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Abstract

association.

with phenotypes.

Background: Enrichment testing assesses the overall evidence of differential expression behavior of the elements
within a defined set. When we have measured many molecular aspects, e.g. gene expression, metabolites, proteins,
it is desirable to assess their differential tendencies jointly across platforms using an integrated set enrichment test.
In this work we explore the properties of several methods for performing a combined enrichment test using gene
expression and metabolomics as the motivating platforms.

Results: Using two simulation models we explored the properties of several enrichment methods including two
novel methods: the logistic regression 2-degree of freedom Wald test and the 2-dimensional permutation p-value
for the sum-of-squared statistics test. In relation to their univariate counterparts we find that the joint tests can
improve our ability to detect results that are marginal univariately. We also find that joint tests improve the ranking
of associated pathways compared to their univariate counterparts. However, there is a risk of Type | error inflation
with some methods and self-contained methods lose specificity when the sets are not representative of underlying

Conclusions: In this work we show that consideration of data from multiple platforms, in conjunction with
summarization via a priori pathway information, leads to increased power in detection of genomic associations

Background

In biomedical studies we are often interested in compar-
ing two groups of samples on a collection of measured
variables that are possibly associated with group status.
When the explanatory variables of interest are measure-
ments from a high-throughput molecular assay, thou-
sands of comparisons may be performed. The resulting
list of differential genes from a gene expression array
can be unwieldy with hundreds of entries. For metabolo-
mics the number of molecules measured is reduced by
at least an order of magnitude compared to gene
expression assays [1,2], but the list of differential mole-
cules can still be lengthy with respect to the number of
leads that can be feasibly followed. Given this, research-
ers are often interested in grouping these lists of differ-
entially expressed molecules into sets with common
functionality. The area of enrichment testing looks at an
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a priori defined set, such as from KEGG (Kyoto Ency-
clopedia of Genes and Genomes) or GO (Gene Ontol-
ogy) [3], and asks if the number of differentially
expressed elements in the set is remarkable; either more
or less than expected.

Enrichment tests work by assessing the overall evi-
dence of differential expression behavior of the elements
(e.g. genes, metabolites) within the set. The pitfall with a
smaller list, such as with metabolomic analysis, is that
the sets of interest may not be well-represented for test-
ing. For instance, 67% enrichment sounds impressive
unless there are only 3 molecules measured. In this case
it may not be statistically significant, and it is also not
clear if it is biologically interesting. When we have mea-
sured many molecular aspects, e.g. gene expression,
metabolites, proteins, it is reasonable to assess their dif-
ferential tendencies jointly across platforms. Integration
of omics technologies has been beneficial in other areas
resulting in more interpretable results (e.g., [4]) and
more meaningful associations [5] than when the plat-
forms are assessed separately. In an effort to translate
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this success to the area of set enrichment we explore
joint set enrichment tests that incorporate the multiple
platforms into a single test.

We begin with an overview of enrichment testing the-
ory and detail the methods of interest. Using simulation
we explore the properties of these methods and make
comparisons and recommendations. A metabolomics
dataset [1] and matched gene expression dataset are
used to apply the top methods to real data. For clarity,
the following exposition is presented with respect to
genes and metabolites, but the results should readily
apply to any high-throughput molecular measures that
(1) are expected to be related within the cell or tissue,
(2) can be assessed for association between clinical
groups, and (3) can be assigned into a priori sets.
Further details, as well as the R code for the simulations
presented here is available as additional material (Addi-
tional Files 1 and 2) so that the reader may explore spe-
cific scenarios of interest.

Enrichment Testing

Enrichment testing methods have been classified into
two general flavors; competitive and self-contained [6,7].
We briefly introduce these testing styles and highlight
the pros and cons of each method. For reference we
define the 2 x 2 classification depicted in Table 1. Here
g genes have been individually tested for differential
expression and an interesting set of genes S has been
defined. We classify each of the g genes by whether they
are differentially expressed (D) and whether they are in
the set of interest (S).

Competitive Tests

For a set of genes, S, a competitive test assesses whether
the amount of differential expression differs from that of
its complement S’. The competitive null hypothesis,

Hy™, then assumes that genes within the set S show

the same amount of association with the phenotype as
those in set S’ [6]. In this way each gene set competes
against its complementary set of measured genes.

A popular competitive set enrichment test is the Fisher’s
Exact test run on Table 1. Independence of the columns
and rows is assessed and a statistically significant result
that rejects the null hypothesis implies that the rate of

Table 1 General schema for a pathway enrichment test

Differential gene  Non-differential gene Total
(D) (D)
In the set (5) gso gspr gs
Not in the set gsp gso gs
(S)
Total dp Jor g

The general scheme for a hypergeometric test of differential genes is based
on g genes divided by the criteria of inclusion in the set of interest (S) and
inclusion in the set of differential genes (D).
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differentially expressed genes is associated with set status.
As it is a two-sided test, a detected association may be due
to enrichment or depletion of differential genes.

