool, single-sample GSEA has
been previously applied to predict the co-regulation of
gene sets from MSigDB on gene expression samples [6].
Evidence of co-regulation is then used to infer the acti-
vation of the phenotype embodied by the gene set.
The second type of signature relates the magnitude of

increase or decrease in gene expression, in the form of
weighted values, to a biological phenotype using a quan-
titative predictive model [6-16]. These signatures are
often developed from experimental conditions that pre-
cisely control the phenotype of interest - for instance,
the activation of a cell signaling pathway or the response
of cells to a defined stimulus. Since the signature is
comprised of a quantitative measure of the expression
levels of genes that define the phenotype, it allows a
direct measurement of the phenotype, rather than an
indirect inference through co-regulation of genes in a
gene set. A limitation of this approach, however, is the
complexity of the methods used to derive and analyze
the signatures, making it difficult to apply without sig-
nificant multidisciplinary expertise [17].
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Three major obstacles hinder the broad use of signa-
tures. First, gene expression signature analysis requires
the rigorous application of complex statistical meth-
odologies on gene expression data. Second, it requires
the acquisition and validation of data that properly
capture the biological state of interest. Third, it
requires a computational infrastructure that makes
available the statistical software and data in an easy to
use interface. In sum, gene expression signature analy-
sis requires a confluence of expertise across a range of
disciplines, including statistics, biology, and computer
science.
While others have previously made use of our

approach [16], it does require a level of expertise and
computational infrastructure not always available in
biological laboratories. This bioinformatic investigation,
requiring the proper selection and application of statis-
tical algorithms, as well as biological curation and vali-
dation of the signatures, can be daunting. Therefore, a
challenge is how to develop software tools that enable
such analyses for the general user. While it has long
been recognized that software can target different
types of users, a set of principles for software that is
biologist-friendly was recently described [18]. In short,
the recommendations are that the software 1) requires
no knowledge of programming, 2) allows application of
advanced methods, 3) can be used on different operat-
ing systems, and 4) provides a natural language
description of the results. While such software has
been developed for biological sequence alignment [19],
sequence annotation [20], phylogenetic analysis [21],
and comparison of prokaryotic genomes [22], no such
platform exists for gene expression signature analysis.
Because of this, and also because of the technical diffi-
culty in performing gene expression analysis, we
believe there is a need for a platform that captures a
carefully refined analysis workflow, coupling algorithms
and data, and enables a researcher to predict gene
expression signatures on their samples.

Implementation
To address the critical need for a platform for gene
expression signature analysis, we have developed a col-
lection of tools over the course of several years. First,
we have developed BinReg, a statistical algorithm to pre-
dict the activation of a gene expression signature on a
data set [23,24]. Second, we have curated a database of
signatures that predict the activation of oncogenic path-
ways [25]. Now, we report on the development of a
computational platform that combines these in a biolo-
gist-friendly interface, using the principles previously
established. Here we describe the three components of a
novel gene expression signature analysis platform, which
we collectively call SIGNATURE.

Component 1: The BinReg algorithm
The first component of SIGNATURE is the statistical
analysis methodology. We frame gene expression signa-
ture analysis as a supervised machine learning problem.
At its heart, a signature is a gene expression pattern
that distinguishes two biological states (Figure 1). This
might be the activation of a cell signaling pathway, the
response of cells to various environmental inputs, or the
intrinsic sensitivity or resistance of cells to a drug.
To create a signature for a given biological process, we

first identify an appropriate training set consisting of

Figure 1 Gene expression signatures. Activation of biological
processes, such as cell signaling pathways, results in a cascade of
activities that ultimately lead to changes in the expression levels of
genes downstream, the gene expression signature of that process.
To measure that signature, we create experimental conditions that
generate differential activation of the process in in vitro cell cultures.
We then extract RNA from those samples for microarray analysis,
which produces gene expression measurements from which we can
score the signature. We show the gene expression signature in a
heatmap where the rows are the genes that are differentially
expressed in the process, and the columns are the samples that
represent the two cellular states. Typically, multiple replicates are
done. The colors indicate the expression levels of the genes, where
the warm colors signify high expression and cool, low expression.
This heatmap shows that the two states exhibit profoundly different
gene expression patterns, allowing us to recognize the activation
state of the pathway in a gene expression profile using a supervised
machine learning algorithm.
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gene expression data from samples that clearly distin-
guish the two desired characteristics (for instance, path-
way on versus pathway off), called the train1 (on) and
train0 (off) samples. To obtain the best distinction,
these signatures are typically based on data collected
from well-defined experimental perturbations. Using
examples of cells in these two states, we select the genes
whose expression levels best differentiate them based on
a Pearson correlation. We then apply a Bayesian probit
regression model to fit the genes in the training set to
the two states. Because there are typically more genes
than samples, we perform these computations in a
reduced subspace. That is, we start with a gene expres-
sion data set X where X is a p × n matrix of signal
values for p genes and n samples. We then factor X
using a singular value decomposition such that X =
ADF’, where A is p × k, D is k × k, and F is n × k. k is
the desired dimensionality of the subspace, which we
call the number of metagenes. We create a model:

