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Abstract

Background: Accurate prediction of peptide immunogenicity and characterization of relation between peptide
sequences and peptide immunogenicity will be greatly helpful for vaccine designs and understanding of the
immune system. In contrast to the prediction of antigen processing and presentation pathway, the prediction of
subsequent T-cell reactivity is a much harder topic. Previous studies of identifying T-cell receptor (TCR) recognition
positions were based on small-scale analyses using only a few peptides and concluded different recognition
positions such as positions 4, 6 and 8 of peptides with length 9. Large-scale analyses are necessary to better
characterize the effect of peptide sequence variations on T-cell reactivity and design predictors of a peptide’s T-cell
reactivity (and thus immunogenicity). The identification and characterization of important positions influencing T-
cell reactivity will provide insights into the underlying mechanism of immunogenicity.

Results: This work establishes a large dataset by collecting immunogenicity data from three major immunology
databases. In order to consider the effect of MHC restriction, peptides are classified by their associated MHC alleles.
Subsequently, a computational method (named POPISK) using support vector machine with a weighted degree
string kernel is proposed to predict T-cell reactivity and identify important recognition positions. POPISK yields a
mean 10-fold cross-validation accuracy of 68% in predicting T-cell reactivity of HLA-A2-binding peptides. POPISK is
capable of predicting immunogenicity with scores that can also correctly predict the change in T-cell reactivity
related to point mutations in epitopes reported in previous studies using crystal structures. Thorough analyses of
the prediction results identify the important positions 4, 6, 8 and 9, and yield insights into the molecular basis for
TCR recognition. Finally, we relate this finding to physicochemical properties and structural features of the MHC-
peptide-TCR interaction.

Conclusions: A computational method POPISK is proposed to predict immunogenicity with scores which are
useful for predicting immunogenicity changes made by single-residue modifications. The web server of POPISK is
freely available at http://iclab.life.nctu.edu.tw/POPISK.

Background
Immunogenicity is the ability to induce an immune
response. For the major histocompatibility complex
(MHC) class I-mediated immune response, this immune
activation entails a successful processing of the antigen,
its presentation by an MHC class I molecule and finally
its recognition by a T-cell receptor (Figure 1). The pre-
dictions of antigen processing and MHC-peptide

binding are well-studied problems in immunoinfor-
matics. The prediction of T-cell reactivity, in contrast, is
less well studied and much more difficult.
For computer-aided vaccine designs [1-3], the predic-

tion of the immunogenicity is an important step. Com-
putational methods for immunogenicity prediction
accelerate the design of peptide-based vaccines. The
immunogenic pathway can be split in two major phases
as shown in Figure 1. Phase I includes all processes
involving the antigen-presenting cell. For MHC class I,
this phase encompasses proteasomal cleavage, peptide
transport, the binding of a peptide to the MHC, and its
presentation on the cell surface. Phase II is the recogni-
tion of this MHC-peptide complex by T cells leading to
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T-cell activation. Thus, a peptide has to fulfill at least
two requirements to become immunogenic. First, the
peptide has to be presented by an MHC molecule. Sec-
ond, the T-cell receptor (TCR) has to bind to this pep-
tide-MHC complex such that an immune response is
triggered. Hence, overall immunogenicity is governed by
antigen processing as well as MHC binding in Phase I,
and mostly by T-cell reactivity in Phase II. For simpli-
city’s sake, we summarily refer to Phase II, T-cell reac-
tivity, as immunogenicity in the context of this work.
Numerous methods have been reported to predict

individual steps of Phase I. We mention only selected
works here and refer to recent reviews for a more com-
plete picture [4-6]. There are several existing prediction
methods for antigen cleavage [7-9], transport through
the transporter associated with antigen processing
(TAP) [10,11], and in particular for MHC-peptide bind-
ing. Techniques for predicting MHC binding include
SYFPEITHI [12,13], BIMAS [14], SVMHC [15,16],
NetMHC [17], NetMHCpan [18], KISS [19], RANKPEP
[20,21], SVRMHC [22-24] and DynaPred [25]. These
methods have typical prediction accuracies of almost
70-90%. Furthermore, there are techniques combining
all three major steps of the antigen processing and pre-
sentation pathway [26-29].
It is commonly assumed that a peptide’s immunogeni-

city is related to its binding affinity to MHC. However,
recent studies demonstrated that the binding affinity to
MHC class I molecules does not strongly correlate with
the strength of induced T-cell immune responses
[30-32]. Feltkamp et al. showed that the binding affinity
to MHC class I molecules is required but does not
ensure T-cell immune responses [33]. Furthermore, fac-
tors other than MHC binding affinity are found to
strongly influence T-cell immune responses, compared
with only moderate influence of MHC binding affinity
[34]. All together, peptides predicted to be cleaved by
proteasome and bound by TAP and MHC molecules

