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Abstract

Background: DNA methylation is regarded as a potential biomarker in the diagnosis and treatment of cancer. The
relations between aberrant gene methylation and cancer development have been identified by a number of
recent scientific studies. In a previous work, we used co-occurrences to mine those associations and compiled the
MelnfoText 1.0 database. To reduce the amount of manual curation and improve the accuracy of relation
extraction, we have now developed MelnfoText 2.0, which uses a machine learning-based approach to extract
gene methylation-cancer relations.

Description: Two maximum entropy models are trained to predict if aberrant gene methylation is related to any
type of cancer mentioned in the literature. After evaluation based on 10-fold cross-validation, the average
precision/recall rates of the two models are 94.7/90.1 and 91.8/90% respectively. MelnfoText 2.0 provides the gene
methylation profiles of different types of human cancer. The extracted relations with maximum probability,
evidence sentences, and specific gene information are also retrievable. The database is available at http://bws.iis.
sinica.edu.tw:8081/MelnfoText2/.

Conclusion: The previous version, MelnfoText, was developed by using association rules, whereas MelnfoText 2.0 is
based on a new framework that combines machine learning, dictionary lookup and pattern matching for
epigenetics information extraction. The results of experiments show that MelnfoText 2.0 outperforms existing tools
in many respects. To the best of our knowledge, this is the first study that uses a hybrid approach to extract gene
methylation-cancer relations. It is also the first attempt to develop a gene methylation and cancer relation corpus.

. J

Background

Epigenetics involves the study of mitotically heritable
changes in gene expression that are mediated by DNA
and histone modifications without altering the DNA
sequence [1]. DNA methylation, one of the most critical
epigenetic events in mammals, is primarily found on the
carbon 5 position of the cytosine ring in the context of
CpG dinucleotides [2]. During the methylation reaction,
DNA methyltransferases (DNMTs) catalyze the transfer
of a methyl group from S-adenosyl-L-methionine
(SAM). A number of studies have found that abnormal
gene methylation, including hypermethylation and hypo-
methylation, are associated with the development and
progression of cancer; however, the precise mechanisms
are still unclear [3,4]. Hence, if the methylation profile
is unique to a certain type of cancer, DNA methylation

* Correspondence: hsu@iis.sinica.edu.tw
JInstitute of Information Science, Academia Sinica, Nankang, Taipei, Taiwan
Full list of author information is available at the end of the article

( BiolMed Central

could be an important diagnostic and prognostic bio-
marker [5].

Information extraction (IE), a field of text mining, selects
specific facts about pre-defined types of entities and rela-
tionships of interest [6]. As the publication rates in epige-
netics have grown exponentially in recent years, several
studies have tried to extract information about gene
methylation-cancer associations from large collections of
textual data. For example, MelnfoText 1.0 uses term co-
occurrences in abstracts and sentences together with asso-
ciation rules to identify such relationships [7]. The Pub-
Meth database also uses co-occurrences and the data is
reviewed manually to identify cancer-gene methylation
associations [8]. The major drawback with co-occurrence
methods is that the results may contain a large number of
false positive relations due to the lack of syntactic and
semantic analysis. Moreover, manual curation may lead to
low recall results. As mentioned above, DNA methylation
plays an important role in abnormal gene expression and
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cancer development. However, little research has been
done on automatically extraction DNA methylation infor-
mation with the use of machine learning or other natural
language processing techniques [9].

The field of biomedical research is highly versatile [10].
Domain-specific text mining methods must be developed
to help researchers and physicians in coping with informa-
tion overload [11]. In this paper, we present MelnfoText
2.0, which uses a hybrid approach to extract gene methyla-
tion-cancer relations. The updated database provides more
accurate and large-scale gene methylation profiles as well
as the distributions of different types of cancer without the
need for a great deal of manual curation. This work would
aid epigenetics researchers in making more efficient use of
the existing knowledge for practical application.

