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Random KNN feature selection - a fast and stable
alternative to Random Forests
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Abstract

Background: Successfully modeling high-dimensional data involving thousands of variables is challenging. This is
especially true for gene expression profiling experiments, given the large number of genes involved and the small
number of samples available. Random Forests (RF) is a popular and widely used approach to feature selection for
such “small n, large p problems.” However, Random Forests suffers from instability, especially in the presence of
noisy and/or unbalanced inputs.

Results: We present RKNN-FS, an innovative feature selection procedure for “small n, large p problems.” RKNN-FS is
based on Random KNN (RKNN), a novel generalization of traditional nearest-neighbor modeling. RKNN consists of
an ensemble of base k-nearest neighbor models, each constructed from a random subset of the input variables. To
rank the importance of the variables, we define a criterion on the RKNN framework, using the notion of support. A
two-stage backward model selection method is then developed based on this criterion. Empirical results on
microarray data sets with thousands of variables and relatively few samples show that RKNN-FS is an effective
feature selection approach for high-dimensional data. RKNN is similar to Random Forests in terms of classification
accuracy without feature selection. However, RKNN provides much better classification accuracy than RF when
each method incorporates a feature-selection step. Our results show that RKNN is significantly more stable and
more robust than Random Forests for feature selection when the input data are noisy and/or unbalanced. Further,
RKNN-FS is much faster than the Random Forests feature selection method (RF-FS), especially for large scale
problems, involving thousands of variables and multiple classes.

Conclusions: Given the superiority of Random KNN in classification performance when compared with Random
Forests, RKNN-FS’s simplicity and ease of implementation, and its superiority in speed and stability, we propose
RKNN-FS as a faster and more stable alternative to Random Forests in classification problems involving feature
selection for high-dimensional datasets.

Background
Selection of a subset of important features (variables) is
crucial for modeling high dimensional data in bioinfor-
matics. For example, microarray gene expression data
may include p ≥ 10, 000 genes. But the sample size, n, is
much smaller, often less than 100. A model cannot be
built directly since the model complexity is larger than
the sample size. Technically, linear discriminant analysis
can only fit a linear model up to n parameters. Such a
model would provide a perfect fit, but it has no

predictive power. This “small n, large p problem” has
attracted a lot of research attention, aimed at removing
nonessential or noisy features from the data, and thus
determining a relatively small number of features which
can mostly explain the observed data and the related
biological processes.
Though much work has been done, feature selection

still remains an active research area. The significant
interest is attributed to its many benefits. As enumer-
ated in [1], these include (i) reducing the complexity of
computation for prediction; (ii) removing information
redundancy (cost savings); (iii) avoiding the issue of
overfitting; and (iv) easing interpretation. In general, the
generalization error becomes lower as fewer features are
included, and the higher the number of samples per
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feature, the better. This is sometimes referred to as the
Occam’s razor principle [2]. Here we give a brief sum-
mary on feature selection. For a recent review, see [3].
Basically, feature selection techniques can be grouped
into three classes: Class I: Internal variable selection.
This class mainly consists of Decision Trees (DT) [4], in
which a variable is selected and split at each node by
maximizing the purity of its descendant nodes. The vari-
able selection process is done in the tree building pro-
cess. The decision tree has the advantage of being easy
to interpret, but it suffers from the instability of its hier-
archical structures. Errors from ancestors pass to multi-
ple descendant nodes and thus have an inflated effect.
Even worse, a minor change in the root may change the
tree structure significantly. An improved method based
on decision trees is Random Forests [5], which grows a
collection of trees by bootstrapping the samples and
using a random selection of the variables. This approach
decreases the prediction variance of a single tree. How-
ever, Random Forests may not remove certain variables,
as they may appear in multiple trees. But Random For-
ests also provides a variable ranking mechanism that
can be used to select important variables.
Class II: Variable filtering. This class encompasses a

variety of filters that are principally used for the classifi-
cation problem. A specific type of model may not be
invoked in the filtering process. A filter is a statistic
defined on a random variable over multiple populations.
With the choice of a threshold, some variables can be
removed. Such filters include t-statistics, F-statistics,
Kullback-Leibler divergence, Fisher’s discriminant ratio,
mutual information [6], information-theoretic networks
[7], maximum entropy [8], maximum information com-
pression index [9], relief [10,11], correlation-based filters
[12,13], relevance and redundancy analysis [14], etc.
Class III: Wrapped methods. These techniques wrap a

