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Abstract

clustering algorithms for studying biopolymers.

Background: Molecular dynamics (MD) simulation is a powerful technique for sampling the meta-stable and
transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a
useful, automated technique for extracting conformational states from MD simulation data. Despite extensive
application, relatively little work has been done to determine if the clustering algorithms are actually extracting
useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed
analysis of data clustering applied to a series of increasingly complex biopolymer models.

Results: We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined
dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real
biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer
structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the
polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the
algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by
comparing and contrasting the statistical properties of the extracted clusters.

Conclusions: We have developed a framework for validating the performance and utility of clustering algorithms
for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which
exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic
dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that
different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering
results. To our knowledge, our framework is the first to utilize model polymers to rigorously test the utility of

Background

Molecular dynamics (MD) simulation is a powerful
technique for sampling the conformation space of pro-
teins and other biomolecules. All-atom models provide
a wealth of structural information at a level of physical
detail that is accessible to many experimental techniques
and can therefore be used to make theoretical predic-
tions for future experimental validation. MD simulation
is particularly well-suited for studying the local minima
in the free energy landscape (meta-stable states) and the
transitions between these minima (transition states)
which characterize how biomolecules perform their
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requisite functions. These properties can in principle be
obtained from the conformational ensembles from MD
simulation trajectories; however, calculating them has
proven to be a challenge in practice.

Computational data clustering has emerged as a use-
ful, automated technique for determining the meta-
stable and transition states from MD simulations. Clus-
tering methodologies applied to the results of MD simu-
lations focus on partitioning structural ensembles into
groups of structures which share similar conformational
features. It is hoped that when applied to simulations of
biomolecules, the clustering results in partitions which
correspond to the descriptive-meta-stable and transi-
tion-states of the system. However, clustering the trajec-
tories of real biomolecules typically does not readily
provide such a straightforward partitioning due to the
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high dimensionality of the conformational space, ther-
mal noise, and other factors. Identifying the descriptive
states also requires an understanding of the clustering
process itself. A primary goal of this paper therefore is to
provide such an understanding through a detailed analy-
sis of data clustering applied to a series of increasingly
complex biopolymer models.

We have developed a novel series of models using
basic polymer theory that have intuitive, clearly-defined
dynamics and exhibit the essential properties that we
are seeking to identify in MD simulations of real biomo-
lecules. Importantly, these models allow us to determine
the properties a clustering algorithm can reliably extract
from polymer data, unconfounded by the computational
complexities and limitations of all-atom simulation. To
our knowledge, this is the first study utilizing simplified
polymer models to understand the function and perfor-
mance of computational clustering for analyzing biopo-
lymers. Specifically, we examine the performance of
spectral data clustering [1,2], a popular graph theory-
based clustering method that has several properties
which are highly amenable for MD simulation data, on
various polymer models of increasing complexity. A ser-
ies of models is created where each new model increases
upon the complexity of the previous so that the
dynamics and properties start to approach that of all-
atom simulation dynamics. Finally, we apply what we
have learned from the polymer studies to all-atom MD
simulations of intrinsically disordered FG-nucleoporins
(FG-nups), the proteins responsible for nucleocytoplas-
mic transport. This protocol allows us to determine if
and when the clustering method is no longer able to
determine the descriptive states of the systems, as well
as the underlying reasons for these limitations.

Data clustering has been widely used to analyze MD
simulations of biopolymers, particularly for determining
the conformational states of the trajectories. Karpen, et
al. made use of a self-organizing neural network to clus-
ter structures based on backbone and side-chain dihe-
dral angles of a small pentapeptide [3]. Best and Hege
analyzed simulations of a small tri-ribonucleotide by bi-
partitioning the similarity graph defined by the vector of
intramolecular distances [4]. Lei et al. used hierarchical
clustering based on structural root-mean-squared dis-
tance (RMSD) to study folding via replica exchange MD
simulation of the villin headpiece subdomain [5]. The
same system was studied in a similar manner by Freddo-
lino et al. using MD simulations on the microsecond
timescale [6]. This list of approaches is by no means
exhaustive, and simply serves to illustrate the impor-
tance of clustering in simulation analysis as well as the
great variation in algorithms utilized across MD studies.

Other studies have focused on using clustering for sta-
tistical purposes. For instance, Lyman and Zuckerman
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clustered simulations of met-enkephalin, a pentapeptide
neurotransmitter, by enforcing a cutoff radius in RMSD
for cluster assignment [7]. Structural histograms are
computed from the clustering results at various tem-
poral windows in the simulation, and then compared to
determine structural convergence. Phillips et al. used
spectral clustering to probe the convergence of short
and long simulations of small disordered systems [8].
The structural overlap between successive simulations
was used to reveal differences between the dynamics of
collapsed coil and extended coil disordered proteins.

While it is clear that clustering has been widely used
in the field of MD simulation, relatively little work has
been done to determine if the clustering algorithms are
actually extracting useful information. For instance,
Shao et al. provide one of the few (if not the only) in-
depth studies of clustering for MD simulation [9]. They
compare various clustering algorithms to determine how
well these algorithms can adequately separate structures
in ensembles taken from manually-concatenated,
remarkably distinct MD trajectories. Even though the
trajectories cover very different portions of conforma-
tion space, there is no clear winner among the algo-
rithms they chose to study. In fact, all of the algorithms
perform well on some problems, but not so well on
others. Therefore, it is clear that, while comparing algo-
rithms might yield the “best-case” algorithm for a parti-
cular system where the solution is known or anticipated,
the ability to determine exactly which properties can be
determined using a particular clustering algorithm more
generally remains to be investigated.

The recent focus on MD as a tool for exploring none-
quilibrium processes has driven the simulations to longer
timescales than ever before [10-13]. The data gathered
from such simulations can be extensive so clustering has a
key role to play in summarizing the simulation output
without losing the key properties and behaviors of interest.
Since clustering algorithms are a form of unsupervised
learning, where there is no additional evidence or knowl-
edge guiding the algorithm aside from the data itself, and
since experimental information may not be available at the
spatial and temporal resolution of MD simulation, addi-
tional insight and understanding are needed to interpret
the clustered data. We propose that polymer models
which exhibit simplified and/or well-understood structural
dynamics can be used to study clustering techniques, and
help to bridge the gap between using clustering to confirm
established results and using clustering to make theoretical
predictions concerning the dynamics of biopolymers.

Results and Discussion

Spectral Clustering

This study focuses on applying spectral clustering to
polymer models and MD simulations. Spectral clustering
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consists of three general steps. First, the dissimilarities
between all pairs of structures in an ensemble are com-
puted. Root-mean-squared distance (RMSD) is used for
computing dissimilarities for all results presented in this
study. Second, the matrix of pairwise similarities
(obtained directly from the dissimilarities) is normalized
and its spectral decomposition is computed to obtain
the top k eigenvectors. Third, standard k-means cluster-
ing is applied to the (normalized) points described by
the top k eigenvectors. The optimal number of clusters
is unknown beforehand for most interesting phenomena,
so one must examine the results for a range of numbers.