Construction and content

MelnfoText 2.0 is a relational database implemented by
MySQL 5.0 and PHP programming language. To com-
pile the database, we collected 11,770 abstracts from
PubMed by using “human,” “methylation” and “cancer”
as keywords. From the abstracts, we generated 40,365
sentences containing methylation-related terms. Human
gene information, including Entrez Gene ID, official
gene symbol, aliases, full name and summary was
obtained from NCBI Entrez Gene to construct a gene
dictionary. Based on the dictionary, we employed our
gene normalization technology [12] to normalize the
recognized gene mentions. Figure 1 shows the system
architecture of MelnfoText 2.0 and the steps of the
information extraction process.

Named entity recognition (NER)

Gene symbols/names were identified by NERBio, an
ML-based Bio-NER system with an F-score of 85.76%
[12-14]. We utilized the pattern “(hyper|hypo)?(-)?
(methylat.+)” to identify methylation named entities,
where ‘. indicates a character and ‘+” indicates that the
character immediately to the left of the symbol may
appear more than once.

To develop the cancer named entity recognizer, we
combined a cancer dictionary and regular expression
patterns. The dictionary containing cancer names was
compiled from MelnfoText 1.0 and the abbreviations
for different types of cancer were collected from two
public websites, http://www.cancerindex.org/medterm/
medtm15.htm and http://www.changbioscience.com/
abbr/a0a.htm. The patterns used to identify cancer types
are as follows:

(1) ABBREVIATION;

(2) (TUMOR
KEYWORD);

(3) (-+oma]leukemia|leukaemia).

ABBREVIATION includes the acronyms for cancer
types such as NPC (nasopharyngeal carcinoma) and

SITE) (CANCER-RELATED
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CRC (Colorectal Cancer). CANCER-RELATED KEY-
WORD is a specialized lexicon comprised of the follow-
ing surface names: cancer, tumor (tumour), neoplasm,
carcinogenesis, tumorigenesis and metastasis. With the
exception of pattern (1), the matching strategies are
case-insensitive

Gene methylation-cancer relation extraction

We formulate the task of extracting gene methylation-
cancer relations as a binary classification problem. The
first model determines if each gene-methylation (G-M)
pair in the annotated sentences is positive. Then, the
derived positive sentences are input to the second
model to identify positive gene-cancer (G-C) pairs.
Dataset

Since there are no publicly available annotated corpora
for training a gene methylation-cancer association
extraction system, we collected epigenetics-related
abstracts from MelnfoText 1.0 to compile G-M and G-
C corpora. Then we manually annotated each G-M pair
and G-C pair in the sentences. If a sentence contained
more than one G-M or G-C pair, the sentence was
duplicated several times according to the number of
possible combinations of the terms in all the pairs so
that each sentence only contained one pair. For exam-
ple, the sentence, S1, “[SOCS1]gene; [SOCS2] genes
[RASSF1a] 4enes [CDKN2a]gene; and [MGMT]gepe Were
[methylated]metnylation in 75, 43, 64, 75, and 64% of
[melanoma] ,,cer Samples, respectively”, contains 5 G-
M pairs. Therefore, it would be duplicated and rewritten
as 5 sentences, each containing exactly one G-M pair
for G-M model training. For the G-M corpus, if a gene
entity in a sentence is described as methylated, then the
relation is regarded as positive; otherwise, it is regarded
as negative. In the above sentence, there are five positive
instances. For the G-C corpus, if the methylated gene
described in a sentence is involved in the development
of cancer or the gene’s methylation status is detectable
in cancers, then the relation is labeled as positive; other-
wise, it is labeled as negative. In the above example, five
positive G-C pairs were generated. Both corpora con-
tained 1,000 positive and 1,000 negative sentences.
Inter-annotator agreement

We randomly selected a subset of 400 sentences from
our corpus. Gene, methylation and cancer named enti-
ties (NE) and G-M relations and G-C relations were
manually annotated by two annotators with biomedical
background. The inter-annotator agreement is 95%
determined as the intersection of annotated NE and
relations divided by the total number of NE and
relations.