have potential to be immunogenic but are not always
immunogenic. The prediction and characterization of
peptide immunogenicity will be valuable for better
understanding the immune system.
In contrast with the numerous studies of dealing with

antigen processing, only a few studies address Phase II
by considering the T-cell immune responses involved.
Prediction of immunogenicity is hard because it depends
on the host immune system, in particular on the HLA
and TCR types present in the immune repertoire.
Besides common structural features of the MHC-pep-
tide-TCR complex, immunogenicity is also governed by
negative T-cell selection (central tolerance). In contrast
with the influence of structural features, central toler-
ance as a property of the whole proteome cannot easily
be learned. It is desirable to better characterize the pep-
tide immunogenicity and develop methods for predict-
ing immunogenicity of MHC-binding peptides.
In previous studies on the formation of the TCR-pep-

tide-MHC complex, crystal structures have been ana-
lyzed [35-37] to correlate structural features of the TCR
with immunogenicity and to identify TCR recognition
positions. However, due to the small number of avail-
able crystal structures of the ternary complex, these are
just case studies, with limited potential for generaliza-
tion. For example, two studies found different important
positions of HLA-A2 binding peptides for TCR recogni-
tion (position 8 [37] and positions 4 and 6 [35]). As an
alternative approach to T-cell reactivity, experiments
with substitutions and cytotoxicity assays have been per-
formed for HLA-B27 [38]. However, so far results are
based on only a few peptides. Furthermore, the relation
between peptide sequence variation and immunogenicity
that has not been convincingly demonstrated is impor-
tant to better understand the immune system. Large-
scale analyses are thus desirable to better characterize
the relation between peptide sequences and immuno-
genicity, and the important positions of MHC binding
peptides for immunogenicity.
The first predictor for T-cell reactivity published is

POPI [31]. POPI is a support vector machine (SVM)-
based method using 23 informative physicochemical
properties of MHC class I binding peptides. While POPI
performs reasonably well, it uses averaged values of phy-
sicochemical properties to represent peptides indepen-
dent of the amino acid positions for T-cell reactivity.
The method thus cannot yield structural insights into
T-cell reactivity.
In this work, we investigate a systematic approach to

prediction and analyses of T-cell reactivity by consider-
ing the effects of MHC restriction on immunogenicity.
In order to better characterize the immunogenicity
induced by MHC class I binding peptides and identify
important positions of these peptides, we propose a

Figure 1 The immunogenic pathway associated with MHC class
I molecules.
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prediction method (named POPISK) using SVM with
string kernels that have been successfully applied in
classification tasks [19,39-42]. This work establishes a
large dataset IMMA2 by collecting immunogenicity data
from three major immunology databases, MHCPEP [43],
SYFPEITHI [12,13] and IEDB [44].
The method POPISK performs reasonably well in pre-

dicting peptide immunogenicity of HLA-A2 binding
peptides where the mean 10-fold cross-validation accu-
racy is 0.68. For fair comparisons, a modified POPI
method with physicochemical properties was implemen-
ted using the same dataset IMMA2. POPISK is better
than the modified POPI with the accuracy of 0.60. In an
analysis of seven HLA-A2-binding peptides with known
crystal structures, POPISK accurately predicts the
immunogenicity for the majority of peptides and suc-
cessfully predicts the immunogenicity change of single-
residue modifications reported in previous studies
[45,46]. The results reveal that peptide sequence varia-
tion plays an important role in immunogenicity. We
also analyzed importance of amino acid positions of the
peptides with length 9 by selecting positions whose dele-
tion significantly decreases prediction performance. The
result shows that six positions (1, 4, 5, 6, 8 and 9) of
HLA-A2 binding peptides are important for T-cell reac-
tivity and thus immunogenicity. As a confirmation, gra-
phical analyses using two sample logos [47] identified
important positions 4, 6, 8 and 9. This finding is related
to physicochemical properties and structural features of
the MHC-peptide-TCR interaction.