model into a search algorithm [15,16]. This class
includes foreward/backword, stepwise selection using a
defined criterion, for instance, partial F-statistics,
Aikaike’s Information Criterion (AIC) [17], Bayesian
Information Criterion (BIC) [18], etc. In [19], sequential
projection pursuit (SPP) was combined with partial least
square (PLS) analysis for variable selection. Wrapped
feature selection based on Random Forests has also
been studied [20,21]. There are two measures of impor-
tance for the variables with Random Forests, namely,
mean decrease accuracy (MDA) and mean decrease Gini
(MDG). Both measures are, however, biased [22]. One
study shows that MDG is more robust than MDA [23];
however another study shows the contrary [24]. Our
experiments show that both methods give very similar
results. In this paper we present results only for MDA.
The software package varSelRF in R developed in [21]
will be used in this paper for comparisons. We call this

method RF-FS or RF when there is no confusion. Given
the hierarchical structure of the trees in the forest, stabi-
lity is still a problem.
The advantage of the filter approaches is that they are

simple to compute and very fast. They are good for pre-
screening, rather than building the final model. Conver-
sely, wrapped methods are suitable for building the final
model, but are generally slower.
Recently, Random KNN (RKNN) which is specially

designed for classification in high dimensional datasets
was introduced in [25]. RKNN is a generalization of the
k-nearest neighbor (KNN) algorithm [26-28]. Therefore,
RKNN enjoys the many advantages of KNN. In particu-
lar, KNN is a nonparametric classification method. It
does not assume any parametric form for the distribu-
tion of measured random variables. Due to the flexibility
of the nonparametric model, it is usually a good classi-
fier for many situations in which the joint distribution is
unknown, or hard to model parametrically. This is espe-
cially the case for high dimensional datasets. Another
important advantage of KNN is that missing values can
be easily imputed [29,30]. Troyanskaya et al. [30] also
showed that KNN is generally more robust and more
sensitive compared with other popular classifiers. In [25]
it was shown that RKNN leads to a significant perfor-
mance improvement in terms of both computational
complexity and classification accuracy. In this paper, we
present a novel feature selection method, RKNN-FS,
using the new classification and regression method,
RKNN. Our empirical comparison with the Random
Forests approach shows that RKNN-FS is a promising
approach to feature selection for high dimensional data.

Methods
Random KNN
The idea of Random KNN is motivated by the technique
of Random Forests, and is similar in spirit to the
method of random subspace selection used for Decision
Forests [31]. Both Random Forests and Decision Forests
[31] use decision trees as the base classifiers. Compared
with the two, Random KNN uses KNN as base classi-
fiers, with no hierarchical structure involved. Compared
with decision trees, KNN is simple to implement and is
stable [32]. Thus, Random KNN can be stabilized with a
small number of base KNN’s and hence only a small
number of important variables will be needed. This
implies that the final model with Random KNN will be
simpler than that with Random Forests or Decision For-
ests. Specifically, a collection of r different KNN classi-
fiers will be generated. Each one takes a random subset
of the input variables. Since KNN is stable, bootstrap-
ping is not necessary for KNN. Each KNN classifier
classifies a test point by its majority, or weighted major-
ity class, of its k nearest neighbors. The final
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classification in each case is determined by majority vot-
ing of r KNN classifications. This can be viewed as a
sort of voting by a Majority of a Majority.
More formally, let F = {f1, f2,..., fp} be the p input fea-

tures, and X be the n original input data vectors of
length p, i.e., an n × p matrix. For a given integer m <p,
denote F(m) = {fj1, fj2,..., fjm |fjl Î F, 1 ≤ l ≤ m} a random
subset drawn from F with equiprobability.
Similarly, let X(m) be the data vectors in the subspace

defined by F(m), i.e., an n × m matrix. Then a KNN(m)

classifier is constructed by applying the basic KNN algo-
rithm to the random collection of features in X(m). A
collection of r such base classifiers is then combined to
build the final Random KNN classifier.