Model generation

We use the Maximum Entropy (ME) [15] learning
model as the ML tool. Figure 2 shows the employed fea-
ture set and extracted feature values for the G-M pair,
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Figure 1 The system architecture of MelnfoText 2.0. DNA methylation-related abstracts were collected from PubMed and processed by
sentence splitting and expansion. Then, our methylation and gene mention tagger annotated the collected abstracts with methylation terms
and gene names, after which the relations between two entities were extracted by two trained maximum entropy (ME) models. The first model
determined the gene-methylation (G-M) relation. All positive sentences were annotated with the type of cancer by using a pattern-based cancer
type tagger. The second ME model extracted gene-cancer relations. The gene information, methylation statistics and associations ranked in
descending order of probability are stored in MelnfoText 2.0. Users can query the database via the web interface using gene names or cancer
types, or a combination of both.
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S1:

Feature set
word n-gram between GM: were

Chunk
Inter-GM chunk heads: [VP were]

Inter-GM chunk types: VP
Parse tree path: NP>NP>S<VP<VP
Sentence position: 0.7

the relative position of a sentence in an abstract.

SOCS1,SOCS2, RASSFla, CDKN2a, and [MGMT],, were [methylated],,myiation 10
75,43, 64, 75, and 64% of melanoma samples, respectively

Surrounding words: and. CDKNla. in. 117

Surrounding chunk heads: [NP RASSF1a] . [NP CDKNla], [PP in]

Template: <gene> be-verb <methylated>

* We employed the numerical normalization process on these words. which converts
numerals in each word to one representative numeral.

Figure 2 The employed feature set and extracted feature values for a G-M pair: word n-gram features include all word unigrams and
bigrams located between G and M; surrounding word features include the two words before the first named entity and the two words after
the second named entity; chunk features include inter-GM chunk heads, surrounding chunk heads and inter-GM chunk types; the parse tree
path feature is the syntactic path through the parse tree from the first named entity to the second named entity; and sentence position means

MGMT and methylated, in sentence S1. Our feature set
includes the word n-grams between entities, surround-
ing words, chunks, parse tree paths, the relative position
of the sentence containing the entities in an abstract,
and the template features, which were also used in our
previous work for hypertension gene extraction [16]. To
generate template features for G-M and G-C, we used
Smith and Waterman’s local alignment algorithm
[17,18] to calculate the similarity of all paired sentences
with true associations. The scoring scheme of an award
of +1 for match and a penalty of -1 for both mismatch
and gap was adopted. Then, we manually reviewed the
paired sentences with the top 100 scores to create tem-
plates, such as “ < gene > promoter < methylation > “
and “ < gene > is frequently methylated in < cancer > “.
We used Zhang’s MaxEnt toolkit [19] to train two ME
models, denoted as GM and GC, for G-M and G-C rela-
tion extraction respectively.

Utility

Query method

Figure 3 shows the MelnfoText 2.0 web interface,
which can be accessed by inputting a gene name or

type of cancer, or a combination of the two. Searching
by genes yields general gene information, cross-refer-
ences, gene methylation statistics and cancers related
to the gene methylation ranked by the following equa-

tion:
Ranking score = ZP(GeneXMethylation, CancerY)p sentence (1)

i=1

For each G-C pair, there may be more than one evi-
dence sentence with the relation probability calculated
by the GC maximum entropy model. The sum of total
probabilities for each gene and cancer relatedness is
used to represent the ranking score of the G-C pair.
Querying by cancer type returns genes methylated in
the cancers ranked in the same way. Users can also find
genes methylated in pre-specified cancer types by
searching genes and cancers together. The relations
extracted from the current literature are also available.
In this study, the profiles of gene methylation across
human tumor types provide the frequency patterns of
gene methylation based on the number of evidence sen-
tences and the maximum probability, as shown in Figure