The chief complaint against competitive enrichment
tests is the relative enrichment estimation of a set S can
differ depending upon the gene sets used for the refer-
ence set S’ [8]. Though viewed as a limitation, critics
concede that relative estimation is useful when there is
a large number of genes that are differentially expressed.

Most competive tests rely on gene-resampling to gen-
erate the null distribution [6,7]. Empirical estimates of
the null hypothesis are generated by randomly sampling
gs genes from S U S’ and repeating the test on these ran-
domly generated sets. Arguments against gene-resam-
pling methods are three-fold. First, lack of independence
between genes is contrary to the assumption of
exchangability in gene resampling. Second, the null dis-
tribtution is based on the selection of a new gene set
not a new sample set. Finally, the sample size is depen-
dent upon the number of genes, which is often substan-
tially larger than the number of samples. Logistic
regression was introduced by [9] as an alternative test to
the Fisher’s Exact test which does not require dichoto-
mization of the genes by differential ability. The model
proposed is logit(Pr(G; € S)) = y +yx, for
x = —logio (p]C) where ij is the p-value from the per-
gene test of differential expression for gene j. The test
of Hi® : v = 0 can be obtained from standard statistical
software using a 1-degree of freedom Wald test where
rejection of H5R indicates enrichment or depletion of
the set.

Self-contained Tests

In contrast to competitive tests, self-contained tests do
not utilize S’ in the assessment of S. Specifically, only
the first row of Table 1 is considered. The self-con-
tained null hypothesis, Hfy, assumes that the gene set S
does not contain any genes whose expression levels are
associated with the phenotype of interest [6]. A binomial
test of proportions based on gsp ~ binomial(gs, o),
where « is an expected rate of differential genes (e.g., o
= 0.05) is an example of a self-contained test. Since only
the set of interest S is considered a self contained test is
not relative. Thus it reduces to a test of differential
expression for a single gene and expands to a global test
of differential expression when the entire array is the set
of interest. Arguments against self-contained tests focus
on the strong null hypothesis in relation to its biological
interpretation wherein a single differentially expressed
gene may be able to give enough evidence to reject the
null hypothesis.

Self-contained tests primarily utilize subject-resam-
pling methods to determine the null distribution of the
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test statistic [7]. Subject-resampling assumes that the
subjects are independent and that under the null
hypothesis the sample labels are randomly assigned. In
contrast to gene-resampling, subject-resampling (1) fol-
lows the experimental design of most studies by assum-
ing that the subjects are independent realizations of the
study population, (2) retains the between-gene correla-
tion structure, (3) is reflective of the number of subjects,
and (4) provides a p-value that is generalizable to
experiments with new subjects under study. However,
subject-resampling tests are limited by their small sam-
ple size and the null hypothesis being tested by subject
sampling may be difficult to state.

An example of a self-contained test that utilizes the
strength of differential expression per element without
dichotomization is the sum of squared test statistics.
Begining with the per-element test statistics of differen-

tial ability, T¢ = (T¢, TS,. ..Tg), we simply sum all

squared test statistics within set S, WSG = Zj s (ch)2 for

j = 1,., g genes [10]. Significance of W¢ is determined

by generating the null distribution using permutation of
sample labels to form null datasets.

Methods

Approach: Joint Assessment of Enrichment

In this work we are interested in tests of enrichment that
incorporate both the gene expression and metabolite
information. We begin with per-gene and per-metabolite
tests of differential expression. We define two vectors of

test statistics, specifically two-sample t-tests,
TC = (17,15, ..., T¢) and TM = (T, T4, ..., TM), and
two  corresponding  vectors  of  p-values,
P¢ = (P{,P§, ..., P¢) and PM = (PM,PY, .., PM), for g

genes and m metabolites, respectively.