Spectral clustering possesses several attributes that make
it particularly well-suited for clustering polymer simula-
tions. First, it shares a formal relationship with Markov-
chain models where the dynamics are viewed as a random
walk on a structure-transition graph (or matrix) [14]
which is also frequently expressed as random diffusion on
a free-energy surface [15,16]. Specifically, spectral cluster-
ing operates on the Laplacian of the graph of pairwise
structural similarities which is analogous to the transition
matrix in the Markov-chain model. If the sampling of the
simulation is sufficient, this matrix defines a random-walk
on the free-energy surface. Second, once the eigen decom-
position step is complete, repartitioning the ensemble into
different numbers of clusters, k, is fast, allowing the data
to be easily examined at various levels of granularity.
Third, since the dissimilarity between all pairs of struc-
tures is calculated, disordered systems which lack refer-
ence structures can be studied without introducing an
unfavorable bias due to the selection of a single reference
structure (for the ensemble as a whole or for each cluster),
as must be done in most other clustering techniques.
Finally, spectral clustering is more informative of the local
density of structures than other clustering techniques. A
by-product of the algorithm is a similarity scaling para-
meter 0. This parameter is computed for each structure
and characterizes the local density. Low values of ¢ indi-
cate that a structure resides in a densely populated region
of structural space while high values indicate the region is
relatively sparse. When averaged over all structures
belonging to a cluster, the similarity scaling parameter can
be used to characterize the cluster as corresponding to a
meta-stable or transition state.

Identification of Meta-stable and Transition States

We propose the following framework and procedure for
using polymer models and simulations to guide cluster-
ing based approaches to identify the descriptive states of
all-atom biomolecular simulations. See also Figure 1.

1. A polymer model is used to create a structural
ensemble with well-characterized properties such as
identifiable meta-stable and transition states.
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2. The polymer model ensemble is clustered.

3. Various statistical properties are calculated for the
resulting clusters.

4. The statistical properties of clusters known to cor-
respond to meta-stable and transition states are
identified.

5. MD simulations of a chosen biopolymer system
are used to generate a structural ensemble.

6. The MD ensemble is clustered.

7. The same statistical properties are calculated for
the resulting clusters from the MD ensemble.

8. Correlations between the statistics from steps 3
and 4 are used to characterize the clusters from the
MD ensemble as corresponding to meta-stable or
transition states.

We focus on simple polymer models first with few
interesting features, and then incrementally add features
to create a range of polymer simulations. These extended
models are designed to possess densely populated meta-
stable states and the sparsely-populated transitions states
that lie in-between. We repeat the above process for each
model so that the analysis of the more complex models
always builds upon the analysis of the simpler models.

Polymer Models and MD Simulations

We develop two polymer models where the pairwise dis-
similarities can be computed analytically and two poly-
mer models where the pairwise dissimilarities can be
computed from analytically derived polymer structures.
We also utilize one polymer model where the pairwise
dissimilarities can be computed from polymer structures
derived from simulation:

o Linear Model - This analytic model is the simplest
dynamical model we consider. It does not exhibit
any meta-stable or transition states.

« Sinusoid Model - This analytic model builds upon
the linear model by the addition of meta-stable and
transition states.

+ Rotation Model - This model consists of polymer
structures generated by changing the polymer link
angles in well-behaved manner. It also does not
exhibit any meta-stable or transition states.

« Cyclical Model - This model extends the rotation
model by revisiting the visited conformational states
several times over.

o Dynamic Model - This model consists of a helix-
favoring polymer that “folds” and then “unfolds”
over the course of a simulation.

These models will be discussed in more detail later in
this section. Complete details concerning each model
can be found in the Methods section.
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Figure 1 Clustering validation protocol. This diagram outlines the process of verifying the results of a clustering algorithm applied to
molecular dynamics simulations. The model polymers have certain known properties (meta-stable states, transition states, etc.) that are known
beforehand due to model construction. The statistics and features of clusters that describe these properties can then be used to inform the
analysis of molecular dynamics simulations. If the properties displayed by the polymer models are also be present in the molecular dynamics
simulations, then the statistics and features of the clusters will also share similarities. Any clustering algorithm could be used, but we focus on
spectral clustering here.

We also perform all-atom MD simulations of several o FxFG - A fragment of the wild type yeast nucleo-
intrinsically disordered proteins to examine the perfor- porin Nsplp (residues 375-479, 105 residues in
mance of the clustering algorithm using the polymer length) that contains several amino acid repeats of
model protocol outlined in Figure 1. Details of the MD the form “FxFG”. This protein is enriched in charged
simulation protocol can be found in the Methods sec- residues and has been shown to be an extended coil
tion. We chose to examine two of the wild type yeast from prior analysis [17].

FG-nups and one mutant: + SxSG - A mutant of FxFG where all phenylalanine
(F) resides are mutated to serine (S). This modifica-
+ GLFG - A fragment of the wild type yeast nucleo- tion allows the protein to become more extended.
porin Nupl16p (residues 346-457, 120 residues in
length) that contains several amino acid repeat seg- These disordered proteins span a wide range of sizes

ments of the form “GLFG”. This protein is depleted as measured by experimental sieving column size-exclu-
in charged residues and has been shown to be a col-  sion and solution NMR [17], as well as by radius of
lapsed coil from prior analysis [17]. gyration calculated from MD simulation, shown in
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Figure 2 (see the Methods section for details on the
boxplot representation used in this and all subsequent
figures). The balance between hydrophobic interactions
(primarily from the F residues in the FG-nups examined
here) and overall percent of charged content of the pro-
teins is hypothesized to be the driving force for collap-
sing/extending in these domains. We predict that the
extended coils should exhibit less frustrated dynamics,
with fewer, more shallow minima in the free-energy sur-
face. Likewise, we predict that the collapsed coils should
exhibit more frustrated dynamics, with many more, shal-
low minima.

Clustering Results

Linear Model

We first examine the performance of spectral clustering
on the linear model. The “simulation” corresponding to
the linear model possesses dynamics where the struc-
tural dissimilarity differs by a constant amount between
successive frames, and the polymer is always progressing
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Figure 2 Radius of gyration statistics. Distributions of the radius
of gyration (Ry) for the FG-nups (A) GLFG, (B) FxFG and (C) SxSG
obtained from MD simulations. Results are shown for each
individual cluster obtained from spectral clustering with k = 15. The
boxplot [26] is used to represent data distributions for this and all
subsequent figures, and is described in detail in the Methods
section. A dotted line indicates the mean R, for the entire
simulation.

Page 5 of 23

into new areas of structure space. This can be observed
in the linear increase in RMSD from the initial structure
as a function of simulation time as shown in Figure 3A.
This is also observed in the linear increase in RMSD as
a function of the difference in time between pairs of
structures as shown in Figure 3C.

Spectral clustering is shown to behave as expected for
the linear model. Figure 3 shows the structure assign-
ment and cluster sizes for various values of k (the num-
ber of clusters). Each cluster consists of a temporally
contiguous set of structures that share no similarity to
the structures in the remaining clusters. The cluster
sizes at the start and end of the simulation are slightly
lower, which occurs because of clustering start- and
end-effects.

The clusters at the beginning and end of the simula-
tion are both less structurally diverse as indicated by the
narrow intra-cluster pairwise RMSD distributions for
these clusters shown in Figure 3. Both of these clusters
also have a few structures with rather large scaling para-
meters relative to other clusters and structures as indi-
cated by outliers in the intra-cluster scaling parameter,
o (box plots shown in Figure 3). These results also indi-
cate that the structures at the beginning and end of the
simulation have fewer close neighbors than structures in
the middle of the simulation, which is confirmed by
plotting the scaling parameters as a function of time as
shown in Figure 3B. The effect is mild, and suggests
that spectral clustering does not let the edge-effects of
the simulation override the importance of partitioning
the structures into clusters that all have a common
implicit degree of similarity. The meta-stable or transi-
tion states at the edges of the sampled conformation
space are not unduly penalized nor overly favored by
spectral clustering.