Feature support - a ranking criterion
In order to select a subset of variables that have classifi-
cation capability, the key is to define some criteria to
rank the variables. We define a measure, called support.
Each feature f will appear in some KNN classifiers, say,
set C(f) of size M, where M is the multiplicity of f. In
turn, each classifier c Î C(f) is an evaluator of its m fea-
tures, say, set F(c). We can take its accuracy as a perfor-
mance measure for those features. The mean accuracy
of these KNN classifiers (support) is a measure of the
feature relevance with the outcome. Thus we have a
ranking of the features. We call this scheme bidirec-
tional voting. Each feature randomly participates in a
series of KNNs to cast a vote for classification. In turn,
each classification result casts a vote for each participat-
ing feature. The algorithm is listed in Table 1. A sche-
matic diagram of the bidirectional voting procedure is
shown in Figure 1.

To compute feature supports, data are partitioned into
base and query subsets. Two partition methods may be
used: (1) dynamic partition: For each KNN, the cases
are randomly partitioned. One half is the base subset
and the other half is the query subset; (2) the data set is
partitioned once, and for all KNN’s, the same base sub-
set and query subset are used. That is, all base subsets
are the same and all query subsets are also the same.
For diversity of KNN’s, the dynamic partition is
preferred.
Support is an importance measure. The higher the

support, the more relevant the feature. Figure 2 shows
the 30 most relevant genes determined using the sup-
port criterion for Golub’s 38 leukemia training samples,
for both fixed and dynamic partitions. The dataset is
available in an R package golubEsets.

RKNN feature selection algorithm
With feature supports, we can directly select high rank
features after running the support algorithm on the
entire data set. We call this direct selection. But this
simple approach may be too aggressive and risky for
high dimensional data. We take a more conservative
and safer approach, namely, multiple rounds of screen-
ing. That is, we recursively apply the direct selection
procedure. To balance between speed and classification
performance, we split recursion into two stages. The
first stage is fast, and the number of variables is reduced
by a given ratio (1/2 by default). This stage is a geo-
metric elimination process since the dimension to be
kept is a geometric progression. In the second stage, a
fixed number of features (one by default) are dropped
each time. This is a linear reduction process. Finally, a
relatively small set of variables will be selected for the

Table 1 Computing feature supports using Random KNN
bidirectional voting

/* Generate n KNN classifiers using m features and compute accuracy
acc for each KNN */

/* Return support for each feature */

p ¬ number of features in the data set;

m ¬ number of features for each KNN;

r ¬ number of KNN classifiers;

Fi ¬ feature list for ith KNN classifier;

C ¬ build r KNNs using m feature for each;

Perform query from base data sets using each KNN;

Compare predicted values with observed values;

Calculate accuracy, acc, for each base KNN;

F ←
⋃r

i=1
Fi; {F is the list of features that appeared in r KNN classifiers};

for each f Î F do

C(f) ¬ list of KNN classifiers that used f;
support(f ) ← 1

|C(f )|
∑

knn∈C(f ) acc(knn);

end for

input features : f1, f2, . . . , fp

f11
, f21

, . . . , fm1
f12

, f22
, . . . , fm2

f1r
, f2r

, . . . , fmr

training set X1 KNN1 training set X2 KNN2 training set Xr KNNr

testing set X ′

1
testing set X ′

2
testing set X ′

r

accuracy1 accuracy2 accuaryr

KNN1 KNN2 KNNr

f11
, f21

, . . . , fm1
f12

, f22
, . . . , fm2

f1r
, f2r

, . . . , fmr

supports of f1, f2, . . . , fp

Figure 1 Bidirectional voting using Random KNN.
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final models. To aid in this recursive procedure, another
assessment criterion for a set of features is required. We
use the average accuracy of the r random KNNs. After
the first stage, we can plot the average accuracies against
the number of features. The iteration just before the
maximum accuracy is reached is called pre-max itera-
tion. The feature set from the pre-max iteration will be
the input for the second stage selection. The algorithm
is shown in Table 2.
This procedure was applied to Golub’s leukemia data-

sets. Figure 3 shows the variation of mean accuracy with
decreasing number of features in the first stage of fea-
ture selection. Figure 4 shows the variation of mean
accuracy with decreasing number of features in the sec-
ond stage. From Figure 4, a maximum mean accuracy is
reached when 4 genes are left in the model. These final
four genes selected for leukemia classification are:
X95735_at, U27460_at, M27891_at and L09209_s_at.
Using these four genes and the ordinary KNN classifier
(k = 3) to classify the 34 independent test samples, 18 of
20 ALL cases are correctly classified and 13 of 14 AML
cases are correctly classified. Total accuracy is 91%. This
model is very simple compared with others that use far
more genes.