Concatenation of Lists

Univariate tests can be employed directly as a means of
joint assessment by concatenating the per-gene and per-
metabolite test statistics to form a single vector of data, e.

g. T = (T¢, ™). Care must be taken that the joined vec-

tors are made comparable before concatenation. For
instance, two-sample t-test statistics are not comparable
if they are from different sample sizes as they have differ-
ent degrees of freedom. P-values, being comparable by
design, will resolve this problem, however, they lose
directionality, which may be of interest, and empirical p-
values may lack precision. Additionally, concatenation of
the lists may lead to bias favoring the larger dataset [11].
P-value multiplication

To arrive at a single statistic from two tests we can use
a p-value combining method such as Fisher’s method

[12]. Here we assume that —2 x (log.P¥ + log,PS) ~ X?
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for the enrichment p-values for metabolites and genes
in set S. The X2 distribution is not technically correct
when the tests being summed are dependent, which is
likely the case here. However, since this is a commonly
used method we wished to incude it in the comparison.
Logistic regression analysis with 2-df Wald test

We propose a multivariate extension of the competitive
logistic regression test of [9]. First the genes and metabo-
lites are modelled separately using the absolute value of
the per-element t-statistic as the measure of differential
ability. Thus for set S we fit models (1)
logit(Pr(Gj € S)) = yo + y|T].G| and (2) logit(Pr(My € S)) = po + I T}|.
(We use the absolute t-statistic, instead of -log,o(p),
because it is more stable in the bootstrap resampling
described below.)

We next construct a joint test of H{Y :y =0, 4 =0
using a two degree-of-freedom Wald test, EV'E”, where
E =]y, ], and V is an estimated variance-covariance
matrix for y and p. Estimates of the variance of y and u
are available from the univariate models but the covar-
iance term is not easily obtained. We attempted to esti-
mate this covariance measure through bootstrap
simulation but we find that there is near-zero correla-
tion between the parameters y and {4 even in sets
where the genes and metabolites were simulated to be
correlated. The loss of correlation is due to row-resam-
pling used for this bootstrap estimation, however, sub-
ject sampling severly underestimates the parameter
variance compared to the variance estimates obtained
from the univariate models. For more discussion of this
bootstrap estimation, we refer the reader to Additional
File 1.

Given this we estimate V as a diagonal matrix with

6}3 =var(y) and 0,2 = var() obtained from the uni-
varite models. This reduces our test statistic to the sum
of the two one-degree-of-freedom tests which can be
written as ULR = EV-1ET = )726;2 + ﬂzaljz, for set S,
where E=|[y, 1], and V = diag(o)f,alf)‘ We assume
that UL~ X7 the
HER:y =0,n=0.

Sum of squared statistics with 2-dimensional permutation
test

We propose a multivariate extension of the self-con-
tained sum of squared statistics [10]. First, we obtain
the enrichment test statistic for each of the metabolites
and the genes in set S, (WG, Wé“) Next, we assess this
observed statistic pair against the distribution of null
estimates pairs (VVG, Wé"I)h, h=1,...,H. Marginally,

under null  hypothesis

H
P§=H"' ZI((Wsc;)h > WS) for genes and
h=1
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P¥ = H'sH (W), = WM) for metabolites. We then
calculate the Mahalanobis distance from the observed
statistics (WG, Wé’i) to the centroid of the cloud of per-
mutation statistic pairs.

For a set of H null pairs (WS, WM), define the cen-
troid (yS, ¥M) and variance-covariance matrix V.
Then the Mahalanobis distance can be calculated for
(WS, wi) as
Dsu(Wg, W) = (WS, W) = (v, i) Vig (WS, W) = (Wi, wi ) ?
including the observed pair (WS, WgA)[B]. Thus to cal-
culate the joint permutation p-value for (WG, Wg\/’) we
calculate

any pair

h=1
) o .
pgM= > " I(Dsi (WS, Wi, = D (WS, Wih))
H

We chose the Mahalanobis distance metric since it
accounts for the shape or spread of the null distribution
[13]. The utility of this is apparent in Figure 1, where a
hypothetical cloud of points is drawn as the null distri-
bution. We consider 3 points that could have given rise
to this null cloud. The orange diamond, being near to
the centroid (blue square) is surpassed by most null
values resulting in a p-value of 0.94. The red triangle is
on the edge of the null distribution but is still surpassed
by four null points so it is given a p-value of 0.04. The
purple circle is outside of the cloud of null points and
thus results in a p-value < 1/H. Points outside the null
cloud are of most interest because they would be missed
marginally. Additionally, had we not accounted for the
non-spherical shape of the null distribution (e.g., using
an Euclidean distance measure) the purple circle would
not have been identified as extreme.

Simulation Models

We use simulation to assess the properties of the joint
enrichment tests described above. The two simulation
models used are presented in the following. Further
details and simulation code are available online as addi-
tional material (Additional Files 1 and 2).