Y = �((A′X)′γ )

where Ф is the cumulative density function of a nor-
mal distribution, Y is a vector of the posterior probabil-
ities that the signature is active in each sample, and g,
the parameter to be sampled, is a k -dimensional vector
of the contribution of each metagene. For the develop-
ment of gene expression signatures, the number of
metagenes chosen is a configurable parameter, where
higher numbers of metagenes increase the complexity of
the model, at the risk of potentially overfitting the train-
ing data.
The model is sampled using a standard Markov chain

Monte Carlo algorithm. It produces the posterior prob-
abilities Y as well as a 95% credible interval. Y should be
interpreted as the probability that the pathway is active
in each sample. The credible interval for Y indicates the
upper and lower bound that can be set for the predic-
tions, with 95% probability. Tighter bounds indicate
higher confidence in the posterior probability Y, and
wider ones indicate lower confidence. This statistical
model has previously been described in detail [24].
Once a signature for a phenotype is developed, it can

be used to score the phenotype in a new collection of
samples. In all, a gene expression signature analysis
requires seven parameters: 1 and 2) the train0 and
train1 data, 3) the number of genes in the model, 4) the
number of metagenes, 5) the algorithm used to prepro-
cess the data set, 6) whether to apply quantile normali-
zation, and 7) whether to apply shift-scale
normalization. The first two parameters are the gene
expression data that define the two cellular states. The
next parameter specifies the number of genes to include
in the statistical model. Then, the number of metagenes

controls the complexity of the model [24]. For para-
meter five, we support two methods of preprocessing,
RMA and MAS5 [26]. Parameters six and seven concern
methods for normalizing the data to account for techni-
cal variation between the training and test sets. Quantile
normalization has been described extensively in the lit-
erature. However, we use a variation of the algorithm
whereby the quantiles are computed entirely from the
training set to preserve independence between the train-
ing and test data. Finally, shift-scale normalization is an
additional normalization method that, in short, adjusts
the centroid and variance of the test set to match the
training set.

Component 2: A Database of Gene Expression Signatures
Over the past five years, we have developed and curated
a collection of gene expression signatures that predict
the activation of a large number of important cell signal-
ing pathways, such as Ras, Myc, p53, and others [25].
Although this work has focused on developing signa-
tures for pathways relevant to the study of cancer biol-
ogy, the conceptual framework for this signature
development is applicable across a wide range of other
contexts. We envision that the current database would
be most directly applicable to cancer studies, but there
are also clear applications to other diseases with func-
tional aberrations in these common pathways.
To simplify the analyses for general users, we deter-

mine empirically the best values for the seven para-
meters described above. Using a leave-one-out cross
validation approach, we classify the samples in the train-
ing set. To ensure that the model is not over fit to arti-
facts or confounding factors in the original data, we
then validate the selected parameters using an indepen-
dent biochemical and/or genetic marker of pathway
activity. The type of indicator used is specific to a path-
way and depends on how it works. For example, to vali-
date the PI3K signature, we compared against relative
phosphorylated (active) p110 protein levels, and for the
Estrogen Receptor (ER) pathway signature, the ER status
in human breast tumors as determined by immuno-his-
tochemistry [25].
Our signature database currently consists of 18 vali-

dated signatures, and we are actively developing and
curating additional ones.

Component 3A: Software tools for signature analysis
For gene expression signature analysis, we have devel-
oped software tools to cover two major use cases.
Use case 1: Predicting the activity of validated signatures
Commonly, a user that has generated gene expression
data from a set of experimental samples, such as a col-
lection of human tumors, would wish to predict the
activation of pathways in those samples. This user may
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not be familiar with the methodology to create signa-
tures, or the computational algorithms to build a model
of pathway activation. To address this case, we have
developed a software application called Score Signatures
that can apply the signatures from our curated signature
database to a gene expression data set (Figure 2).
To use Score Signatures, one submits a gene expres-