Time complexity
Time complexity for computing feature support
For each KNN, we have the typical time complexity as
follows:

• Data Partition: O(n);
• Nearest Neighbor Searching: O(k2mn log n);
• Classification: O(kn);
• Computing accuracy: O(n).

Adding the above 4 items together, we get a time
needed for one KNN: O(k2mn log n). For Random KNN,
we have r KNN’s; thus the total time for the above steps
is O(rk2mn log n). Since rm features are used in the
Random KNN, the time for computing supports from
these accuracies is O(rm). Thus the overall time is O
(rk2mn log n) + O(rm) = O(r(m + k2mn log n)) = O
(rk2mn log n). Sorting these supports will take O(p log
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Figure 2 Supports for the first 30 most relevant genes using
the Golub leukemia data (Left panel: using dynamic partition;
Right panel using fixed partition of the data for testing and
training).

Table 2 Two-stage variable backward elimination
procedure for Random KNN

Stage 1: Geometric Elimination

q ¬ proportion of the number features to be dropped each time;

p ¬ number of features in data;

ni ← ⌊
ln(4/p)/ ln(1 − q)

⌋
; /* number of iterations, minimum dimension 4*/

initialize rknn_list[m]; /* stores feature supports for each Random KNN */

initialize acc[m]; /* stores accuracy for each Random KNN */

for i from 1 to ni do

if i == 1 then

rknn ¬ compute supports via Random KNN from all variables
of data;

else

p ← ⌊
p · (1 − q)

⌋
;

rknn ¬ compute supports via Random KNN from p top
important variables of rknn;

end if

rknn list[i] ¬ rknn;

acc[i] ¬ accuracy of rknn;

end for
max = argmax

1≤k≤ni
(acc[k]);

pre_max = max - 1;

rknn ¬ knn_list[pre_max]; /* This Random KNN goes to stage 2 */

Stage 2: Linear Reduction

d ¬ number features to be dropped each time;

p ¬ number of variables of rknn;

ni ← ⌊
(p − 4)/d

⌋
; /* number of iterations */

for i from 1 to ni do

if i ≠ 1 then

p ¬ p - d;

end if

rknn ¬ compute supports via Random KNN from p top important
variables of rknn;

acc[i] ¬ accuracy of rknn;

rknn_list[i] ¬rknn;

end for
best ← argmax

1≤k≤ni
(acc[k]);

best_rknn ¬ rknn_list[best]; /* This gives final random KNN model */

return best_rknn;
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p). Since for most applications, log p <n log n, and p
<rk2m, the time complexity for computing and ranking
feature supports still remains as O(rk2mn log n).
Time complexity for feature selection
In stage-one, the number of features decreases geome-
trically with proportion q. For simplicity, let us take m
to be the square-root of p and keep r fixed. Thus

the sum of the component 2m is
2

√
p + 2

√
pq + 2

√
pq2 + 2

√
pq3 + 2

√
pq4 + .... The first term is domi-

nant, since q is a fraction. Thus the time complexity will
be in O(rk2

√
pn log n).

In stage-two, each time a fixed number of features is
removed. In the extreme case, only one feature is
removed per iteration, the total time will be
O(rk2p1+1n log n), where p1 is the number of features at
the start of stage-two, and usually p1 < p1/2. So on aver-
age, we have time in O(rk2p1+1n log n) = O(rk2

√
pn log n).

Therefore, the total time for the entire algorithm will
be in O(rk2

√
pn log n), the same as that for using Ran-

dom KNN for classification, at m =
√
p Basically, in the-

ory, feature selection does not degrade the complexity
of Random KNN. With m = log p, we obtain time com-
plexity in O(rkpn log n). This is significant, as it means
that with appropriate choice of m, we can essentially
turn the exponential time complexity of feature selec-
tion to linear time, with respect to p, the number of
variables.