Simulation I: Disjoint Set Simulation

In this simulation model we assume that the genes and
metabolites can be separated into fifty equally-sized dis-
joint sets. That is each gene and metabolite is included
in only one set. The correlation structure is the same
for each set but no correlation is assumed between sets.
Additionally, ten sets are simulated to have association
with disease and the level of enrichment is consistent
across these sets. This simple model with homogeneous
sets allows us to explore specific hypotheses about the
properties of the methods.
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Define Yj; as the gene expression measurement for
sample i and gene j. Likewise let Z;; be the metabolite
intensity measure for sample i’ and metabolite k. The
gene expression measures and metabolite measures need
not arise from the same subjects, but it is possible for
some or all samples to be matched by subject, i.e. i = i’
Define Q; and Q; as the case-control status for samples
i and 7’, respectively, where they take values 1 for case
and 0 for control.

We divide the data, Y and Z, into s sets. Let I be an
indicator for association of set S with case status, Is = 1
if the set is associated with phenotype and 0, otherwise.
Here and in the sequel, S will be the index for gene set,
and s will represent the total number of sets. Further-
more, define the indicator variables gjs and m1s for the
inclusion of gene j and metabolite k, respectively, in set
S, such that

|1, GenejinsetS
85 =] 0, otherwise

and

S 1, Metabolite k in set S
%=1 0, otherwise

Define D(Isgjs); and C(Igmys); to be indicator variables
of differential expression between cases and controls for
genes and metabolites, respectively. We use set associa-
tion to define Bernoulli distributions for D(Isgjs); and C
(Ismys)i such that a gene or metabolite has probability
d; or c; of being differentially expressed provided that it
is in at least one associated set. In other words,

Bern(d,), if maxs(Isgis) = 1;

D(Isgjs)j ~ { Bern(dy), otherwise

and

Bern(cy), if maxs(Ismys) = 1

C(Ismys )i ~ [Bem(c())’ otherwise

Here d,, d, c¢,, and ¢, are fixed values that can be set
in the simulation. To simulate set enrichment we assign
dy >dy and ¢; >co. Interestingly, as d; — dy (or as ¢; >
¢o) the effect of being in the set diminishes under the
competitive definition of enrichment. However, tests of
the self-contained null hypothesis will not be affected
provided that d; and c¢; are still sufficiently large.

Let us then write the simulation model as:

Yij =o+ ,3]' + a)jD(Isng)jQi + ey,.}.

. 1
Zit = 0 + ¢ + meC(Ismys ), Qi + ez, W)

This additive model allows for a non-zero global mean
expression (intensity) level through o (). It assumes a
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mean expression (intensity) level per gene (metabolite)
as defined by fB; (¢4), which is modified for case samples
by w; (1) according to the distributions D(Isg;s); (C
(Isms)r). We allow pmc = Corr(ey;, ez,) > 0 in order
to simulate matched samples (i.e. i = i’). We also allow
correlation between genes pcg = Corr(ey;, ey,) and
between metabolites omm = Corr(ez,, ez, ). In this
simulation model these correlations are limited to genes
and metabolites within the same set, thereby reducing
the complexity of the simulated data structure.

Y; and Z; are drawn from a multivariate normal distri-
bution, (Y}, Z; ~ MVN((B,¢), o), where 5; and ¢y are
drawn from normal distributions with zero mean and
variances 40~ with 62 ~ X; 2 are drawn for each of g
genes and m metabolites. The covariance matrix %y ,
uses the element-wise variances used for 8; and ¢ for
the diagonal variance entires and constant covariances
defined to retain the desired between-element correla-
tions for the off-diagonal entries. The modifiers are
drawn from w; ~ Unif([-2.5, -0.5] U [0.5, 2.5]) and 7, ~
Unif([-1.5, -0.5] U [0.5, 1.5]) and added to the multivari-
ate normal results according to the gjs and m;s indica-
tors. The smaller range on 1, creates weaker intensity
differences for the metabolites; this reflects our real
experience with this platform and provides another
dimension for comparison.

For this simulation, we assume that the number of
samples is the same for cases and controls, with N,
€ (30,100). We allow the correlations to vary: pyy = pzz
€ (0.2, 0.6) and pyz € (0.10, 0.25) where pgc = Paramr
>parg- We consider gene sets with 20 measurements, i.e.
Ngg =20, Nyg =4, and metabolite sets with
Nu, € (4,20). The enrichment levels (dy, dp) and (c3,
¢o) are allowed to vary with (d;, do) = (c1, co) € [(0.5,0),
(0.25,0), (0.10, 0), (0.25, 0.05), (0.05,0.05), (0.10,0.10), (0,
0)] with the last three pairs representing null models for
the competitive tests, the last being null for the self-con-
tained test.