Methods
Datasets
We establish a new and large dataset IMMA2 by
extracting peptide binders of length 9 with associated
human MHC class I alleles and their corresponding
immunogenicity data from the three databases MHCPEP
[43], SYFPEITHI [12,13] and IEDB [44]. Although the
MHCPEP database has not been updated since 1998, it
is still widely used for analysis [48-51]. By using three
different databases, the experimental results are
expected to have no bias towards any one of the data
sources.
For the MHCPEP database, the peptide sequences and

their associated MHC alleles, binding and immunogeni-
city data are extracted from the fields of ‘SEQUENCE’,
‘MHC MOLECULE’, ‘BINDING’ and ‘ACTIVITY’,
respectively. The ‘BINDING’ field annotates a peptide as
either a binder or a non-binder. There are four levels
(none, little, moderate and high) of immunogenicity in
MHCPEP that can be obtained from the field “ACTIV-
ITY”. Peptides annotated as ‘none’ in the field “ACTIV-
ITY are non-immunogenic peptides. Peptides annotated
as the other three levels are immunogenic peptides.

For the IEDB database, the peptide sequences and
their associated MHC alleles, qualitative binding and
qualitative immunogenicity data are extracted from the
fields of ‘Epitope’, ‘MHC Restriction’, ‘MHC binding’,
and ‘T cell response’, respectively. Only peptides with
positive binding annotation were selected for analyses. A
peptide with positive annotation in the field of ‘T cell
response’ is an immunogenic peptide. In contrast, a pep-
tide with negative annotation in the field of ‘T cell
response’ is a non-immunogenic peptide. Unlike the
databases MHCPEP and IEDB, there are only immuno-
genic peptides in the SYFPEITHI database. For the SYF-
PEITHI database, immunogenic peptides associated with
various MHC alleles are extracted from the field of ‘T-
Cell epitopes’.
These peptide sequences were grouped into allele-spe-

cific datasets according to their associated HLA super-
types [52]. In order to utilize all available data for
analyzing immunogenicity conferred by any of TCRs,
peptides with contradictory annotations (immunogenic
and non-immunogenic) were regarded as immunogenic
peptides. That means a peptide recognize by any of
TCRs is an immunogenic peptide. Similarly, the identi-
fied sequence patterns would be recognized by any of
TCRs. Despite thousands of extracted entries are avail-
able for many alleles, there is only one allele HLA-A2
with enough data (> 500 peptides) for subsequent analy-
sis after removing duplicate entries. The main reason
for high duplication rate is the use of different methods
and conditions for measurement of immunogenicity.
Therefore, this study focuses on HLA-A2, one of the
best known allele with plenty of previous knowledge for
comparison with findings from this study. Also, due to
the small number of peptides associated with the other
alleles, it is hard to create robust models for the other
alleles. The dataset of allele HLA-A2 (named IMMA2)
consists of 558 immunogenic and 527 non-immuno-
genic peptides and is available at http://iclab.life.nctu.
edu.tw/POPISK/download.php.

The proposed method POPISK
POPISK (prediction of peptide immunogenicity using
string kernel) uses support vector machines (SVMs)
with a weighted degree string kernel. SVMs cope well
with the over-fitting problem arising from a small train-
ing dataset by finding a linear separation hyperplane
that maximizes the distance between two classes to cre-
ate a classifier. SVMs can efficiently deal with classifica-
tion, prediction and regression problems. Given training
vectors xi Î Rn and their class values yi Î {-1, 1}, i = 1,
..., N, an SVM solves the problem of minimizing
1
2
wTw + C

N∑
i=1

ξi , subject to yi(w
Txi+b) ≥ 1-ξi and ξi ≥ 0,
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where w is a normal vector perpendicular to the hyper-
plane and ξi are slack variables allowing for some mis-
classifications. The cost parameter C > 0 controls the
trade-off between the margin and the training error.
Larger values of C will lead to a higher error penalty.
An effective weighted degree string kernel [41,53]

counting the numbers of matched sub-sequences of
length p at corresponding positions of two sequences is
applied to transform samples to high-dimensional space
to make linear separation easier. Given two sequences si
and sj of equal length L and degree d, the weighted
degree string kernel computes the total numbers of
matched sub-sequences of length p Î {1, ..., d} at corre-
sponding positions l of two sequences, defined as fol-
lows:

k(si, sj) =
d∑

p=1

βp

L−p+1∑

l=1

I(up,l(si) = up,l(sj)), (1)

where I(h) = 1 if h is true; otherwise, I(h) = 0, up, l(s)
is the sub-sequence of length p starting from position l
of peptide sequence s, and bp are weighted coefficients.
In this study, sequence length L is 9. The fixed values of
bp = 2(d-p+1)/(d(d+1)) are adopted as used in the pre-
vious study [41]. Shogun [54,55] was used and LIBSVM
[56] was chosen for implementation of the proposed
method.