Sinusoid Model

Next, we examine the performance of spectral cluster-
ing on the sinusoid model. The sinusoid model shares
one key property with the linear model: the polymer is
always progressing into new areas of structure space.
However, the distance between successive structures is
now varied so that at certain times in the simulation,
successive structures are closer together, representing
a dense region of highly similar structures akin to a
meta-stable state. At other times in the simulation,
successive structures are further apart, representing a
sparse region of dissimilar structures akin to a transi-
tion state. In particular, this model exhibits three
meta-stable states with two transition states in-
between. The beginning and end of the simulation are
both at points where the structural distance between
successive structures is quite high and are both charac-
teristic of a transition state as well. These properties
can be observed in the RMSD plots shown in Figures
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Figure 3 Linear Model clustering results. Top: (A) Distance from initial structure, (B) local scaling parameters and (C) pairwise distance
between all structures. Bottom: Cluster assignment and statistics for several values of k.

4A and 4C. The centers of the meta-stable states are
found at ¢ = 133, 500, 833, which is where the slope of
the line describing RMSD from the initial structure
versus time is zero, and also where the lowest values
of pairwise RMSD are found (Figure 4C).

It is clear that the clustering algorithm is able to
extract the meta-stable states from the sinusoid model.

Figure 4 shows that spectral clustering divides this simu-
lation into clusters of temporally contiguous structures
and that these clusters contain similar numbers of struc-
tures. These results are almost identical to those
obtained from the linear model. Even the slight end-
effects that were observed from the linear model are
also replicated, including the sharp increase in the
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Figure 4 Sinusoid Model clustering results. Top: (A) Distance from initial structure, (B) local scaling parameters and (C) pairwise distance
between all structures. Bottom: Cluster assignment and statistics for several values of k.

scaling parameters at the beginning and end of the
simulation (see Figure 4B).

However, Figure 4 shows clear differences between the
sinusoid model and the linear model in terms of the
intra-cluster RMSD and intra-cluster scaling parameters.
The intra-cluster RMSDs and scaling parameter values
are quite low for the meta-stable states. In particular,

for the k = 15 case, clusters 3, 8, and 13 are in the cen-
ter of the meta-stable states and the distribution of scal-
ing parameters for these three clusters indicates that
these structures are in a densely populated region of
structure space. Therefore, we stipulate that a meta-
stable state is described by clusters with low intra-cluster
RMSD and low scaling parameter values. The transition
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states can also be discerned from these statistics. The k
= 10 case indicates that the structures in clusters 4 and
7 have large scaling parameter values. Therefore, we also
stipulate that large values are indicative of a sparsely
populated region of the structure space or a transition
state.

These results are consistent across both the RMSD
distributions and scaling parameters, but the results are
more evident from the scaling parameters than the
RMSD distributions. For example, the distribution of
scaling parameters is narrowly distributed around the
median for both the meta-stable and transition state
clusters. This is not true for the RMSD distributions,
where the transition state clusters have RMSD distribu-
tions that are widely distributed around their medians.
A large RMSD distribution might indicate that more
clusters are needed (higher k) to properly partition the
region covered by the corresponding cluster, and such a
distribution cannot guarantee that a cluster is not a
mixture of transition and meta-stable states. Therefore,
the scaling parameter distribution of a cluster provides
better evidence of whether that cluster belongs to a
meta-stable state, transition state, or something in-
between. Examples of these in-between clusters are 2, 4,
7,9, 12, and 14 for the k = 15 case.

Rotation Model

The results above correspond to analytic models in
which the inter-structure distances are specified directly.
We now study a polymer model where RMSD is used to
calculate the distances between generated structures.
The use of RMSD presents challenges for clustering
based analysis. While RMSD is reported to be quite sen-
sitive to small structural differences and, therefore, per-
forms well for distinguishing between structures which
are similar, it is less effective for comparing structures
with relatively large structural variation. Development of
new approaches for structural comparison is an active
area of research, and a thorough comparison of these
techniques is beyond the scope of this paper. Nonethe-
less, it is important that clustering-based analysis be as
robust as possible to deficiencies in the underlying
structural comparison whether it be RMSD or another
method.

We have utilized the rotation model to determine the
effect of the RMSD structural comparison metric on
clustering performance. Our model consists of a set of
consecutive links, each approximately 3.88 Angstroms
long, analogous to the C, trace of a protein. Steric
exclusion is not considered in this model and the links
may overlap with one another without penalty. The
angle between successive links is governed by the polar
angle (¢) and azimuthal angle (6) which range from [0,
2 m) and [0, 7), respectively. These two angles are initi-
ally set to O degrees, resulting in a fully extended chain.
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The angles are then incremented on each time step by a
small amount (2¢ and €) until the chain completely
winds into a tight helical configuration.

This linear walk through conformation space clearly
highlights the nonlinear effects of RMSD. Figures 5A
and 5C show the RMSD from the initial (extended)
structure as a function of time and the pairwise RMSD
between all structures in the trajectory. Comparisons
between (early) extended conformations result in rela-
tively high similarity as compared to (later) collapsed
structures which differ by the same distance in time and
conformation angle space. Also, the most collapsed,
tightly wound structures exhibit a slight bias to consider
most intermediately collapsed conformations to be
equally similar even though more extended conforma-
tions, separated in time and conformation angle space
by the same amounts as the intermediate conformations,
are considered to be quite dissimilar.

Example structures are shown in Figure 6A for ¢ =
330 and ¢ = 660 which correspond to unnaturally
extended and collapsed configurations respectively.
Structures along the helical continuum that correspond
to physiologically realizable biopolymers lay approxi-
mately between ¢ = 400 and ¢ = 600. It should be noted
that this region is still in danger of improper clustering
due to RMSD bias, as indicated by Figure 5C, where the
pairwise RMSDs to structures from earlier portions of
trajectory are still very small. Therefore, the rotation
model confirms the observation that RMSD does not
possess the ability to discriminate effectively between
certain kinds of structures.

Spectral clustering is able to effectively overcome
these problems in two specific ways. First, while RMSD
is unable to discriminate between extended structures
effectively, the meta-stable states of biopolymers would
not typically be composed of extended structures. Sec-
ond, spectral clustering utilizes the distribution of struc-
tures in localized regions to determine cluster
membership, as illustrated by the Gaussian kernel
employed to transform RMSD into a similarity metric
(see Methods section). Even if a biopolymer richly
sampled extended conformations, as might be the case
for highly disordered systems, only those structures clo-
sest in structural similarity would be considered by the
algorithm. Therefore, large and mid-range RMSD differ-
ences that might bias many clustering algorithms will
simply be ignored by spectral clustering, effectively miti-
gating any problems that result from the RMSD bias.

Upon applying spectral clustering, we observe that the
algorithm is only mildly sensitive to the nonlinear effects
of RMSD. Figure 5 shows that spectral clustering divides
this simulation into clusters of temporally contiguous
structures and that these clusters contain similar num-
bers of structures. This follows the same trend as the
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Figure 5 Rotation Model clustering results. Top: (A) Distance from initial structure, (B) local scaling parameters and (C) pairwise distance
between all structures. Bottom: Cluster assignment and statistics for several values of k.

linear and sinusoid models, which is encouraging since
this model also exhibits a property shared with these
models of always progressing into new areas of structure
space. The scaling parameters in Figure 5B indicate that
the bias is strongest for abnormally extended structures
before t = 300, where the scaling parameter fluctuates
quickly over time.