sion data set of interest, such as that from a collection
of tumor samples. The application will then apply our
Bayesian algorithm to predict the activation of the signa-
tures in the database. The output is a series of probabil-
ity scores for each signature, reflecting the extent to
which the signature is represented in each sample from
the test data set. These probability scores are depicted
in a heatmap that shows the pattern of activation of the
pathways across the data set as determined by hierarchi-
cal clustering. Furthermore, Score Signatures also pro-
vides raw data as tab-delimited text files that can be
accessed with standard tools such as Microsoft Excel
and used to develop additional plots. These results are
summarized in a human-readable report with a detailed
description of the analysis as well as guidelines for inter-
preting the results.
Each Score Signatures analysis is comprised of Baye-

sian regression calculations that predict the activation of
each signature from the signature database. A full analy-
sis is described using a large number of parameters,

seven for each pathway in the database. The challenge
here is how to provide the analyses so that it is accessi-
ble for users that are not familiar with the technical
details of gene expression analysis. We solve this issue
by storing the validated parameters in the database. As a
default, the values are retrieved from the signature data-
base, ensuring that the signature runs in precisely the
manner originally defined. However, for expert users, we
make it possible to refine each parameter, and if chan-
ged, the system will document the deviation from the
default. In this way, the needs of both general and
expert users can be met.
Use case 2: Developing a novel signature
Score Signatures provides a convenient way to apply the
signatures from our signature database on a data set.
However, it does not have an ability to generate a new
signature. To address this, we have produced a second
application, Create Signature, to develop novel gene
expression signatures.
While Score Signatures can be used by investigators

with little or no knowledge of the details of the underly-
ing methodology, Create Signature requires an under-
standing of the machine learning framework and the
parameters used to create the signatures. The user spe-
cifies the values for a total of 15 parameters. In addition
to the seven parameters for the signatures as described
above, it also includes parameters that govern the

Figure 2 The Score Signatures module. This figure shows the workflow for the Score Signatures module. The user supplies a gene expression
data set to study (shown on left). Then, this tool will retrieve a list of (currently 18) curated signatures from the signature database, and predict
their activity in each of the samples in the data set (shown on right). The software also applies hierarchical clustering, showing the patterns of
pathway activation. Here, Score Signatures was applied to a panel of 19 breast cancer cell lines. The clusters show that the signatures clearly
distinguish two subtypes of breast cancer. In the left cluster are the cell lines of luminal origin. The right cluster consists of all basal cell lines,
with two exceptions (SKBR3 and HCC1428). The module provides a biologist-friendly interface to a complex analysis that involves statistical
algorithms and curated gene expression signatures.
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MCMC simulation of the Bayesian model, and others
(such as other normalization methods) that we have not
used in our signatures.
Once the parameters are specified, Create Signature

generates a statistical model from the training set and
predicts signature activity in both the training set (using
leave-one-out cross validation) and the test set (after
building a model from the entire training set). Similar to
Score Signatures, Create Signatures also provides publi-
cation-ready plots, raw data, and a human-readable
report of the key results, fulfilling a critical requirement
of user-friendly software described above.

Component 3B: A web interface for gene expression
signature analysis
Our analysis tools are delivered through GenePattern
[27]. The GenePattern platform provides a web-based
interface for external programs (or modules in GenePat-
tern terminology) via a plug-in architecture. However,
one limitation with GenePattern is that it does not have
the means to provide a context-dependent interface that
Score Signatures requires. That is, the interface for Score
Signatures depends on the current state of the signature
database, as well as the requirements of the user. Score

Signatures requires (currently) a total of 74 parameters,
but only two are likely to be changed by the vast major-
ity of users. In this situation, the system needs the facil-
ity to hide rarely used parameters for novice users, but
allow advanced users to tune them. This is not currently
possible in GenePattern.
To address the limitations of GenePattern, we have

extended GenePattern with an interface generator layer.
An interface generator is an optional component of a
module that is responsible for defining its interface, that
is, the parameters that are provided for the user. This is
implemented by modifying the GenePattern source code
so that when a user accesses a module, GenePattern can
retrieve the interface from the interface generator
instead of its own default mechanism. Technically, inter-
face generators are CGI scripts, which provide them the
ability to access external resources, such as the signature
database.
The interface generator for the Score Signatures mod-

ule, by default, creates an interface with only three para-
meters: the RMA-formatted gene expression file, the
MAS5-formatted gene expression file, and a checkbox
to show advanced options (Figure 3). If the user chooses
to activate the advanced interface, GenePattern makes

Figure 3 The SIGNATURE interface in GenePattern is context-sensitive. To develop interfaces that can be sensitive to context, such as the
state of a database or expertise of the user, we have extended GenePattern to support Interface Generators. These are add-ons to standard
GenePattern modules that are responsible for producing the interface for the module at run time. Interface Generators can serve as brokers
between GenePattern and other databases across the network. An Interface Generator is used for the Score Signatures module. In the simplest
form of a Score Signatures analysis, the only parameters necessary are the RMA and MAS5 normalized versions of the data set, and an option for
which signatures to include in the analysis (left). However, experienced users may wish to tune the analysis, and in response, the interface
presents the user with an advanced interface that allows tuning of every parameter. On the right, a user has chosen to tune the parameters for
the AKT signature.