Identifying informative physicochemical properties
Identification of informative physicochemical properties
of peptides provides a better understanding of the TCR-
peptide-MHC interaction. Since decision tree learning
methods reveal interpretable rules, it is helpful to reveal
differences between immunogenic and non-immuno-
genic peptides. We employed C5.0, a decision tree learn-
ing method, which is an improved version of C4.5 [57].
In C5.0, the information gain is utilized to rank features
for constructing a decision tree by iteratively appending
nodes with high ranks. After construction of a decision
tree, C5.0 will automatically calculate feature usage for
each feature by counting the firing frequency of asso-
ciated rules (nodes). The feature usage provides an easy
way to rank and identify important features. A physico-
chemical property with high feature usage is an impor-
tant feature.
In this study, a total of 531 physicochemical properties

without ‘NA’ values were retrieved from version 9.0 of
the amino acid index (AAindex) database [58]. Each
physicochemical property consists of a set of 20 numeri-
cal values for amino acids. The physicochemical proper-
ties have been extensively used for quantitative
structure-activity relationship (QSAR) model [59-62]
and for predicting MHC binding peptides

[48,50,60,63,64]. To use physicochemical properties to
represent a peptide, the peptide of L amino acids is
encoded as an L-dimensional vector for each of the 531
physicochemical properties. The feature vector consist-
ing of 531 mean values for representing physicochemical
properties of the peptide can be obtained by separately
averaging values of 531 L-dimensional vectors
[31,65,66]. Please note that this study utilizes physico-
chemical properties only for analyzing their effects on
TCR-peptide-MHC interactions. The proposed POPISK
is based on SVM with string kernels using only
sequence information.

Comparison between POPISK and POPI
To the best of authors’ knowledge, our recent work
POPI [31] is the only method for predicting T-cell reac-
tivity of MHC binding peptides. POPI is an SVM-based
method using a radial basis function kernel and 23
informative physicochemical properties mined by using
an inheritable bi-objective genetic algorithm. It is not
fair to directly compare the results of POPISK with
POPI because POPI is a four-class prediction method
that predicts a peptide as highly, medium, little and not
immunogenic. Furthermore, POPI is based on a smaller
dataset. In order to perform a fair comparison, a modi-
fied POPI method (POPI-modified) was implemented
using the dataset IMMA2 and the same 23 informative
physicochemical properties for the binary prediction
problem of immunogenic and non-immunogenic
peptides.

Performance evaluation
Three measurements are used to evaluate prediction
performances of weighted degree kernel and SVM on
the dataset IMMA2, namely overall accuracy (ACC),
Matthew’s correlation coefficient (MCC) and area under
receiver operating characteristic curve (AUC):

ACC =
TP + TN

TP + TN + FP + FN
, (2)

MCC =
TP × TN - FP × FN√

(TP + FN) × (TP + FP) × (TN + FP) × (TN + FN)
, (3)

where TP, TN, FP and FN are the number of true
positives, true negatives, false positives and false nega-
tives, respectively.

Results and Discussion
The performance evaluation of POPISK is given as fol-
lows. First, we evaluate POPISK in predicting peptide
immunogenicity. Second, we show the identification of
important positions of a peptide for immunogenicity
and give the differences found between immunogenic
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and non-immunogenic peptides. Third, physicochemical
properties and their position-specific effects on immu-
nogenicity are analysed. Finally, we present the predic-
tion web server of POPISK and evaluate its
performance.

Prediction of peptide immunogenicity
To accurately predict immunogenicity of HLA-A2 bind-
ing peptides, it is necessary to tune two parameters
(cost parameter C of the SVM and degree d of the
weighted degree kernel) to build an accurate SVM clas-
sifier. In this study, a nested 10-fold cross-validation
(10-CV) procedure was adopted to evaluate the predic-
tion performance of our string kernel-based SVM classi-
fier as it provides an almost unbiased estimate of the
prediction error [67].
The nested 10-CV consists of two cross-validation

loops: an inner loop for tuning SVM parameters and an
outer loop for evaluating the test performance of the
tuned SVM classifiers. First, the dataset IMMA2 was
randomly divided into ten subsets of approximately
equal size. For each iteration m (outer loop), the m-th
subset is left out for testing the tuned SVM classifier
trained by using the selected optimal parameter values
giving the highest AUC performance using 10-CV on
the remaining dataset (inner loop). The grid search
method is applied to tune the parameters C Î {2-4, 2-3,
..., 24} and d Î {1, 2, ..., 9}.
To obtain a robust statistical estimation of prediction

performances, 20 independent runs of the nested 10-CV
procedure were performed where the means and stan-
dard deviations of three performance measurements are
regarded as final prediction performances. The best
values of C and d having the highest AUC value on the
inner 10-CV loop are always 1.0 and 9, respectively. The
means and standard deviations of POPISK on the data-
set IMMA2 are 0.68 and 0.007 for ACC, 0.74 and 0.004
for AUC, and 0.37 and 0.013 for MCC, respectively (Fig-
ure 2). The highest and lowest accuracies are 0.70 and