Parameter setting
The Random KNN has three parameters, the number of
nearest neighbors, k; the number of random KNNs, r;
and the number of features for each base KNN, m. For
“small n, large p“ datasets, k should be small, such as 1
or 3, etc. (see Figure 5), since the similarities among
data points are related to the nearness among them. For
m, we recommend m =

√
p in order to maximize the dif-

ference between feature subsets [25]. Performance gen-
erally improves with increasing r, however, beyond a
point, larger values of r may not lead to much further
improvements. (See Figure 6 for experimental results).
Beyond r > 1000, there is not much added advantage
with respect to classification accuracy.

Results and discussion
Microarray datasets
To evaluate the performance of the proposed RKNN-FS,
we performed experiments on 21 microarray gene
expression datasets (Table 3 and 4). Ten of them were
previously used to test the performance of Random For-
ests in gene selection [21]. These are available at http://
ligarto.org/rdiaz/Papers/rfVS/randomForestVarSel.html.
The other eleven were downloaded from http://www.
gems-system.org. Some datasets are from the same stu-
dies but used different preprocessing routines, and thus
the dimensionalities are different. These datasets are for
gene profiling of various human cancers. The number of
genes range from 2,000 to 15,009. The number of
classes range from 2 to 26.
Classwise sample sizes are from 2 to 139 (i.e., some

datasets are unbalanced). The ratio of the number of

2000 500 200 50 20 5

0.
88

0.
90

0.
92

0.
94

0.
96

no. of features

m
ea

n 
ac

cu
ra

cy

Figure 3 Mean accuracy change with the number of features
for the Golub leukemia data in the first stage.

25 20 15 10 5

0.
80

0.
85

0.
90

0.
95

1.
00

no. of features

m
ea

n 
ac

cu
ra

cy
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for the Golub leukemia data in the second stage (feature set
with peak value is selected).
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genes, p, to the sample size, n, reflects the difficulty of a
dataset and is listed in the table. The number of classes
c, has a similar effect on the classification problem.
Thus collectively, the quantity (p/n) * c is included in
the tables as another measure of complexity of the clas-
sification problem for each dataset. Based on this, we
divided the datasets into two groups - Group I - those
with relatively high values for (p/n) * c (corresponding
to relatively more complex classification problems), and
Group II - those with relatively low values (correspond-
ing to the datasets that present relatively simpler classifi-
cation problems). We have organized our results around
this grouping scheme.

Evaluation methods
In this study, we compare Random KNN with Ran-
dom Forests since they both are ensemble methods.
The difference is the base classifier. We perform
leave-one-out cross-validation (LOOCV) to obtain
classification accuracies. LOOCV provides unbiased
estimators of generalization error for stable classifiers
such as KNN [33]. With LOOCV, we can also evalu-
ate the effect of a single sample, i.e., the stability of a
classifier. When feature selection is involved, the
LOOCV is “external.” In external LOOCV, feature
selection is done n times separately for each set of n -

1 cases. The number of base classifiers for Random
KNN and Random Forests is set to 2,000. The number
of variables for each base classifier is set to the
square-root of the total number of variables of the
input dataset. Both k = 1 (R1NN) and k = 3 (R3NN)
for Random KNN are evaluated.

Performance comparison without feature selection
Random Forests and Random KNN are applied to the
two groups of datasets using all genes available. The
results (data not shown) indicate that Random Forests
was nominally better than Random KNN on 11 datasets
while Random KNN was nominally better than Random
Forests on 9 datasets. They have a tie on one dataset.
Using the p-values from the McNemar test [34], Ran-
dom Forests was no better than Random KNN on any
of the datasets, while R1NN was significantly better than
Random Forests on the NCI data and Random Forests
was better than R3NN on two datasets. Using the aver-
age accuracies, no significant difference was observed in
Group I (0.80 for RF, 0.81 for R1NN, 0.78 for R3NN),
or in Group II (0.86 for RF, 0.84 for R1NN, 0.86 for
R3NN). Therefore from the test on the 21 datasets, we
may conclude that without feature selection, Random
KNN is generally equivalent to Random Forests in clas-
sification performance.
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Figure 5 The effect of k.
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Table 3 Microarray gene expression datasets, Group I