The intra-cluster RMSD plots for this model, shown
in Figure 5, verify that the structural diversity in the
physiologically relevant region (approximately ¢ = 400 to
t = 600) is still quite large even though it consists of
approximately only 200 structures. For instance, for the
k = 3 case, cluster 2 has the broadest distribution of
RMSD values. Increasing k confirms that the diversity of
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Figure 6 Sampled structures from two polymer models. (A) The
Rotation Model displays a controlled collapse from a completely
extended polymer (t = 1) to a tightly wound helix (t = 1000). (B)
The Dynamic Model is a simulated polymer that starts from a
random coil configuration and then “folds” into a helix (t = 500) as
the temperature of the simulations is lowered. The temperature is
then raised for the remainder of the simulation allowing the
polymer to “unfold” back to the random coil (t = 1000)
conformation.

structures is at least on par with the remainder of the
simulation, so we can be confident that this region pro-
vides a good representation of spectral clustering perfor-
mance for helical structures.

The intra-cluster scaling parameter distributions,
shown in Figure 5, make it clear that this region is lar-
gely unaffected by any RMSD bias. For the k = 3 case,
cluster 1 covers the region of extended structures, clus-
ter 2 covers the region of intermediate structures, and
cluster 3 covers the region of collapsed structures. Only
cluster 1 shows an appreciable bias, which is indicated
by the large spread in the intra-cluster scaling parameter
distribution. Cluster 3, shows a slight bias as well. How-
ever cluster 2 shows almost no bias at all, with a very
tight distribution around the median, similar to our
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results for the linear model. These results are also main-
tained across the k = 5, 10, and 15 cases, where the
clusters in the central, physically realizable region show
little spread in their intra-cluster scaling parameters dis-
tributions. Instead, the bias becomes only mildly evident
for the physiologically abnormal structures at both ends
of the trajectory.

The potential problems observed from using RMSD
on the most extended structures in the trajectory are
effectively overcome by spectral clustering. This can be
observed from our results for the rotation model, where
the structural diversity and total number of structures
for clusters in the middle, most relevant portion of the
trajectory are on par with the remaining clusters. How-
ever, unlike the remaining clusters, the middle clusters
did not show any appreciable bias due to the use of
RMSD. Therefore, we conclude that the ability of spec-
tral clustering to utilize localized regions of structure
space, and ignore more distant regions and structures,
can overcome the known problems with using RMSD to
compare conformations.

Cyclical Model

The results above were all gathered for models where
the simulation is always progressing to new areas of
structure space, but biopolymers often do not exhibit
this behavior. Instead, most biopolymers, especially
highly disordered systems, will revisit certain areas of
structure space. The cyclical model is intended to model
this process by building on top of the rotation model.
This model simply undergoes the same linear change in
angle space as the rotation model, but the polymer is
reextended following collapse. This process is repeated
three times in order to revisit the same region of struc-
ture space during the course of the simulation. This
revisiting of earlier regions of structure space can be
observed in the RMSD from the initial structure as a
function of time shown in Figure 7A and the pairwise
RMSD for all structures shown in Figure 7C.

We observe that during the initial collapse of the poly-
mer, the clusters are temporally contiguous and contain
approximately the same number of structures, as shown
in Figure 7. This is true for all values of k. These clus-
ters are then re-visited in reverse order during the sub-
sequent phase where the polymer returns to an
extended state. The same pattern is observed for the
remaining two collapse-extend cycles. The intra-cluster
RMSD distributions shown in Figure 7 indicate that the
important set of structures identified from the rotation
model maintain the same properties as in the cyclical
model. The most structurally diverse cluster (the one
with the broadest RMSD distribution) is number 2 for
the k = 3 case. This cluster occurs in the region of the
trajectory that corresponds to the physiologically rele-
vant region that the cyclical model shares with the
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Figure 7 Cyclical Model clustering results. Top: (A) Distance from initial structure, (B) local scaling parameters and (C) pairwise distance
between all structures. Bottom: Cluster assignment and statistics for several values of k.

rotation model. Clusters 2 and 3 for the k = 5 case are
also found in this region, and have the largest structural
diversity as well. The effect is less clear for the k = 5
and k = 15 case, because the clusters covering regions in
the fully collapsed state are also highly insensitive to
RMSD. Again, this result is consistent with the rotation
model, and can be verified by observing the smoother

changes in the structural scaling parameters in both of
these regions compared to the extended regions (see
Figure 7B.)

The intra-cluster scaling parameter values in Figure 7
confirm these results as well. Cluster 3 for the k = 3
case has the broadest distribution of scaling parameter
values and covers the structurally extended regions of
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the trajectory. Clusters 4 and 5 do likewise for the k = 5
case, as do clusters 5, 7, and 10 for the k = 10 case, and
clusters 8, 11, and 15 for the k = 15 case. Clusters 6 and
13 for the k = 15 case are also slightly broadened, and
are located in regions temporally and structurally adja-
cent to the extended regions. Cluster 2 for the k = 3
case and clusters 2 and 3 for the k = 5 case, all have
narrow scaling parameter distributions and cover
regions corresponding to the intermediate helical struc-
tures. For the k = 10 and k = 15 cases, clusters not cov-
ering the extended regions (listed above) have relatively
narrow scaling parameter distributions, indicative of
relatively little RMSD bias even for extremely collapsed
regions.

Dynamic Model

The above models are completely deterministic. There-
fore, we now consider a dynamic model which also
repeatedly transitions between fully extended and fully
collapsed configurations but whose dynamics are sto-
chastic like MD simulations of biopolymers. We utilize a
simple potential-energy function which favors a particu-
lar orientation of the ¢ and 6 angles, combined with a
soft-core pairwise repulsive interaction so that the low-
est-energy conformation is a helical structure. A tem-
perature bath is applied to the system and we anneal the
temperature over time to produce a simulation that initi-
ally models an extended coil at high temperature which
then “folds” into the final helical conformation at low
temperature. As long as the temperature is annealed
slowly, the system reliably folds into the native helix con-
formation. The annealing schedule is then reversed to
“unfold” the polymer, allowing it to return to the
extended state. Figure 6B shows example structures at
different points in time from this second phase of the
annealing process. The simulation exhibits one clearly
defined meta-stable state: the helical conformation that
(by construction) is present in the middle of the trajec-
tory (¢t = 500). Figure 8A confirms that this state is
reached as the RMSD from the native state approaches
zero at ¢ = 500. However, we also observe that the initial,
folding transition is much more gradual than the unfold-
ing transition. While there is a slightly abrupt structural
transition at ¢ = 180, the remaining portion of this folding
transition smoothly approaches the folded states. This
transition occurs because the forces exerted by the
potential function begin to overcome the effect of the
temperature bath at this point in the simulation, but the
soft-core interactions still allow the helix to be quite flex-
ible and dynamic, similar to a weak spring. The unfolding
transition does not display this folding intermediate, but
instead abruptly shifts from a collapsed coil to an
extended coil at £ = 800. The pairwise RMSD for the
simulation shown in Figure 8C, and the structure scaling
parameters shown in Figure 8B also confirm this pattern.
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Spectral clustering clearly identifies the meta-stable,
folded state of the polymer, and identifies the folding
intermediate state as structurally distinct from the
folded and unfolded states. The clustering assignment in
Figure 8 indicates that, as we increase k, the structures
associated with the intermediate state segregate into
separate clusters. At k = 3, cluster 3 covers the extended
state, cluster 2 covers the folded state, and cluster 1 cov-
ers intermediate structures for both folding and unfold-
ing. However, at k = 5, cluster 1 populates the region of
the folding intermediate but is not well-populated by
structures from the unfolding portion of the simulation.
By increasing k to 15, clusters 2, 3, and 4 are almost
exclusively populated by the folding intermediate. Clus-
ters assigned to the folded state become slightly more
populated (with more total structures) than the inter-
mediate states with increasing k, as shown in Figure 8.
For k = 3 the cluster assigned to the folded state, cluster
2, was the least populated state. However, the popula-
tion of the folded state cluster, 3 for k = 5, was above
the intermediate state cluster (2 and 4) populations. The
same trend is observed for the k = 10 and k = 15 cases.
More importantly, the intra-cluster scaling parameter
distributions in Figure 8 indicate that the most structu-
rally homogeneous clusters contain structures in or
close to the folded state because the distributions for
these clusters are much more narrow than clusters cor-
responding to extended states. So, these distributions
indicate that the number of structures assigned to a
cluster is not indicative of whether a cluster corresponds
to a meta-stable state since, for the k = 15 case, cluster
9 is just as heavily populated as cluster 15. The same
results can be observed in the intra-cluster RMSD
distributions.