0.65 for ACC, 0.75 and 0.71 for AUC, and 0.30 and 0.40
for MCC, respectively. The small difference in predic-
tion accuracies of 20 runs (200 predictions on randomly
divided datasets) shows the robustness of the proposed
method POPISK and the small effect of sequence simila-
rities between training, validation and test datasets on
the prediction performances. All nine string kernels and
five complex string kernels provided by Shogun [54,55]
were evaluated. Most of them perform similarly to or
slightly worse than the weighted degree string kernel.
Except for cost parameters C and degree parameter d,
the above-mentioned results were obtained by using
default values of parameters. All kernels might thus per-
form better by carefully tuning the respective
parameters.
Previous studies for MHC binding predictions show

that the use of quantitative data and regression methods
is able to enhance the prediction performances [22-24].
However, currently there is only limited number (< 100)
of HLA-A2 binding peptides with quantitative immuno-
genicity data in the databases of MHCPEP, IEDB and
SYFPEITHI. The collection and utilization of quantita-
tive immunogenicity data are expected to improve pre-
diction performances and provide better functionality
for immunologist.

Comparison with POPI-modified
The evaluation procedure of the POPI-modified method
is described as follows. First, the 23 informative physico-
chemical properties were used to encode peptides in the
dataset IMMA2. Subsequently, 20 independent runs of
the nested 10-CV were performed as follows. The grid
search method was applied to tune the cost parameter
C Î {2-4, 2-3, ..., 24} and the kernel parameter g Î {2-4, 2-
3, ..., 24} in the inner 10-CV loop. The SVM classifiers
trained by using the selected parameters giving the high-
est AUC performance in inner 10-CV loop are used to
evaluate the prediction performances in the outer 10-
CV loop.
The comparison of nested 10-CV performances of

POPISK and POPI-modified is shown in Figure 2. The
nested 10-CV performances and corresponding standard
deviations of POPI-modified are 0.60 and 0.009 for
ACC, 0.64 and 0.009 for AUC and 0.19 and 0.018 for
MCC, respectively. POPISK outperforms the POPI-mod-
ified method having 8% and 10% improvements for
ACC and AUC, respectively.
To analyze the effect of sample size on the prediction

performance of POPISK, a learning curve is designed to
reveal the effect. First, the dataset IMMA2 is randomly
divided into three dataset consisting of 50%, 25% and
25% peptides for training, validation and test datasets,
respectively. For each training sample size s Î {50, 100,
150, 200, 250, 300, 350, 400, 450, 500, 542}, the set of s

Figure 2 Comparison of nested 10-CV performances of POPISK
and POPI-modified.
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randomly-selected samples is applied to train a SVM
model. Subsequently, the validation and test datasets are
used to evaluate the built model. Figure 3 shows the
learning curves for various training sample sizes. The
prediction accuracies of ACC and AUC for validation
and test datasets increase as the training sample size
increases. By collecting more data, POPISK is expected
to perform better and can be applied to analyze immu-
nogenicity of peptides associated with other MHC
alleles.

Identification of important positions for immunogenicity
Compared with the familiarity of MHC binding pep-
tide’s motifs, the understanding of T-cell recognition
positions of MHC binding peptides is still not satisfac-
tory. Some studies have aimed to identify the T-cell
recognition positions. However, these studies were
based on only a few crystal structures and identified dif-
ferent recognition positions [35-37]. The identification
of important positions for immunogenicity will shed
light on the mechanism of T-cell recognition and accel-
erate the development of peptide-based vaccines. To
assess the individual contributions of each position of
MHC-binding peptides to the prediction performance,
we proposed two efficient methods to estimate the
importance of positions, described as follows.
The proposed method uses the decrease in prediction

performance resulted from removing the amino acid on
a specific position of the peptide to designate the impor-
tance for each position. The larger the decrease in per-
formance, the greater the importance of the position is.
The change in prediction performance is evaluated as
follows. First, nine additional datasets for nine positions
were created by removing amino acids in the corre-
sponding positions from the dataset IMMA2. Subse-
quently, for each of the nine datasets, 20 runs of nested
10-CV were performed as described above to evaluate
prediction performances. For the parameter tuning