Chang et al. BMC Bioinformatics 2011, 12:443
http://www.biomedcentral.com/1471-2105/12/443

Page 5 of 8



another request to the Score Signatures interface gen-
erator, which then produces an interface that includes
parameters that are retrieved in real time from the Sig-
nature Database (Figure 4). In this way, GenePattern
can provide an interface that is responsive to the needs
of the user as well as the current status of other data
resources. By having such an ability, we can deploy con-
text-sensitive interfaces whose complexity matches the
needs of the user.

Results
We have developed a public software platform SIGNA-
TURE that simplifies gene expression signature analysis
by providing an easy to use GenePattern interface on
top of a complex infrastructure of analysis software and
a signature database. Specifically, we have developed
BinReg, a Bayesian probit regression algorithm that has
been supplemented with metagenes and normalization
functions to handle the idiosyncrasies of gene expression
data. Also, we have curated and validated a database of
18 gene expression signatures for activated oncogenes.
And finally, we have significantly extended GenePattern
by developing an interface generator layer that can

produce context-sensitive interfaces to fit the needs of
the user.
One limitation of SIGNATURE is that the predictions

are dependent upon the quality of the data. One poten-
tial factor that can confound the interpretation of the
results is the presence of batch effects or other technical
variation after the applied normalization [28]. In our
experience, we have observed that technical artifacts
lead to broad changes in the expression profiles that
lead to homogeneous predictions. That is, the predicted
scores tend to cluster around the same probability, typi-
cally around 0% or 100%. This issue highlights the fact
that these predictions should be confirmed with alter-
nate assays. Currently, the tools available within SIGNA-
TURE require expression profiles to be annotated with
probe sets from Affymetrix U133 microarrays. To apply
them to microarrays from other platforms, the probes
would need to be converted to these U133 probe sets.
Internally, we have successfully applied SIGNATURE to
gene expression data from Illumina BeadArrays (data
not shown), suggesting a high degree of reproducibility
in the gene expression levels between these two plat-
forms, consistent with prior reports [29,30]. However,

Figure 4 Implementation of an Interface Generator. The GenePattern server provides a web-based interface for modules that perform
bioinformatics analyses. Because the parameters for a Score Signatures analysis change frequently with updates to the Signature Database, the
interface for Score Signatures cannot be defined until run-time. To address this, we have extended GenePattern so that it can create the interface
for modules dynamically by querying an interface generator. The interface generator for Score Signatures queries the signature database at run-
time to produce an up-to-date interface for GenePattern. Once the user has specified their values for the parameters, GenePattern invokes the
Score Signatures module to perform the analysis. This is a general mechanism that can be applied to other complex analyses.

Chang et al. BMC Bioinformatics 2011, 12:443
http://www.biomedcentral.com/1471-2105/12/443

Page 6 of 8



we have had more limited success in converting signals
from cDNA arrays, and have not tried applying these
analyses to expression data from sequencing platforms.
We believe the ability to apply these methods depends
on the reproducibility of the expression signals across
platforms.

Conclusions
In conclusion, the SIGNATURE platform comprises two
modules, Score Signatures and Create Signature, that are
most widely useful in interpreting gene expression data.
However, we have also created modules for more spe-
cialized analyses that we have previously described
(Table 1). SIGNATURE provides a general framework
that can be used to deliver complex algorithms in a
user-friendly manner, putting sophisticated bioinfor-
matic analyses, such as gene expression signature analy-
sis, within reach of a larger audience.

Availability and requirements
SIGNATURE is available for public use, without need
for a material transfer agreement, at http://genepattern.
genome.duke.edu/signature/. This page includes a link
to the modules available on GenePattern, as well as
sample data for testing purposes. The source code and
gene expression signature database are also available
from this page.
Project name: SIGNATURE
Project home page: http://genepattern.genome.duke.

edu/signature/
Operating system: platform independent
Programming language: Python, C, R, Matlab
Other requirements: web browser
License: MIT
Any restrictions to use by non-academics: none
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