Dataset Sample Size, n No. of Genes, p No. of classes, c p/n p * c/n

Ramaswamy 308 15009 26 49 1267

Staunton 60 5726 9 95 859

Nutt 50 10367 4 207 829

Su 174 12533 11 72 792

NCI60 61 5244 8 86 688

Brain 42 5597 5 133 666

Armstrong 72 11225 3 156 468

Pomeroy 90 5920 5 66 329

Bhattacharjee 203 12600 5 62 310

Adenocarcinoma 76 9868 2 130 260

Golub 72 5327 3 74 222

Singh 102 10509 2 103 206
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Performance comparison with feature selection
The proposed feature selection approach using Random
KNN is applied to the 21 datasets and compared with
Random Forests. The proportion of features removed at
each iteration was set to 0.2 for both RKNN-FS and RF-
FS (since the second stage is kind of fine-tuning, to save
time only stage one was used for comparison) and other
parameter settings are the same as in the previous sec-
tion. The results are shown in Tables 5 and 6. The indi-
cated results are the mean, standard deviation, and
coefficient of variation recorded based on the individual
execution of the leave-one-out cross validation
(LOOCV) procedure. In one case in the more complex
datasets of Group I (Adenocarcinoma), RF was better
than R3NN in both classification accuracy and stability,
but R1NN provided a similar performance with RF in
both stability and classification accuracy. In another case
in Group I (Brain), RF was slightly better than RKNN-
FS in classification accuracy, but much worse in stability
of classification accuracy. In just one case in the simpler
dataset of Group II (Prostrate), RF-FS was better than

both R1NN and R3NN in both classification accuracy
and stability. They had a virtual tie one one dataset
(Leukemia). In all the other datasets (17 out of 21),
RKNN-FS was better in both classification rate, and in
stability of the classification rates. RKNN-FS showed
much more significant performance improvements over
RF on the more complex datasets of Group I. From the
tables, one can observe the general trend: RKNN-FS
performance improvement over RF increases with
increasing dataset complexity (though not necessarily
monotonically).

Stability
The tables above also show the standard deviation and
coefficient of variation (multiplied by 100) for the classi-
fication accuracy of RKNN-FS and RF-FS on each data-
set. The tables clearly show that RKNN-FS is much
more stable with respect to classification accuracy than
RF-FS. As with classification accuracy itself, the
improvement in stability of the accuracy rates over RF-
FS also improves with increasing complexity of the data-
set. Another way to measure the stability is by consider-
ing the variability in the size of the selected gene set. At
each run of the LOOCV, the size of the best gene set
selected by Random KNN and Random Forests for each
cross-validation is recorded. The average size and stan-
dard deviation are reported in Tables 7 and 8. From
these tables, one can see that for some datasets (NCI,
Armstrong, Nutt, Pomeroy, Ramaswamy, Staunton
and Su), the standard deviation of the best gene set size
could be surprisingly large with Random Forests. The
standard deviation can be larger than 1000 (Armstrong
dataset, selected feature set sizes range from 3 to 7184)!
The above datasets either have more classes (≥ 4 classes)
and/or a large number of genes (p > 10, 000), and thus
have high p * c/n values. It is also believed that datasets