process, the largest value of degree parameter d is set to
8 (the same as the remaining peptide length). The
decreases in performance as measured by MCC
(ΔMCC) for these datasets are shown in Figure 4. Other
performance measures (AUC, ACC) yield similar results
(data not shown). Six positions (1, 4, 5, 6, 8 and 9) are
identified as important positions since the prediction
performance of those positions decreased significantly.
To further investigate over- and underrepresented

amino acids in corresponding positions, the two-sample
logos [47] are computed to graphically represent the dif-
ferences between immunogenic and non-immunogenic
peptides of all peptides in IMMA2. The identified over-
and under-represented amino acids in specific positions
show the sequence preferences for recognitions by any
of TCRs. Statistically significant residues selected by
using a two-sample t-test with p < 0.05 are represented
in the logo. In addition, a widely used multiple-compari-
son correction (Bonferroni correction) is applied to
eliminate false positives by adjusting the significance
level. Figure 5 shows the resulting two-sample logo
representations. The residues overrepresented in immu-
nogenic peptides (shown in the upper half of Figure 5)
are glycine, valine and threonine at positions 4, 6 and 8,
respectively. On the other hand, the residues underre-
presented in immunogenic peptides (shown in the lower
half of Figure 5) are threonine and isoleucine at posi-
tions 6 and 9, respectively.
Our method successfully identified previously reported

TCR recognition positions (4, 6 and 8) for HLA-A2
binding peptides from an analysis of crystal structures
[35-37]. Notably, the underrepresented residue isoleu-
cine in position 9 is the anchor residue for peptides
binding to HLA-A2 molecules [68]. However, position
2, the primary anchor position of HLA-A2 binding pep-
tides [68,69], is not important for predicting peptide
immunogenicity from a set of MHC-binding peptides.
The above findings might explain the observation that

peptides with high binding affinity to MHC class I

Figure 3 Learning curves for various training sample sizes.

Figure 4 The decrease in MCC performances evaluated on
datasets without using residues in specific positions.
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molecules do not always induce immune responses
[30-34]. Because there are only 11 peptides without nat-
ural source in IMMA2, the identified sequence patterns
are less likely derived from proteasome cleavage, TAP
binding and MHC binding. Both analyses are based on
only sequences. The use of feature-independent meth-
ods can avoid the bias derived from applied features. It
is noteworthy that the average predicted affinity of non-
immunogenic peptides is significantly stronger than that
of immunogenic peptides (p < 0.05, t-test) in IMMA2.
The results confirm the idea that although MHC bind-
ing is a prerequisite for immunogenicity but the peptide
immunogenicity does not solely depend on binding affi-
nity [30-34].

Identification of informative physicochemical properties
Physicochemical properties play an important role in
biomolecular recognition. The identification of informa-
tive physicochemical properties will provide insights
into the underlying mechanism of immunogenicity. To
identify the informative position-independent physico-
chemical properties, all HLA-A2 binding peptides were
encoded as feature vectors with 531 mean values of phy-
sicochemical properties. Subsequently, C5.0 was applied
to build a decision tree using the whole dataset IMMA2.
The feature usage obtained from C5.0 can be used to
rank the physicochemical properties. Table 1 shows phy-
sicochemical properties with usage larger than 50%.
Hydrophobicity (AAindex IDs MEEJ800102,

CASG920101, NAKH900110 and FASG760105) is
obviously a major contributor to predict peptide immu-
nogenicity. Another property with AAindex ID
WOLS870102 is correlated with molecular weight and
residue volume, and probably relates to the limited
space between MHC and TCR. Three properties
(QIAN880127, RACS820108 and TANS770109) are
related to secondary structure propensities and most
likely indicate structural preferences of the peptide
backbone.
To further investigate the position-dependent effect of

informative physicochemical properties, two properties
were selected to encode amino acids of IMMA2

peptides to two three-alphabet sequences (small (S),
medium (M) and large (L)): hydrophobicity (thresholds
0.5 and 2.5) [70] and normalized van der Waals volume
(thresholds 2.0 and 6.0) [71]. The encoded sequences
yielded the two-sample logos shown in Figure 6. Both
primary and secondary anchor positions for MHC bind-
ing (positions 2 and 9, respectively) and position 6 pre-
fer residues of medium hydrophobicity (Figure 6A).
Positions 4, 5, 7 and 8 prefer residues of small hydro-
phobicity. Positions 1 and 4 prefer residues with small
van der Waals volume (Figure 6B) whereas position 9
prefers medium volume residues. The logos obtained by
using the other volume-related properties are similar to
Figure 6B.