The transition states are more difficult to observe in
this model, but we can see indicators of the transition
ensembles for the k = 15 case in clusters 3 and 14,
which both have more narrow distributions than one
would expect in the temporal regimes that they cover.
Cluster 3 heavily covers the folding intermediate state
right at the ¢ = 180 transition, and cluster 14 covers the
extended state just after the abrupt transition at £ ~ 800.
Since this transition is so abrupt, we lack sufficient sam-
pling to capture the transition within its own cluster.
However, a sharp jump in the median scaling parameter
values between temporally adjacent clusters, such as
between clusters 8 and 9 for k = 10 and between clus-
ters 12 and 13 for k = 15, is a clear indicator of a signifi-
cant structural transition. These results are in agreement
with the sinusoid model as well since such sharp jumps
in the median scaling parameters for temporally adja-
cent clusters are observed there too, even though the
sampling was sufficient to create unique clusters for the
transition states in that model as well as the meta-stable
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Figure 8 Dynamic Model clustering results. Top: (A) Distance from folded structure, (B) local scaling parameters and (C) pairwise distance
between all structures. Bottom: Cluster assignment and statistics for several values of k.

states. Therefore, we can see evidence of the transition
states, though these states are not easily identified with-
out combining the results of the cluster assignments
and scaling parameters in Figure 8.

GLFG Simulation

We now apply our clustering protocol to an 18ns simula-
tion of GLFG, a collapsed-coil FG-nucleoporin. We

investigate the cluster assignments and scaling parameter
distributions for k = 10 and k = 15 since these were the
most informative cases for the polymer models. The smal-
ler values of k = 3 and k = 5 were also investigated and
were consistent with results for k = 10 and k = 15, but were
not as informative as the results for these larger values of k
(a property that was also observed for the polymer models).
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GLFG undergoes significant structural changes over
the duration of the simulation. The differences between
the structures can be difficult to describe based on
observations of snapshots of the system, shown in Fig-
ure 9, since the structures all look equally dissimilar to
one-another. However, the RMSD from the initial struc-
ture as a function of time shown in Figure 10A indicates
significant structural divergence. The pairwise RMSD in
Figure 10C additionally reveals that several meta-stable
regions are present, but the dynamics in some regions (¢
~ 6000-13000) are quite complex, with the simulation
potentially revisiting previously explored regions of

SxSG FxFG GLFG

small

large

Figure 9 Sampled structures from the FG-nup simulations.
Structures shown are representatives from clusters with the smallest
(Osman) and largest (0,qe) Median scaling parameters obtained from
applying spectral clustering with k = 15. Representatives for each
cluster were obtained by selecting the structure which had the
smallest sum of intracluster distances. These structures clearly show
that smaller scaling parameters are associated with collapsed meta-
stable states for all three FG-nups studied, while large scaling
parameters are associated with extended transition states.
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conformation space. Scaling parameter values shown in
Figure 10B, indicate that the local structural density is
quite sensitive to these meta-stable/transition regions.

The cluster assignments in Figure 10 indicate that this
protein continues to move into new structural regions
over time, similar to many of the polymer models. An
interesting structural transition occurs at around 6ns,
observed in the pairwise RMSD plot where there is a
sharp increase in RMSD from structures explored pre-
viously in time. This is the only part of the simulation
that deviates from this continual structural evolution. In
particular, for the k = 10 case we observe that the simu-
lation begins to explore cluster 7 at around 6ns, a little
before settling into cluster 6 for a few nanoseconds.
This cluster is revisited again at around 10ns, eventually
making the transition to cluster 8 at around 12ns. The
same pattern can be observed in the k = 15 data, where
clusters 9 and 10 more clearly indicate the intermediate
transition state between these two meta-stable states.
Another distinct structural transition occurs at around
15ns as well. This final 3ns of the simulation is consis-
tently partitioned into a single cluster for all examined
values of k.

The intra-cluster scaling parameter distributions in
Figure 10 validate these claims where clusters 1, 3, 6, 8,
and 10 for k = 10 have the lowest median values com-
pared to their temporal neighbors, indicating that these
are meta-stable states. The same property is observed
for the clusters subtending the final 3ns of the simula-
tion across all values of k, indicating that these clusters
correspond to a meta-stable state as well. This is the
same pattern observed in the dynamic model where
transition and meta-stable states can be determined by
comparing the scaling parameter distributions for clus-
ters that are adjacent in time. The revisited transition
state observed in the clustering assignment is explicitly
assigned its own clusters (9, 10, and 11) in the k = 15
case, and the higher scaling parameters for these three
clusters make it clear that this is indeed a transition
state. The radius of gyration distributions in Figure 2A
indicate that two of these clusters (9 and 10) are more
extended than the surrounding clusters (8 and 12).
However, it is also clear that cluster 11 contains very
collapsed structures and is relatively short-lived. There-
fore, cluster 11 probably represents a set of collapsed
conformations which are energetically unfavorable com-
pared to clusters 8 and 12 which are both more heavily
populated.

Overall, the scaling parameters for each cluster are
distributed around their medians in a similar manner
across all clusters, which is similar to the Linear and
Cyclical models, and indicate that the meta-stable states
are representative of shallow minima on the free-energy
surface. The values of the scaling parameters are
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Figure 10 GLFG clustering results. Top: (A) Distance from initial structure, (B) local scaling parameters and (C) pairwise distance between all
structures. Bottom: Cluster assignment and statistics for several values of k.

relatively small, indicating that both meta-stable and
transition states are populated with collapsed-coil con-
figurations. The representative structures from the clus-
ters with the highest and lowest median scaling
parameters (k = 15) shown in Figure 9, confirm this
result. However, one cluster (11) is composed of highly
collapsed structures in terms of radius of gyration

(Figure 2A) even though it is part of a transition state
ensemble based on observations of small shifts in the
median scaling parameters of neighboring clusters. Even
though these shifts are small, some reasonable statistical
confidence in these results is present because the confi-
dence intervals (shown by the notches in the boxplots)
between these neighboring clusters are not overlapping.
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FxFG Simulation

The FxFG simulation, which undergoes even more sig-
nificant structural changes than GLFG, was analyzed
using the same protocol as the GLFG simulation. The
differences between structures are easy to characterize
based on observations of snapshots of the system,
shown in Figure 9. This is primarily because FxFG sam-
ples extended conformations that form patterns of long-
range contacts that are often discernible from the snap-
shots. The RMSD from the initial structure as a function
of time shown in Figure 11A indicates significant struc-
tural divergence, even greater than what was observed
for GLFG. The pairwise RMSD in Figure 11C addition-
ally reveals that several meta-stable regions are present,
but that the dynamics are even more complex than
GLFG, with the simulation clearly revisiting previously
explored regions of conformation space. The scaling
parameters values shown in Figure 11B indicate that the
local density is different within these meta-stable/transi-
tion regions.