Simulation II: Heterogeneous Set Simulation

This simulation model generates the same number of
genes and metabolites in total and per-set as for the dis-
joint simulation above. The simulation model of Equa-
tion 1 is used as the basis of the data generation.
However, mys, gis, Dj, and Cy are fixed to construct clus-
ters of genes and metabolites with varying levels of asso-
ciation with disease. We also allow the sets to overlap
and to be non-homogeneous in correlation structure
and enrichment. This style of simulation was used by
[10] in their review of various single-platform enrich-
ment tests. Here we can assess how well the methods
are able to detect various set types in a non-homoge-
neous setting. Null sets are also included providing a
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reference for competitive tests and to allow estimation
of false discovery rates.

The Ngepe X Niapmpie gene expression matrix and Njez,-
potite X Nsampre metabolite intensity matrix are drawn in
blocks of Ng, X Nsmpie genes and Npy, X Nygmple meta-
bolites according to multivariate normal distributions 4
= 1,..., 9; see Table 2. These nine distributions have
varying levels of correlation and enrichment between
genes and metabolites. The remaining genes and meta-
bolites required to reach size Ng.,. and Nerapoiites
respectively, are drawn from distribution % = 0 to repre-
sent the null elements. As in the disjoint simulation, we
set Ng, =20 and Ny, to be either 4 or 20. This results
in 1000 genes and either 200 or 1000 metabolites. The
data are correlated for some genes and some metabo-
lites, though not all are correlated, see Table 3. The
overall rate of differential expression is 12% for the
genes and 12% for the metabolites in each dataset. To
assess the enrichment tests on a variety of set structures
we subset the Ngene X Nsample and Nmetabolite X Nsample
data matrices into 70 sets. The first 24 sets, described in
Table 3, show various levels of enrichment. The next
five sets (25-29) are determined by a random draw from
all simulated genes and metabolites. These random sets
assess the rate of non-specific set identification since
genes and metabolites are selected across all distribu-
tions & = (0,1,..., 9). Finally, the remaining 41 sets (30-
70) are a partitioning of the null elements, # = 0, so
that each element participates in at least one set. The
null sets allow us to assess false discovery error rates.
The set participation indicators, g;s and m;s for set S,
gene j and metabolite k, respectively, are determined at
the start of the analysis. Random draws as required for
sets 10 - 29 are done once fixing set membership
throughout the analysis as we would expect in non-
simulated data. For clarity, an example of the indicator
matrix, 7, for the inclusion of metabolite & in set S, is
given in Additional File 1.

Using the simulation models above we explored the
behavior the Fisher’s exact test, logistic regression, and

Table 2 Structure of the multivariate distributions in the
disjoint pathway simulation
Distribution (h) 0 1 2 3 4 5 6 7 8 9
% Diff. Genes 0 100 100 100 100 100 100 0 O O
0
0

% Diff. Metab. 100 100 100 O 0 0 100 100 100
Py, Pzz 0 n n 0 n n 0 n n
Pyz 0 0 0 r 0 0 r 0 0 rn

The data are generated from 10 multivariate distributions (see Equation 1)
with the following correlation structures and differential patterns.Twenty
genes and four metabolites are drawn from each distribution (h = 1,...,9).
Background genes (n = 820) and metabolites (m = 164) are simulated to be
non-differential and without correlation, see distribution h = 0. In this work
we consider r; € (0.2, 0.6) and r, € (0.1, 0.25) provided that r; >r,.
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Table 3 Set definitions for the disjoint pathway
simulation

m h 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8

0.5 10 11 12 13 14 15 16 17 18
0.25 19 20 21 22 23 24 - - -
Each set s, s = 1,.., 24, contains NCs genes and N metabolites drawn

such that with probability 77 the elements are from a differential distribution h
€ (1, 2., 9) and the remainder are from the null distribution h = 0.

sum of squared statistics test when applied jointly to
two data sets. We combined the data via concatenation,
the Fisher’s method of combining p-values, and the mul-
tivariate extensions of logistic regression and the sum of
squared statistics.

Results and Discussion
Heterogeneous set simulation results
Let us first consider some results from the heteroge-
neous set simulations which provide an overview of the
behavior of the methods. For each simulation scenario,
100 datasets were generated and tested. In Figure 2 we
depict the frequency with each set, from 1 - 29, was
determined to be significant at o = 0.05 for each test
considered. The average rate of false positives is com-
puted across the 41 null sets per test.