Table 4 Microarray gene expression datasets, Group II

Dataset Sample
Size, n

No. of
Genes, p

No. of
classes, c

p/
n

p * c/
n

Lymphoma 62 4026 3 65 195

Leukemia 38 3051 2 80 161

Breast.3.
Classes

95 4869 3 51 154

SRBCT 63 2308 4 37 147

Shipp 77 5469 2 71 142

Breast.2.
Classes

77 4869 2 63 126

Prostate 102 6033 2 59 118

Khan 83 2308 4 28 111

Colon 62 2000 2 32 65

Table 5 Comparative performance with gene selection, Group I

Dataset p * c/n Mean Accuracy Standard Deviation Coefficient of Variation

RF R1NN R3NN RF R1NN R3NN RF R1NN R3NN

Ramaswamy 1267 0.577 0.726 0.704 0.019 0.013 0.013 3.231 1.775 1.796

Staunton 859 0.561 0.692 0.663 0.042 0.026 0.031 7.485 3.802 4.669

Nutt 829 0.671 0.903 0.834 0.051 0.030 0.031 7.619 3.268 3.674

Su 792 0.862 0.901 0.888 0.016 0.015 0.014 1.884 1.624 1.567

NCI 688 0.813 0.854 0.836 0.033 0.027 0.023 4.083 3.135 2.796

Brain 666 0.969 0.958 0.940 0.025 0.013 0.018 2.574 1.323 1.875

Armstrong 468 0.936 0.993 0.980 0.020 0.009 0.013 2.166 0.938 1.345

Pomeroy 329 0.858 0.933 0.863 0.025 0.016 0.017 2.892 1.762 1.991

Bhattacharjee 310 0.934 0.956 0.954 0.015 0.006 0.006 1.572 0.620 0.618

Adenocarcinoma 260 0.942 0.939 0.859 0.018 0.017 0.032 1.948 1.808 3.675

Golub 222 0.943 0.986 0.986 0.022 0.003 0.004 2.328 0.289 0.369

Singh 206 0.889 0.952 0.931 0.024 0.014 0.018 2.718 1.427 1.920

Average 0.830 0.899 0.870 0.026 0.016 0.018 3.375 1.814 2.191
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with a lager number genes have more noisy genes than
those with a smaller number of genes from which the
original investigators removed some genes somehow.
This shows a striking problem with Random Forests for
noisy “small n, large p“ datasets: the size of the selected
best gene set can change dramatically even when just
one data point is changed (by LOOCV). In principle,
Random Forests tries to tackle the problem of instability
of the tree structure by bootstrapping the data and con-
structing many trees. However, the above results sup-
port the fact that Random Forests is still unstable in the
presence of noisy or unbalanced input. See [22,21] for
further discussion on the problem of instability in Ran-
dom Forests. As Table 7 shows, in general the stability
of Random KNN is much better than that of Random
Forests. Clearly, such a trend will be expected to have
some impact on computational requirements - with the
stability of RKNN-FS in the size of the selected feature
sets, there will also be less variability in its

computational requirements. Thus, we recommended
Random KNN over Random Forests for gene selection
on microarray data.

Time comparison
The computing times for RF-FS and RKNN-FS are
recorded and reported in Tables 9 and 10. For the smal-
ler (less complex) datasets (Group II), RF-FS is faster
than RKNN-FS. However, as shown by time ratio in Fig-
ure 7, RKNN-FS is much faster than RF-FS on the large
computationally intensive tasks. For instance, RKNN-FS
is 4-5 times faster on datasets with very large p, and
many classes (such as Armstrong and Staunton). We
conclude that Random KNN is more scalable than Ran-
dom Forests in feature selection. This is important,
especially in dealing with the computational burden
involved in very high dimensional datasets. Between
R1NN and R3NN, there was little or no difference in
execution time, although R1NN was slightly faster.

Conclusion
In this paper, we introduce RKNN-FS, a new feature
selection method for the analysis of high-dimensional