3 (c).
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Figure 3 The web interface of MelnfoText 2.0. Figure 3 (a) the search interface with three search options: (1) by inputting gene names, (2) by
selecting cancer types, and (3) by combining specific genes and types of cancer. After checking the query terms, the system returns the gene
methylation profile across human cancer types and highlights the evidence sentences, as shown in Figures 3 (c) and 3(d).
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For example, to access information about the BRCA1
(breast cancer 1, early onset), GSTP1 (glutathione S-
transferase pi) and ESR1 (estrogen receptor 1) gene
methylation profile across various types of cancer, a user
could input BRCA1, GSTP1, ESR1 as search terms sepa-
rated by line breaks. Gene orthographic variants, such as
BRCA1 and BRCA-1, are generated based on a few sim-
ple rules [20]. Next, the system checks if the searched
genes are available in the database. After selecting gene
symbols, the returned web page displays a table contain-
ing information about gene-cancer pairs, the average
maximum probability, the number of evidence sentences
and their frequency. The average maximum probability
is the sum of the ranking scores divided by the number
of sentences. The cancer set shown in the left-hand col-
umn lists the cancers associated with any one of the
three genes. The user can then examine the extracted
sentences ranked by their maximum probability scores.
Keywords are highlighted and links to PubMed are also
provided. In addition to the gene methylation profile, if
only a single gene is queried, the gene summary, cross-
references to other public databases, and statistics about
hypermethylation and hypomethylation are shown.

Users can select one type of cancer, such as breast
cancer, (or several types) to find a set of genes under-
going abnormal methylation related to the cancer(s) of
interest. It is also possible to input multiple official gene
symbols separated by line breaks and select multiple

cancer types to retrieve the profiles of gene methylation
across human cancer types. For instance, let us consider
the following set of genes discussed by Esteller et al.
[21]: CDKN2A, CDKN2B, MGMT (O6-methylguanine-
DNA methyltransferase), MLH1, BRCA1, GSTPI1,
DAPK1, CDH1 (cadherin 1), TIMP3 (TIMP metallopep-
tidase inhibitor 3), TP73, and APC (adenomatous poly-
posis coli). If the genes are input to the system and
different types of cancer, such as colorectal, lung, breast,
brain, gastric, liver, esophageal, bladder, blood, kidney,
ovarian, head and neck, pancreatic, endometrial and
lymphatic cancer, are selected, the methylation profile of
each gene related to the different cancers will be shown.
The profile may also reflect the specific involvement of
the gene in the selected type of cancer or groups of
cancers.

Discussion

The pages retrieved by MelnfoText 2.0 for the above
gene methylation profile are similar to the results
reported by Esteller et al. [21]. For example, CDKN2A
is hypermethylated across colorectal, lung and breast
cancer with an average maximum probability of 0.8
and a total of 306 evidence sentences. Meanwhile,
hypermethylation of BRCA1 is found primarily in
breast and ovarian cancer with an average maximum
probability of 0.84 and approximately 41 evidence
sentences.
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In the next section, we consider the NER performance
as well as the G-M and G-C relation extraction perfor-
mance. The predictive performance measures for the
trained models are defined as  follows:

P
and recall =
+ FP TP +

FP and FN denote the number of true positives, false
positives and false negatives respectively.

precision = , where TP,
‘N

NER and relation extraction performance

The data used to evaluate the cancer named entity
recognizer was downloaded from http://biotext.berkeley.
edu/data/dis_treat_data/sentences_with_roles_and_rela-
tions[22]. The disease named entities tagged <DIS></
DIS> or <DISONLY></DISONLY> and the cancer
names, except general terms like tumor, were used for
evaluation. If an exact matching strategy is employed,
the precision and recall rates for cancer name recogni-
tion are 85.2% and 79.5% respectively; while under the
approximate matching strategy [23], the rates are 99.1%
and 81.8% respectively.