FxFG appears to mostly move into new structural
regions over the course of the simulation similar to
GLEFG, but also seems to revisit previous conformational
states more often. The cluster assignments in Figure 11
indicate that this is true since for k = 10 cluster 5 is
heavily revisited during the simulation. Clusters 3, 4,
and 7 also possess this property but to a lesser degree.
The results for k = 15 make this even more clear, with
clusters 7, 8, and 11 occupying the same regions in time
as the revisited clusters from the k = 10 case. However,
the cluster assignments alone do not indicate which
clusters are potential meta-stable or transition states.

Again, we need to consider the differences in the
intra-cluster scaling parameter distributions between
temporally adjacent clusters in order to characterize
clusters as corresponding to meta-stable or transition
states. These distributions are shown in Figure 11. The
most likely candidates for meta-stable states for the k =
10 case are clusters 2, 7, and 10 due to their low med-
ians. Clusters 2 and 10 both have narrow distributions,
clearly indicative of meta-stable states. However, cluster
7 is not quite as clear because the distribution is broad,
opening the possibility that temporally adjacent clusters
6, 8, and possibly even 9 could also describe this meta-
stable state. The results for k = 15 resolve this ambiguity
by splitting this region into two different clusters, 10
and 11. The sharp increase in the median, and the
broad distribution for cluster 11 indicate that this region
corresponds to a transition state, and that cluster 10 is a
preliminary move towards this transition. Instead, clus-
ter 9 with its low median, and narrow distribution, dis-
plays all of the properties of a meta-stable state in this
regime. These results are congruent with our analysis
for the dynamic model where adequate sampling
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combined with results for various values of k is needed
in order to begin extracting transition states that occupy
their own distinct clusters. The structures in Figure 9
indicate that more extended conformations are often
associated with larger scaling parameters, and a more
thorough comparison with the cluster radius of gyration
(Rg) distributions in Figure 2B indicates that this is defi-
nitely the case for this protein.

S5xSG Simulation

Finally, we examined our simulation of SxSG which is
even more flexible than the wild type FxFG. This is
clearly seen in Figure 12 where the RMSD value from
the initial structure quickly diverges and levels off. This
indicates that this simulation is devoid of meta-stable
states. The pairwise RMSD values in Figure 12C indicate
that there is not only a wide variation in the structural
ensemble, but that it is difficult to identify when parti-
cular structural regions are revisited. The scaling para-
meters shown in Figure 12B vary consistently over time
in an almost cyclical manner. This could indicate rapid
transitions into and out of meta-stable states, but we
need to look at the clustering assignments to know this
for certain.

The clustering assignments for SxSG are shown in
Figure 12. The k = 10 case indicates that the simula-
tion is devoid of any meta-stable states since almost
any chosen 1ns time window from the simulation
spans all 10 clusters. The k = 15 case slightly diverges
from this result in that clusters 1, 2, 14 and 15 are
more sparsely populated. However, when comparing
the scaling parameter distributions for these clusters in
Figure 12, it is clear that these sparsely populated clus-
ters differ only slightly from the remaining clusters.
The radius of gyration distributions in Figure 2C indi-
cate that these clusters consist of the most compact
conformations visited by the simulation. This result is
also not due the end-effects like those observed in the
linear model because none of these clusters is heavily
populated by structures at the beginning or end of the
simulation. The large overall values of the scaling para-
meters indicate that all clusters are consistent with
extended coil conformations.

Conclusions

We have developed a framework for validating the per-
formance and utility of clustering algorithms for study-
ing molecular biopolymer simulations. The key
contribution of this framework is the development and
use of several analytic and dynamic polymer models
which exhibit well-behaved dynamics including: meta-
stable states, transition states, helical structures, and sto-
chastic dynamics. These models provide an informative
framework for testing the ability of spectral clustering, a
promising clustering algorithm that has received much
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Figure 11 FXFG clustering results. Top: (A) Distance from initial structure, (B) local scaling parameters and (C) pairwise distance between all
structures. Bottom: Cluster assignment and statistics for several values of k.

attention recently in the machine learning community,
to partition the polymer model structural ensembles
into clusters whose statistical properties reveal the
underlying meta-stable and transition state ensembles.
We have also used the models to address potential pro-
blems that arise due to RMSD bias and shown there is
little adverse effect for spectral clustering. In all of the

polymer models, spectral clustering found clusters that
corresponded to meta-stable states, most clearly recog-
nized by comparing the distributions of intra-cluster
similarity scaling parameters, ¢, between temporally
adjacent clusters. Transition states were sometimes not
assigned to clusters due to the sparse sampling of these
states in the ensembles.
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Figure 12 SXSG clustering results. Top: (A) Distance from initial structure, (B) local scaling parameters and (C) pairwise distance between all
structures. Bottom: Cluster assignment and statistics for several values of k.

We also utilized these methods to determine the
meta-stable and transition states for simulations of sev-
eral FG-nups, and found that the statistical properties of
the resulting clusters allowed similar comparisons and
predictions to be made for these systems as well. The
meta-stable states could often be predicted quite easily,
while the transition states were again somewhat difficult

to determine due to under-sampling. While experimen-
tal data for these proteins at the level of detail needed
for direct comparison is not available, the results for the
three proteins studied here are in agreement with past
experimental and computational studies on these pro-
teins [17,18]. In particular, GLFG is a collapsed coil that
slowly explores the free-energy landscape by climbing
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relatively small barriers between shallow meta-stable
states. FXFG is an extended coil that often revisits pre-
viously explored collapsed meta-stable states and utilizes
extended conformations to transition between these
states. SxSG is an extended coil that never explores col-
lapsed conformations.

Clustering has been widely used to partition structural
ensembles obtained from MD simulations, but few stu-
dies have been performed to rigorously determine the
utility of various clustering methods for studying MD
simulations. Our framework provides a novel approach
to address this concern that is computationally efficient
and highly predictive of success or failure for individual
algorithms. While most of the polymer models in this
study focused on unfolded and helical conformations,
we expect in the future to develop novel polymer mod-
els for assessing simulations involving loop and sheet
conformations as well. The framework could also be
used to compare different clustering algorithms to better
understand their relative strengths and weaknesses.
Finally, we hope to bring these results to bear on simu-
lations of previously unstudied biopolymer systems
where we can make predictions concerning meta-stable
and transition states that can be subsequently verified
using experimental techniques.

Methods

Spectral Clustering

Spectral clustering is a powerful methodology for parti-
tioning data. Application of this method results in a set
of clusters, each of which contains a subset of the data
that is considered to show strong intra-cluster similarity
and weak inter-cluster similarity according to some
metric (ex. Euclidean distance). The name “spectral”
refers to the use of eigen decomposition to compute the
eigenvectors of the Laplacian matrix obtained from an
adjacency matrix (graph) representation of the data. The
resulting top few eigenvectors describe a nonlinear pro-
jection of the data onto a low dimensional manifold.
Applying a standard clustering algorithm to the pro-
jected data typically results in a more intuitive and use-
ful partitioning, compared to applying a standard
clustering algorithm in the original data space.

Clustering algorithms often have to be adapted to deal
with the structure-comparison methods used in MD
simulation, such as root-mean-squared distance (RMSD)
or Mammoth [19], and often these modifications are
not trivial [9]. Projected data does not suffer from this
setback since any clustering algorithm which operates
on real data vectors can be used.