Table 6 Comparative performance with gene selection, Group II

Dataset p * c/n Mean Accuracy Standard Deviation Coefficient of Variation

RF R1NN R3NN RF R1NN R3NN RF R1NN R3NN

Lymphoma 195 0.993 1.000 1.000 0.012 0.000 0.000 1.162 0.000 0.000

Leukemia 161 1.000 0.999 0.999 0.000 0.006 0.004 0.000 0.596 0.427

Breast.3.class 154 0.778 0.793 0.761 0.024 0.037 0.035 3.023 4.665 4.639

SRBCT 147 0.982 0.998 0.996 0.010 0.005 0.007 0.967 0.470 0.684

Shipp 142 0.865 0.997 0.991 0.033 0.008 0.011 3.757 0.800 1.077

Breast.2.class 126 0.838 0.841 0.822 0.024 0.052 0.042 2.894 6.206 5.049

Prostate 118 0.947 0.941 0.917 0.007 0.011 0.016 0.703 1.154 1.701

Khan 111 0.985 0.994 0.994 0.006 0.006 0.008 0.643 0.608 0.809

Colon 65 0.894 0.944 0.910 0.010 0.013 0.025 1.163 1.337 2.733

Average 0.920 0.945 0.932 0.014 0.015 0.016 1.590 1.760 1.902

Table 7 Average gene set size and standard deviation,
Group I

Dataset p * c/n Mean Feature Set
Size

Standard
Deviation

RF R1NN R3NN RF R1NN R3NN

Ramaswamy 1267 907 336 275 666 34 52

Staunton 859 185 74 60 112 12 11

Nutt 829 146 49 49 85 6 4

Su 792 858 225 216 421 9 26

NCI 688 126 187 163 118 41 33

Brain 666 18 137 120 13 42 42

Armstrong 468 249 76 73 1011 16 12

Pomeroy 329 69 89 82 70 15 13

Bhattacharjee 310 33 148 146 29 15 10

Adenocarcinoma 260 8 38 11 4 20 11

Golub 222 12 27 21 8 5 5

Singh 206 26 25 13 32 6 6

Average 220 118 102 214 18 19

Table 8 Average gene set size and standard deviation,
Group II

Dataset p * c/n Mean Feature Set Size Standard Deviation

RF R1NN R3NN RF R1NN R3NN

Lymphoma 195 75 114 103 30 49 44

Leukemia 161 2 28 36 0 22 18

Breast.3.Class 154 47 43 36 35 23 8

SRBCT 147 49 65 64 50 8 9

Shipp 142 13 46 48 23 9 6

Breast.2.Class 126 32 23 15 29 16 10

Prostate 118 16 32 15 10 10 11

Khan 111 17 67 36 5 11 14

Colon 65 21 37 36 18 5 5

Average 30 51 43 22 17 14
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data, based on the novel Random KNN classifier. We
performed an empirical study using the proposed
RKNN-FS on 21 microarray datasets, and compared its
performance with the popular Random Forests
approach. From our comparative experimental results,
we make the following observations: (1) The RKNN-FS
method is competitive with the Random Forests feature
selection method (and most times better) in classifica-
tion performance; (2) Random Forests can be very
unstable under some scenarios (e.g., noise in the input
data, or unbalanced datasets), while the Random KNN
approach shows much better stability, whether measured
by stability in classification rate, or stability in size of
selected gene set; (3) In terms of processing speed, Ran-
dom KNN is much faster than Random Forests, espe-
cially on the most time-consuming tasks with large p
and multiple classes. The concept of KNN is easier to
understand than the decision tree classifier in Random
Forests and is easier to implement. We have focused
our analysis and comparison on Random Forests, given

its popularity, and documented superiority in classifica-
tion accuracy over other state-of-the-art methods
[20,21]. Other results on the performance of RF and its
variants are reported in [35,36]. In future work, we will
perform a comprehensive comparison of the proposed
RKNN-FS with these other classification and feature
selection schemes, perhaps using larger and more
diverse datasets, or on applications different from
microarray analysis.
In summary, the RKNN-FS approach provides an

effective solution to pattern analysis and modeling with
high-dimensional data. In this work, supported by
empirical results, we suggest the use of Random KNN
as a faster and more stable alternative to Random For-
ests. The proposed methods have applications whenever
one is faced with the “small n, large p problem”, a sig-
nificant challenge in the analysis of high dimensional
datasets, such as in microarrays.
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Table 9 Execution time comparison, Group I

Dataset p * c/n Time (min) Ratio

RF R1NN R3NN RF/R1NN RF/R3NN

Ramaswamy 1267 22335 4262 4324 5.2 5.2

Staunton 859 3310 744 753 4.4 4.4

Nutt 829 176 195 195 0.9 0.9

Su 792 3592 1284 1279 2.8 2.8

NCI 688 142 177 178 0.8 0.8

Brain 666 92 124 125 0.7 0.7

Armstrong 468 327 301 297 1.1 1.1

Pomeroy 329 296 319 320 0.9 0.9

Bhattacharjee 310 4544 1725 1733 2.6 2.6

Adenocarcinoma 260 274 272 273 1.0 1.0

Golub 222 160 224 224 0.7 0.7

Singh 206 646 503 498 1.3 1.3

Total 35894 10130 10199 3.54 3.52

Table 10 Execution time comparison, Group II

Dataset p * c/n Time (min) Ratio

RF R1NN R3NN RF/R1NN RF/R3NN

Lymphoma 195 57 146 147 0.4 0.4

Leukemia 161 18 74 74 0.3 0.2

Breast.3.Class 154 310 332 334 0.9 0.9

SRBCT 147 97 177 178 0.5 0.5

Shipp 142 238 293 286 0.8 0.8

Breast.2.Class 126 167 221 222 0.8 0.8

Prostate 118 370 389 391 1.0 0.9

Khan 111 745 452 451 1.6 1.7

Colon 65 75 156 157 0.5 0.5

Total 2077 2240 2240 0.93 0.93
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Figure 7 Comparison of execution time between RKNN-FS and
RF-FS.
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