Looking at the univariate tests in Figure 2 (univariate
gene, blue square; univariate metabolite, purple circle)
we see the behavior that we would expect for the

2_

-2 -1 0 1 2
Figure 1 Mahalanobis distance plot example. A contour plot
overlaying the scatterplot of 100 random draws from a bivariate
normal distribution with mean zero, unit variance, and 50%
correlation. The centroid defined by the marginal means is noted by
a blue square. Three points of interest are added as the orange
diamond, red triangle, and purple circle. If any of these points had
been the observed value that gave rise to this null distribution its p-
value would be 0.94, 0.04, < 0.01, respectively.
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different test styles. The tests are able to detect sets 1-9
according to their enrichment. Genes but not metabo-
lites are detected for sets 4-6. Metabolites but not genes
are detected for sets 7-9 but not perfectly in the compe-
titive Fisher’s exact and logistic regression tests (panels
A and B), due to the small set size, Ny, = 4. The Fish-
er’s exact test loses all ability to detect metabolite
enrichment beyond 100% enrichment. The logistic
regression model has about 50% detection of the meta-
bolite sets when they are 50% enriched, sets 10-12 and
16-18, highlighting the power gain with non-dichoto-
mized tests. The self-contained sum-of-squared statistic
(panel C) test only begins to have trouble detecting the
metabolite enrichment at 25% enrichment (sets 19 - 21).

When we turn our attention to the multivariate methods
(red diamonds) we see a similar pattern to the results from
p-values combined by Fisher’s method (black stars). For
the competitive tests these methods tend to follow the
gene expression data results. There is some improvement
in the metabolite only sets (i.e., sets 16-18). For the logistic
regression test they also show a moderate effect, between
that of the gene and metabolite only tests for sets 19-24
(panel B). All methods perform maximally in the self-con-
tained sum-of-squared statistics test and increased power
is provided to sets 19-21 (panel C).

In Figure 3, we increase the set size for the metabo-
lites (N, = 20), to make them comparable in size to
the gene sets (Ng, = 20), but continue to generate the
metabolite intensities with a lower effect size than the
gene expression values. Notice the change in the conca-
tenated data results (orange triangles) from Figure 2,
where the N, = 1000 dataset dominated the N,,czaposize
= 200 dataset in the concatenated list. Now, for the
Fisher’s exact test (panel A) the strength of a single
enriched platform is muddied by the non-enriched plat-
form (e.g., sets 13-18). However, the set detection fre-
quency is improved for the 25% enrichment sets (i.e.,
19-21) showing rates exceeding either single platform
method. For the logistic regression tests (panel B) the
concatenated data is still related to the gene expression
data due to the higher effect sizes of the gene expression
data compared to the metabolite data. The other com-
bined p-values (black star) and 2-df Wald test (red dia-
mond, panel B) appear to be improved for the low
enrichment case of 25% enrichment for genes and meta-
bolites (i.e., sets 19-21) showing the utility of joint
enrichment methods in marginal cases.

The sum-of-squared statistics test (panel C) continues
to perform maximally for all tests. However, these self-
contained tests identify all of the random sets (25-29) as
enriched. Given that 12% of the genes and metabolites
are simulated to be differential in the full dataset these
five sets will have 12% enrichment on average. These
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A. Fisher's Exact Tests
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B. Logistic Regression
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Figure 2 Heterogeneous simulation results ([\IGs =Ny, = 20). 1000 genes and 1000 metabolites generated for 30 samples. Genes (G),
Metabolites (M), or both (G + M) are differentially expressed within the set with probability according to the enrichment percentage listed in
the black boxes at the top of the plot. Each trio of columns, from left to right, represents no correlation (g = pum = Puc = 0), correlation
within element only (o6 = paym = 0.20, and pyc = 0), and correlation within and between elements (pss = paym = 0.20, and py = 0.10). Sets
25,.., 29 were chosen randomly. The symbols represent the frequency of rejecting the null hypothesis in 100 simulated datasets. [Blue square,
univariate gene; Purple circle, univariate metaboltie; Orange triangle, concatenation; Black star, Fisher's method; Red diamond, multivariate
extension]

sets are not detected by the competitive tests (panels A
and B) because of their use of relative estimation.

To ensure that our power gains are real we must also
look at the error rate of these tests. We consider the
Type I error rates across the 41 null sets in 100 simula-
tions. In both scenarios, given in Figures 2 and 3, there
are high error rates when the data sets are concatenated
and the Fisher’s exact test is used (0.297 and 0.408,
respectively). Likewise this occurs for the logistic regres-
sion model (0.0527 and 0.285, respectively). This error

comes from a high rate of depletion calls, that is identifi-
cation of sets that have fewer significant genes than
expected. This problem is greatest when the set size
increases. When there are 40 elements per set in the con-
catenated list, zero differential elements is significantly
smaller than the 12% expected by random selection.