Web server of POPISK
The web server of POPISK was implemented by training
an SVM classifier using the weighted degree string ker-
nel (parameters C = 1.0 and d = 9) on the whole dataset
IMMA2. Users can either input a peptide sequence of
length 9 that binds to HLA-A2 molecules or upload a
file of multiple 9-mer sequences. POPISK will output
the predicted immunogenicity (immunogenic or non-
immunogenic) accompanied with a score (decision value
of SVM) for the strength of immunogenicity. Peptides
with a decision value larger than zero are considered

Table 1 Physicochemical properties with feature usage
larger than 50%

Usage AAindex ID Physicochemical properties

100% MEEJ800102 Retention coefficient in HPLC, pH2.1

91% WOLS870102 Principal property value z2

87% CASG920101 Hydrophobicity scale from native proteins

84% NAKH900110 Normalized composition of membrane proteins

81% FASG760105 pK-C

79% FAUJ880105 STERIMOL minimum width of the side chain

76% CHAM830107 A parameter of charge transfer capability

61% QIAN880127 Weights for coil at the window position of -6

59% RACS820108 Average relative fractional occurrence in AR (i-1)

58% DIGM050101 Hydrostatic pressure asymmetry index, PAI

56% TANS770109 Normalized frequency of coil

Figure 5 Two-Sample Logo representation of over- (upper half) and underrepresented (lower half) residues in immunogenic peptides.
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immunogenic. The web server of POPISK is publicly
available at http://iclab.life.nctu.edu.tw/POPISK.

Prediction and analysis using crystal structures
To further evaluate the prediction and analysis abilities
of POPISK, a total of 17 crystal structures consisting of
TCRs, peptides of length 9, and HLA-A2 molecules
were extracted from the Protein Data Bank (PDB) [72].
By removing entries with duplicate peptide sequences or
modified amino acids, seven crystal structures (PDB ID:
1qrn, 1qse, 1qsf, 1ao7, 1oga, 2bnr and 2bnq) are used
for the following analyses. These peptides are classified
as immunogenic (1qse, 1ao7, 1oga, 2bnr and 2bnq) or
non-immunogenic (1qrn and 1qsf) according to the ori-
ginal publications [37,45,46].
First, POPISK was trained by using a modified dataset

that excludes peptides of the seven test peptides from
IMMA2. Subsequently, POPISK was applied to predict
the seven peptides. The prediction results are shown in
Table 2. POPISK classified 5 out of 7 peptides correctly.
Although the peptide of 1ao7 is misclassified, its score
(-0.04) is very close to the decision threshold value, zero.
The scores predicted by POPISK are useful for pre-

dicting the immunogenicity change made by single-

residue modifications. For example, the prediction
results show that modified cancer/testis antigen with
valine in position 9 (POPISK score: 1.36) is more immu-
nogenic than the original antigen (POPISK score: 1.11)
and are consistent with a previous study [45]. Also,
compared with the original Tax protein of human T-
lymphotropic virus (POPISK score: -0.04), the reduced
immunogenicity of three modified Tax proteins
(POPISK scores: -0.07, -0.14 and -0.26) as shown in a
previous study [46] is successfully predicted.
Among the seven TCR-peptide-MHC structures taken

for our analyses, three different TCRs, the A6 TCR
(1qrn, 1qse, 1qsf, 1ao7), the Vb17Va10.2 TCR from the
T-cell clone JM22 (1oga), and the 1G4 TCR (2bnr,
2bnq) are present. Hence, a comparison from the struc-
tural perspective can only be performed for each type of
TCR individually. The most interesting peptide here is
the A6 TCR, where structures with immunogenic as
well as non-immunogenic peptides are available. The
very high structural similarity among the structures of
the A6 TCR has been stressed by Ding et al. [46]. These
authors did not see any correlation between the overall
shape of the complexes or rearrangements at the inter-
face and immunogenicity. The highest overall structural
similarity of complexes was found between the immuno-
genic peptide LLFGYPVYV (wild-type, 1ao7) with a
POPISK score of -0.04 and the non-immunogenic pep-
tide LLFGYAVYV (P6A, 1qrn) with a POPISK score of
-0.26. Also, between the two peptides no difference in
their solvent-accessible surface areas could be found.
Figure 7 shows the two crystal structures of 1ao7 and
1qrn.
A significant difference between the two structures is

the formation of an enlarged cavity at position 6 of the
peptide in the P6A complex. An ordered water molecule
entered this cavity, leading to some rearrangements of
amino acids to accommodate the water. However, the
formation of a cavity, the small rearrangements, and the
entropic loss due to the conserved water account for
only a fraction of the difference in complex dissociation
constants [46]. A second difference was evident from
shape complementarity analyses, showing a hole in the