Research into spectral methods has resulted in a broad
number of ways to define the adjacency matrix and its
respective Laplacian matrix [20]. A wide range of stan-
dard clustering algorithms exist for processing the
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projected data as well. We have chosen to follow the
methodology outlined in [21], which in turn is based on
the algorithm in [2], with one modification outlined
below. This methodology presents several advantages
over other approaches:

« The projection step requires a single, highly insen-
sitive free parameter for defining a fully-connected
adjacency matrix.

+ A normalized Laplacian matrix is used so that the
resulting projection is a relaxed solution to the nor-
malized cut problem from graph theory.

+ The k-means clustering algorithm, a well-under-
stood and commonly used clustering algorithm, is
used for processing the projected data.

Our method proceeds as follows:

1. Consider P to be the set of n polymer or protein
structures that we would like to cluster.

2. Construct the dissimilarity matrix X € R” * "
where x; = RMSD(P;, P)).

3. Construct the sorted distance matrix S € R
by sorting each row of X in ascending order.

4. Construct the scaling parameter vector 6 € R "

n xn

|
where o' = ; 27:21 sjand g€ Z, 0 <q <n.
5. Construct the adjacency matrix A € R"” * " where
aj = exp(—x%j/Zaiaj) fori = j, A; = 0.

6. Construct the normalized graph Laplacian L = D~
2ADY? where D is a diagonal matrix with

D;; = Z ajj.
;i

7. Compute the eigen decomposition of L = QAQ’

8. Construct the projected data matrix Y € R” * X by
stacking the k eigenvectors associated with the & lar-
gest eigenvalues by column and normalize each of
the rows to unit length.

9. Apply k-means clustering to the row vectors in Y.

Our method differs from the approach of Zelnik-
Manor and Perona [21] in step 4. While they use o; = s;
(¢+1) (the distance between the gth closest structure to
structure i and structure i itself), we instead let
o = ; Zj:zl sij (the average distance from structure i to
the g closest structures to structure 7). This modification
makes the algorithm more robust to the choice of ¢
which is especially important for exploratory data analy-
sis. A value of ¢ = 10 was chosen for all analyses pre-
sented in this paper, and should perform well in general.

It is also worth noting that step 2 is not limited to any
particular pairwise distance function for computing dis-
similarity. We use RMSD here because of its ubiquitous
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application in MD simulation studies. However, any dis-
similarity function could be chosen, and may vary
depending on the particular application. We are study-
ing systems which display large amplitude motions, and
RMSD has been criticized in the past for performing
poorly when comparing very dissimilar structures. In
essence, two structures that are very different from one
another might both appear relatively similar to a third,
not necessarily intermediate, structure. This limitation
does not prove to be a problem in the context of graph-
based clustering methods, such as spectral clustering.
The Gaussian kernel in step 5, combined with the
locally-scaled parameters from step 4, allows the algo-
rithm to focus on the local, valid structural comparisons
and ignore the more distant, less discriminative compar-
isons. This kernel function is essentially a soft version of
the hard RMSD cutoff used in many other clustering
methods, but it is also locally adapted to the data at
hand via the scaling parameters, 0. The sparsity induced
upon the matrices via the Gaussian kernel also affords
the use of fast sparse linear algebra routines, greatly
reducing the computational demands of the algorithm.
In step 9, we utilize k-means clustering to perform the
final partitioning in the projected data space. We direct
the reader to the seminal paper by MacQueen for the
details of the algorithm [22]. The k-means clustering
algorithm requires specification of several parameters:

« The number of clusters, k.

+ The number of times to run the algorithm with
different initial positions for the k cluster centroids.

o The maximum number of iterations for the
algorithm.

The last two of these must be chosen so that there is
a reasonable expectation that the optimal solution is
obtained. We randomly select k points from the row
vectors of Y to initialize the algorithm. We do this ten
times and consider the result with the smallest sum of
the inter-cluster centroid-point distances:

k
> . ) yeC, |ly; — 1ill’, where C; is the set of points parti-
1€Ci

tioned into the ith cluster and y; is the mean, or cen-
troid, of the points in C;. The choice of ten restarts is a
conservative number of iterations given that the dimen-
sionality of the projected space is equal to k, which, in
this work, is always at least two orders of magnitude
smaller that the number of points. However, it is impos-
sible to prove that the algorithm has indeed found the
optimal partitioning, which is a recognized short-coming
of many clustering approaches. The algorithm is run for
a maximum of thirty iterations or until the partitioning
does not change between the last and most recent itera-
tions. This final parameter is a practical way to avoid
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the rare occurrence of infinite oscillations, but the algo-
rithm always terminated prior to thirty iterations for all
analyses presented in this paper.

Polymer Models

Linear Model

The linear model is one of the simplest models of poly-
mer dynamics that can be constructed. It is not neces-
sary to generate the actual structures since the
dissimilarity matrix, X, of the system can be determined
analytically according to the following equation:

X € R™" where X = [|i — || (1)

with # = 1000 for the results presented in this paper.

Sinusoid Model

The sinusoid model exhibits two of the key features of
interest to MD simulation studies: meta-stable and tran-
sition states. Like the linear model, the dissimilarity
matrix can be constructed analytically, so the generation
and comparison of actual polymer structures is not
necessary:

X € R™" where

Xfi =

2o () o
(50

with # = 1000 for the results presented in this paper.

The parameter z is added to the cosine functions in
order to ensure that the contributions to their respective
sums are always positive values, thus ensuring that x;
<x+1) for all 4, j. If we allowed -1 < z < 1 then some
temporally adjacent structures would actually be moving
toward the origin or stay in the same locations, rather
than continuing to evolve away from the origin. It turns
out that z < - 1 also produces reasonable results, where
the starting and ending structures reside in meta-stable
states, and two meta-stable states are created in the
middle of the trajectory. However, since we want to
observe three meta-stable states in the middle of the tra-
jectory, we constrain z to be greater than one. Note also
that this model asymptotically converges to a linear
model as z goes to infinity (or negative infinity), but this
property serves no practical purpose in this study.
Therefore, we set z = 1.01 (a value slightly larger than
1) for all results presented in this paper.

The corresponding polymer “simulation” shows
dynamics indicative of three distinct meta-stable states
and four transition states (one at the beginning, one at
the end, and two in-between the three meta-stable
states). This model is similar to the linear model
because the simulation is always progressing into new
areas of structural space. However, the distance between

andzeR,z>1
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successive frames is adjusted according to a nonlinear,
sinusoidal pattern. This produces the three distinct
meta-stable states by compressing the distances between
frames in three regions, while the intervening regions,
corresponding to the transition states, are produced by
dilating the distances between successive frames in these
regions. These dynamics resemble diffusion on a glassy
free-energy surface, which is a feature purportedly com-
mon among disordered proteins [23].