The p-values combined by Fisher’s method also show
inflated error rates for the competitive tests when
Num, = 20; 0.132, 0.0771. This again is a symptom of
detecting depleted sets. Recall that in these competitive
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25,.., 29 were chosen randomly. The symbols represent the frequency of rejecting the null hypothesis in 100 simulated datasets. [Blue square,
univariate gene; Purple circle, univariate metaboltie; Orange triangle, concatenation; Black star, Fisher's method; Red diamond, multivariate
extension]

Figure 3 Heterogeneous simulation results (NGS = 20, N, = 4). 7000 genes and 200 metabolites generated for 30 samples. Genes (G),

within element only (o6 = paym = 0.20, and pyc = 0), and correlation within and between elements (pss = paym = 0.20, and py = 0.10). Sets

tests the sample size for the test is based on the number
of elements. The larger set size may offer stronger
depletion results that are then amplified by the joining
of the two tests.

We do not observe error inflation in the sum-of-
squares statistic methods. Firstly, the p-value is calcu-
lated for a one-sided test. Thus, as currently defined, the
sum of squares test cannot detect depletion. Second, the

p-values are determined by permutation so there is a
limit on the level of precision for the p-values which
thus limits the precision of the p-value as combined by
summation in the Fisher’s method.

Disjoint set simulation results
Now that we have the general pattern of operating char-
acteristics for each of these methods let us explore some
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Figure 4 Venn diagrams comparing enrichment methods for prostate cancer data. Set enrichment was determined using the logistic
regression model. Panels i, ii, and iii compare the sets identified as enriched for genes (G) or metabolites (M) alone to a joint enrichment
method; (i) Univariate naive, (i) Fisher's method (p-value sum), (iii) 2-df Wald test. Panel iv compares the three joint tests.
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specific hypotheses using the disjoint simulations. Recall
that in these simulations we generate data for 50 dis-
joint sets, of which 10 are designed to be enriched. The
correlation structure is homogeneous in that each set
has the same structure. However, there is no correlation
simulated between sets.

Here we use a different metric to assess the results of
the methods. Specifically, we ask, if we were to choose
the top ten sets by ranking p-values, would we select
the 10 associated sets? Instead of looking at frequencies
of being in the top 10 we consider the sum of the ranks

for the 10 associated sets. When the 10 associated sets
form the top 10 sets selected the sum of the ranks is

R=Y1 x=55. When there is no association between

the set and disease then the 10 sets of interest should
have a sum of the ranks with range (55,455) and E(R) =
255. Boxplots are availble in Additional File 1 for gra-
phical representation of the results presented here.
Under the null model of no enrichment, that is d; =
do = ¢; = ¢o = 0, the rank sum of the associated sets fall
nicely around E(R) = 255. Under the null model of uni-
form enrichment, that is d; = dy = ¢; = ¢y = J we also
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see that the rank sum of the associated sets matches E
(R) = 255 when 6 = 0.05 and when ¢ = 0.10. We next
assume that on average 25% of the elements in the asso-
ciated sets are differential, that is d; = ¢; = 0.25 and d,
= ¢o = 0. This results in an overall 5% rate of differential
elements within the datasets. The sum-of-squares statis-
tic R achieves nearly perfect rank sums for all tests
when Ny, =20 and only falter for the metabolite only
tests when Ny, =4 (mean + sd: 126.5 + 38.3). In the
competitive tests there is improvement in R when any
of the joint tests are used compared to the univariate
gene or metabolite tests. For example, the 2-degree of
freedom test has mean score 85.3 (+24.8 sd, where
Nu, = 4) compared to the gene-only or metabolite-only
logistic tests with means 101.1 + 25.6 and 166.7 + 38.9,
respectively. The correlation in this scenario was 0.20
within the sets. If we increase the correlation to 0.60 we
find that R increases in the competitive tests, specifically
the logistic tests become 119.3 + 25.6 for the joint test,
138.3 + 28.8 for genes only, and 185.8 + 42.0 for meta-
bolites only (Ny, = 4). This loss of power is possibly
due to loss of information attributed to the dependent
measurements. Thankfully such high correlations are
not likely to be present in real applications (e.g., [14]).
Considering a scenario in which few elements are differ-
ential, we reduce the parameters d; = ¢; = 0.1 with d, =
¢o = 0. Since d; and ¢, are probabilities we expect that
on average 10% of the elements of the associated sets
are differential and we focus only on scenarios where
Nu, = 20. The overall enrichment is 2% on average so
the competitive tests still perform better than if the sets
were randomly assigned. It may be the case that as few
as one, or none of the elements are simulated to be dif-
ferential. Due to these low counts we see an increase in
R for the sum-of-squared statistics (e.g. mean * sd: 66.3
+ 16.3 for the 2-df test).