To evaluate G-M and G-C relation extraction, we
applied 10-fold cross validation on the G-M and G-C
corpora. We randomly selected 900 sentences from the
corpora to train the GM and GC models and used the
remainder for testing. The average precision/recall rates
were 94.7 + 2.1/90.1 + 2.8 and 91.8 + 3.2/90.0 + 1.6%
for the GM and GC models respectively. Both models
were trained with all the features shown in Figure 2.
There was no obvious performance improvement (<
0.01) when the template features were used.

System evaluation and utility

We conducted three experiments to evaluate the pro-
posed relation extraction scheme. The first experiment
was designed to determine if MeInfoText 2.0 outper-
formed version 1.0 in terms of extracting gene methyla-
tion-cancer relations. We retrieved 403 gene
methylation and cancer associations from MelnfoText
1.0 based on the following 20 genes: PYCARD, CDH13,
COX2, DAPK1, ESR1, GATA4, SYK, MLH1, TP73,
PRDM2, PGR, SFRP1, SOCS1, SOCS3, STK11,
TMEFF2, THBS1, RASSF5, PRKCDBP and RARB. The
above genes are known to be methylation-related and
were used in our previous study. Table 1 shows that our
ME models significantly improve the precision of rela-
tion extraction at the expense of a small reduction in
recall. In the table, Co-occurrences in abstracts and Co-
occurrences in sentences refer to the association mining
methods used in MelnfoText 1.0.

The second experiment compared our system’s perfor-
mance with that of PubMeth on an evaluation dataset
used by PubMeth in a review article on DNA methyla-
tion in breast cancer. The article lists 39 genes known
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Table 1 Gene methylation and cancer relation extraction
precision/recall rates

Precision (%) Recall (%)
Co-occurrences in abstracts 62.8 98.8
Co-occurrences in sentences 84.6 100
GM+GC 954 90.9
GM 924 94.8

to be hypermethylated in breast cancer. The MelnfoText
2.0 database contains 38 of those genes, and 23 are
described in breast cancer. In addition, querying Meln-
foText 2.0 for breast cancer information returns more
than 150 genes, 87 of which have at least two references
and 63 have one reference with a probability greater
than 0.8. The review also lists 8 genes reported to be
hypomethylated in breast cancer; 7 of them are available
in our database and 4 are described in breast cancer.
However, PubMeth can not provide hypomethylation
information. Table 2 compares the number of genes
available, the genes methylated in breast cancer, and the
genes searched for breast cancer in the two databases.

We also compared the search results in terms of the
number references and evidence sentences. Searching
BRCAL1 in PubMeth returned 7 related types of cancer,
namely, breast, ovarian, lung, gastric, cervical, pancrea-
tic, and brain cancer. The number of references/evi-
dence sentences for the 7 types of cancer in PubMeth
and MelnfoText 2.0 were, respectively, 12/7 vs. 14/27,
19/12 vs. 6/14, 1/0 vs. 2/3, 1/1 vs. 1/1, 1/1 vs. 1/1, 2/1
vs. 0/0, and 1/1 vs. 1/1. Furthermore, we performed a
cancer-centric search to find the top 10 breast cancer
and gene pairs listed on the PubMeth results page. In
Table 3, we compare the association evidence sentences
extracted by PubMeth and MelnfoText 2.0. The results
demonstrate that MelnfoText 2.0 provides more accu-
rate association information, as well as more references
and evidence sentences because of automatic text
mining. In addition, the low average reference intersec-
tion between PubMeth and MelnfoText 2.0 suggests
that the two systems may be complementary.