Rotation Model

The rotation model is the first polymer model used in
this study where 3D polymer structures were con-
structed for comparison using RMSD. The model
defines a polymer structure by a set of consecutive links,
each 3.88 Angstroms long, analogous to the C, trace of
a protein. There is no steric exclusion, so links may
overlap without penalty. The angle between successive
links is governed by the polar angle (¢) and the azi-
muthal angle (6) which range from [0, 2) and [0,7),
respectively. These two angles are initially set to 0
degrees, resulting in a fully extended chain. The angles
are then incremented at each time step by a small
amount (2¢ and ¢) until the chain completely winds into
a tight helical configuration. The number of links used
was 10 (11 particles). Here, € = 7/(n - 1) and n = 1000
for the results presented in this paper. This model is
similar to the linear model presented earlier because the
amount of structural change between successive struc-
tures is constant. However, using RMSD to compute
dissimilarity between structures results in a nonlinear
distortion of the polymer similarity space. Therefore, we
can utilize this model to determine if the use of RMSD
presents a challenge to clustering the structures in a
manner that fully captures the underlying linear model.
Cyclical Model

The cyclical model is an extension of the rotation model
in which the ¢ and @ angles are incremented until
reaching their maximal values and then subsequently
decremented until reaching zero. This process is
repeated three times so that the polymer cycles through
three phases of collapsing and extending. In our work,
we utilize € = 677/(n - 1) and n = 1000 for the cyclical
polymer model. It is important to recognize that incre-
menting the angles ¢ and 0 by 2¢ and ¢, respectively,
beyond their maximal values results in creating a left-
handed “helix”, while the earlier conformations simu-
lated during collapse (also from incrementing the
angles) were all right-handed. The angle decrementing
phase is necessary to avoid this problem, resulting in a
model where all structures are of the same handedness,
similar to biopolymers. This ensures that the structures
sampled during the expansion phase of the model are
the same as those sampled during the collapse phase.
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The cyclical model is similar to the linear model
because the angle parameters are adjusted in a linear
fashion, but it has several interesting additional proper-
ties. First, several false meta-stable states are created.
This arises from the use of RMSD for comparing the
polymer structures, which again results in a nonlinear
distortion of the underlying linear process. Second, the
model revisits these false states several times. Therefore,
this model is useful for determining how sensitive a
clustering algorithm is to the nonlinear distortion of
RMSD and how these “false” states differ from the
meta-stable states in the sinusoid model.

Dynamic Model

The dynamic model is the bridge between the analytical
models described above and the all-atom MD simula-
tions. The details of the model are fully described in
[24]. In the dynamic model, a polymer consists of a
string of particles connected by rigid bond constraints,
analogous to the links of the previous analytical models.
For our purposes, we utilize a link length, /, of 1.3 units.
A soft pairwise potential is applied to eliminate the
overlap between the particles and a torsional potential is
also applied to the bonds to favor a helical conforma-
tion. We specify the periodicity of the helix, 4, = 5, to
consist of five consecutive links. Therefore, we set the
polar angle ¢ = 2m/h, radians, which remains fixed
throughout the simulation. The azimuthal angle, 6, is
allowed to vary, but has an equilibrium value of 6, =
arcsin (1.1r.,/(hp * 1)) radians, where r,, = +/2 is the
distance cutoff for the neighbor-list. The particles are
assigned initial velocities according to the Maxwell dis-
tribution. Newton’s equations of motion are integrated
using the leap frog method and velocity scaling is used
on each time-step in order to keep the average kinetic
energy in the system at the desired level.

We utilized this model to perform both a freezing
and melting simulation. These two simulations
demonstrate two commonly studied phenomena for
proteins: folding and unfolding. Initial particle posi-
tions are assigned to be either a random coil or folded
helix, respectively. The random coil is generated by
uniformly sampling the space of torsional angles and
the folded helix is generated by setting the torsional
angles equal to 0,. We slowly anneal the temperature
every 4000 steps following the first 10000 steps in the
simulations according to the following relationship:
Teurrent = ¥ Tprevious- For the freezing simulation, y =
0.925, Ty = 6, and for the melting simulation, y =
1.0811, Ty, = 0.1217. Each simulation is run for
210000 steps and structures are saved every 400 steps
after the initial 10000 steps, for a total of 500 struc-
tures per simulation. The polymer consists of 10 links
(11 particles), similar to the analytical models above,
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completing two complete helix turns in the folded
state. The integration time step size is set to 0.004,
the size of the simulation box is set to 12 units along
each side, and the torsional force constant is set to 5.
This set of parameter values, and the above annealing
schedule allows the freezing simulation to quickly fold
the polymer without becoming trapped in local
minima in the potential energy surface (kinked
helices). The final temperature of the melting simula-
tion is approximately equal to the starting temperature
of the freezing simulation, and vice-versa. Therefore,
the folding/unfolding events occur at approximately
the same number of steps into the simulations. Finally,
we concatenate the two simulations to create a single
freezing-melting simulation with a total of n = 1000
structures.

Molecular Dynamics Simulations

For each FG-nup we performed a 20ns simulation of
classical MD at 300K using the AMBER 8 software
suite [25], the amberff99 forcefield, and a Generalized
Born/Surface Area implicit solvent model using stan-
dard protocols and parameters sets. Fully-extended
structures for the simulations were prepared using the
AMBER program tleap, with ACE and NME caps on
the C and N termini, and subsequently minimized
using 10000 steps of steepest descent. Each simulation
was then started from the minimized structures using
a unique set of random initial velocities. Structures
were saved every 2 picoseconds for the final 18ns of
the simulations, to yield 9000 structures for each FG-
nup. The amino acid sequences for the simulated pro-
teins are listed below:

« GLFG

GSRRASVGSG ALFGAKPASG GLFGQSAGSK
AFGMNTNPTG TTGGLFGQTN QQQSGGGLFG
QQOONSNAGGL FGONNQSQNQ SGLFGQQONSS
NAFGQPQQQG GLFGSKPAGG LFGQQQGASY

o« FxFG
SKPAFSFGAK PDENKASATS KPAFSFGAKP
EEKKDDNSSK PAFSFGAKSN EDKQDGTAKP
AFSFGAKPAE KNNNETSKPA FSFGAKSDEK
KDGDASKPAF SFGAK

SxSG

.

SKPASSSGAK PDENKASATS KPASSSGAKP
EEKKDDNSSK PASSSGAKSN EDKQDGTAKP
ASSSGAKPAE KNNNETSKPA SSSGAKSDEK
KDGDASKPAS SSGAK
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Clustering Protocol

Data from all analytical models, the dynamic model
simulation, and the MD simulations were processed
using spectral clustering for several values of k: 3, 5, 10,
and 15. These values were chosen to examine how a
wide range of k can be used to reliably determine the
built-in properties of each model. A wide range of
values such as these would likely need to be tried for
any novel data set since we normally would have no
indication of what value of k to choose a priori. Features
extracted for each of the resulting partitions include: the
scaling parameters for each structure (o;), the number
of structures in each cluster, the distribution of intra-
cluster RMSDs, and the distribution of scaling para-
meters for each cluster.

The polymer models and protein simulations studied
here revealed that sampling several values of k was
needed to determine the presence of meta-stable and
transition states. In general, some of these states will
become discernible at low k, but others will require
higher k in order to properly partition these states into
separate clusters. However, some other heuristics could
be used to constrain the space of k values to explore.
For example, the need to gather adequate statistics will
somewhat constrain the search along k. If too many (or
too few) clusters are requested, then the confidence
intervals of the various statistics for each cluster would
begin to consistently overlap. Such heuristics were not
employed in this paper since the approximate confi-
dence intervals calculated by the box plots showed suffi-
cient statistical confidence for at least one of the
selected values of k for each model. However, it may be
possible to utilize such statistics to find a preferred
value (or subset) of k, instead of manually examining a
range of values as we have done here. Exploring the
adequacy of this and other heuristics will be the subject
of future work.

Boxplots

In all figures, we utilize the boxplot to represent data
distributions [26]. The colored box represents the data
range from the first quartile to the third quartile, with
the median represented by a black line across the cen-
tral box region. The notches in the sides of the box

roughly approximate a 95% confidence interval, extend-
1.58 x R[Q
Jn
the interquartile range which is defined as the difference
between the third and first quartiles and # is the num-
ber of data elements. The bottom and top whiskers each
extend an additional 1.5 times the distance from the
median to the first and third quartiles, but they are
truncated to the minimum and maximum data values,

ing around the median by + , where Ryq is
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respectively, if there are no outliers present. Outliers are
plotted as circles above and below the whiskers.
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