Table 2 Prediction results of POPISK

PDB ID Sequence Source POPISK Score Experimental immunogenicity*

1qrn LLFGYAVYV Modified Tax protein of HTLV-1 -0.26 -

1qse LLFGYPRYV Modified Tax protein of HTLV-1 -0.14 +

1qsf LLFGYPVAV Modified Tax protein of HTLV-1 -0.07 -

1ao7 LLFGYPVYV Tax protein of HTLV-1 -0.04 +

1oga GILGFVFTL Matrix protein of influenza 1.10 +

2f53 SLLMWITQC Cancer/testis antigen 1B 1.11 +

2bnq SLLMWITQV Modified Cancer/testis antigen 1B 1.36 +

*+: immunogenic peptide; -: non-immunogenic peptide

Figure 6 The over- (upper half) and underrepresented (lower
half) position-specific properties in immunogenic peptides. (A)
Hydrophobicity. (B) Normalized van der Waals volume. The symbols
S, M and L indicate residues with small, medium and large
hydrophobicity/volume, respectively.
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interface of P6A and a decrease in complementarity [73]
affecting binding to residue at position 5.
For the modified cancer/testis antigen with valine in

position 9, there is a subtle increase in the shape com-
plementarity and the buried surface within MHC bind-
ing pocket compared with the original cancer/testis
antigen with cysteine in position 9. The structural differ-
ence in the peptide is transmitted to the TCR and
makes the TCR a slightly tilt [45]. Possible explanation
of higher immunogenicity for the modified cancer/testis
antigen might be the slightly better overall shape com-
plementarity between TCR-peptide-MHC caused by a
larger volume occupied by side chain of valine [45].
These findings show that even an in-depth structural
analysis of the ternary complexes can only give hints on
the immunogenicity of peptides, stressing the impor-
tance of large-scale statistical studies.

Conclusions
The immunogenicity of peptides affected by intrinsic
physicochemical properties and the extrinsic immuno-
globulin repertoire determines the effectiveness of pep-
tide vaccines and therapeutic peptides. Characterization
of relation between peptide sequences and immunogeni-
city, and prediction of peptide immunogenicity will be
valuable to the development of peptide vaccines. This
study proposes a computational method POPISK based
on support vector machines with a weighted string

kernel to predict peptide immunogenicity and identify
important recognition positions.
Compared with the only published predictor of T-cell

reactivity, POPI [31], POPISK is more accurate (0.68 vs.
0.60) and yields insights into the relevance of specific
sequence positions of the peptide for immunogenicity. A
total of three central positions (4, 5 and 6) and three
terminal positions (1, 8 and 9) of HLA-A2 binding pep-
tides are identified as important positions for immuno-
genicity. Positions 4, 6 and 8 are separately identified by
previous studies (position 8 [37] and positions 4 and 6
[35]). The two-sample logo method [47] confirms the
important positions 4, 6, 8 and 9.
Physicochemical properties of peptides play important

roles in determining immunogenic strength. In eleven
informative properties selected by the decision tree
method C5.0, four properties are hydrophobicity-related
and two properties are residue volume-related. Compared
with the structural analysis of ternary complexes, the good
performance of the sequence-based prediction method
POPISK implies that peptide sequence variations may play
an important role in determining immunogenicity.
Furthermore, POPISK successfully predicts the immuno-
genicity changes made by single-residue modifications. By
collecting more data, POPISK is expected to perform bet-
ter and can be applied to analyze immunogenicity of pep-
tides associated with the other MHC alleles. The
collection and utilization of quantitative immunogenicity
data are expected to improve prediction performances as
previous works for MHC binding predictions [22-24].
Finally, a freely available web server of POPISK for pre-
dicting peptide immunogenicity is established.
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Figure 7 Structures of PDB IDs 1ao7and 1qrn. Structures of PDB
IDs 1ao7 and 1qrn share high structural similarity presenting
complexes of TCR-peptide-MHC. There is only one significant
difference of the enlarged cavity at position 6 of the non-
immunogenic peptide LLFGYAVYV in the 1qrn complex, compared
with the immunogenic peptide LLFGYPVYV in the 1ao7 complex.
Figure generated by BALLView 1.3 [74,75].
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