Table 2 Comparison of the information available in
MelnfoText 2.0 and PubMeth

MelnfoText PubMeth
2.0

# hypermethylated genes available 38 (97%) 27 (69%)
# hypermethylated genes described in breast 23 (59%) 20
cancer (51.3%)
# hypomethylated genes available 7 (87.5%) 0
# hypomethylated genes described in breast 4 (50%) 0
cancer
# genes searched for association with breast > 150 94

cancer
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Table 3 Comparison of the cancer-gene methylation association evidence sentences extracted by PubMeth and

MelnfoText 2.0

PubMeth PubMeth MelnfoText2.0 MelnfoText2.0 Reference intersection (%)
# references # evidence sentences # references # evidence sentences

(breast, BRCA1) 11 7 14 27 2 (18.2%)
(breast, RASSF1) 10 9 20 27 6 (60%)
(breast, CDKN2A) 10 7 25 45 3 (30%)
(breast, APC) 11 10 10 17 3 (27.3%)
(breast, CDH1) 10 8 12 14 2 (20%)
(breast, GSTP1) 4 3 7 12 0 (0%)

(breast, ESR2) 5 4 3 7 1 (20%)
(breast, CCND2) 7 5 8 11 3 (42.9%)
(breast, ESR1) 5 5 15 22 1 (20%)
(breast, SFRP1) 2 5 6 " 2 (100%)

The third experiment was designed to further evaluate
the performance of MelnfoText 2.0 using data published
by Kim et al, 2010 [24], which reports 58 genes methy-
lated in colorectal cancer (CRC). All 58 genes are avail-
able in our database, and 72.4% are reported to be
associated with gene methylation and CRC. The average
maximum probability is 0.87 and there are 10 evidence
sentences. The second and third experiments indicate
that MelnfoText 2.0 performs well in epigenetics studies
that focus on different types of cancer.

Veeck and Esteller [4] identified hypermethylation as
an important mechanism in miRNA silencing; and they
listed 3 miRNAs silenced by, or involved in, epigenetic
mechanisms. Of the 3 genes, it has been reported that
miR-9-1 with unknown target genes is hypermethylated
in human breast cancer [25], an association also found
by MelnfoText 2.0. Information about tumorgenesis and
miRNA gene methylation, such as miR-34a [26] and
miR-181c [27], is also available in the database. More-
over, the extracted information shows that aberrant
expression of DNMT1 (DNA methyltransferase 1) breast
cancer is associated with the loss of DNA methylation
[28]. To determine if DNMT1 or other DNA methyl-
transferases may be the potential target genes of miR-9-
1, we used microRNA.org [29] for prediction. Our data-
base does not contain any miR-9-1 information, but it
can retrieve the prediction results for miR-9. Although
DNMTT1 is not predicted as the target gene of miR-9,
microRNA.org shows that MeCP2 (methyl CpG binding
protein 2) may contain two hsa-miR-9 target sites. A
previous study [30] posited that the silence of the ER
promoter in the breast cancer cell line is associated with
DNA hypermethylation, histone modification and the
recruitment of MeCP2, DNMT1 and other proteins.
The hypothesis suggests that miR-9-1 hypermethylation
abnormally increases the expression of MeCP2, which in
turn represses the transcription of methylated DNA via
the recruitment of a histone deacetylase activity

associated with DNMT1 [31]. Further investigation is
needed to elucidate the relationships between miR-9-1,
MeCP2 and DNMTT1 in breast carcinogenesis.

Conclusion

MelnfoText 2.0 provides more accurate information
about gene methylation-cancer associations discussed in
a large number of studies. To the best of our knowledge,
this is the first study that uses machine learning, a
domain dictionary and pattern matching to extract
genetic-epigenetic relations. Such relations are impor-
tant for determining if unique profiles exist for specific
types of cancer, and assessing how to improve cancer
detection and treatment by using DNA methylation bio-
markers. The study is also the first attempt to create a
gene methylation-cancer corpus.

Availability and requirements
Project name: MelnfoText 2.0

Project home page: http://bws.iis.sinica.edu.tw:8081/
MelnfoText2/

Operating system(s): platform independent

License: the database website is freely accessible
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