Finally, we consider a scenario with noise in the null
sets, that is d; = ¢; = 0.25 and dy = ¢o = 0.05. It is in
this scenario that the sum-of-squared statistic begins
to falter (e.g. mean + sd: 159.8 + 15.8 for the 2-df
test). In fact we see that, beyond an increase in R,
under this scenario the joint enrichment test performs
more poorly than the univariate tests of the gene or
metabolites alone (140.2 + 16.8 and 114.0 * 18.7,
respectively). It is not surprising that this self-con-
tained test performs poorly as this non-specific beha-
vior is a criticism of self-contained method. It is
curious, however, that the joint methods appear to fare
worse in this situation.
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Application to prostate metabolomics and transcriptomic
data

As a final application of the above methods, we utilize
the metabolomic data of Sreekumar et al. (2009) [1]
and the gene expression data from the same samples
(GEO:GSE8511). We consider the comparison between
localized tumor (n = 12) and benign tissues (n = 16)
and use the Kyoto Encyclopedia of Genes and Gen-
omes (KEGG, version 50, April 2009) to determine the
set mapping. Of 518 well measured metabolites, 147
metabolites that can be mapped to the KEGG sets. Of
the >40,000 gene probes measured on the Agilent
Whole Human Genome microarray, 2169 genes that
can be mapped to KEGG. There are 98 KEGG sets in
which at least one gene and one metabolite are
measured.

Each of the enrichment methods is run on this data.
As this is experimental data, we do not know the true
association of the genes and metabolites with the KEGG
sets. To assess our results we compare the findings of
each method. Figure 4 shows a selection of these com-
parisons using the logistic regression model and a p-
value threshold of p < 0.05. Here we see that only com-
bining p-values via p-value summation (i.e., Fisher’s
method; panel ii) detects a set not already detected by
one or more of the univariate methods (panels i - iii).
However, the joint models provide a more refined list of
sets compared to using the union of the results of the
two univariate methods. It may be preferable to consider
those sets with a significant joint association as pre-
ferred candidates for follow-up. Panel (iv) of Figure 4
compares the results of these three joint enrichment
methods. We see that in this situation the sum of the p-
values by Fisher’s method selects nearly the same sets as
the 2-df Wald test. Since we are not assuming correla-
tion between y and y the 2-df Wald test is simply a sum
of the univariate Wald statistics so its behavior should
be similar to the sum of -log(p,) and -log(p,) as in the
Fisher’s method.

The Fisher’s exact test methods behaved similarly to
the logistic regression tests shown in Figure 4. The
sum-of-squared statistics tests were overly liberal identi-
fying over 90% of the pathways as enriched. This implies
that there was a high rate of differential elements
throughout the datasets. Such background noise makes
a competitive test the preferred choice of enrichment
test. Additionally this may suggest that the KEGG path-
way maps, as applied, may not accurately capture the
co-regulation in the data.

Conclusions

In this work we have considered set enrichment testing
methods for the joint analysis of transcriptomic and
metabolomic datasets. We consider several procedures
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including two novel methods: the logistic regression 2-
degree of freedom Wald test and the 2-dimensional per-
mutation p-value for the sum-of-squared statistics test.
Through a novel simulation model and design we
explored the properties of these tests in relation to their
univariate counterparts. We find that the joint tests can
improve our ability to detect results that are marginal
univariately, as evidenced in Figures 2 and 3. We also
find that joint tests improve the ranking of associated
pathways compared to their univariate counterparts.

The various joint methods performed similarly for
most simulations. The concatenation of datasets and the
Fisher’s method of combining p-values had inflated
error in the competitive test. For the logistic regression
test, the 2-df wald test currently peforms similarly to
the Fisher’s method for combining the two p-values, due
to the assumption that p,, = 0. Non-zero correlation
would have provided a weighted sum in the 2-df test.
Though we were not estimating p,, to be non-zero, the
slightly inflated error rate of the Fisher’s method test,
suggests that the independence assumption may not
always hold and dependent methods should be consid-
ered [15]. In future work we will continue to explore if
and when correlation may be a contributing factor or if
there are other methods for combining the tests in a
weighted fashion either at the level of the test statistic
or p-value. One of the more attractive features of the 2-
df Wald test and 2-dimensional permutation test is that
they can easily be extended to n-dimensions. This will
allow for the incorporation of multiple omics platforms
such as proteomics, genomics, or gene copy number.
The data concatenation and sum of p-values methods
can also be extended, but this may compound their
potential error.

Additional material

Additional file 1: Supplementary Information. The file
Poisson_IntegrativeEnrichment_Supp.pdf contains supplementary
information about the paper.

Additional file 2: R code. The file
Poisson_IntegrativeEnrichment_SimRCode.zip contains the R code for
performing the simulations, along with implementations of the
methodology.
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