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Abstract

Background: The nCounter analysis system (NanoString Technologies, Seattle, WA) is a technology that enables
the digital quantification of multiplexed target RNA molecules using color-coded molecular barcodes and single-
molecule imaging. This system gives discrete counts of RNA transcripts and is capable of providing a high level of
precision and sensitivity at less than one transcript copy per cell.

Results: We have designed a web application compatible with any modern web browser that accepts the raw
count data produced by the NanoString nCounter analysis system, normalizes it according to guidelines provided
by NanoString Technologies, performs differential expression analysis on the normalized data, and provides a
heatmap of the results from the differential expression analysis.

Conclusion: NanoStriDE allows biologists to take raw data produced by a NanoString nCounter analysis system
and easily interpret differential expression analysis of this data represented through a heatmap. NanoStriDE is freely
accessible to use on the NanoStriDE website and is available to use under the GPL v2 license.

Background

In recent years, RNA expression studies have relied on
two major technologies: microarrays and high-through-
put sequencing. Although both of these methods have
proven their utility in biological assays [1,2], each has its
limitations. Microarray analyses offer low cost, transcrip-
tome-wide assays, but are hindered by a low dynamic
range of detection [3,4]. RNA-Seq experiments offer
greater sensitivity and digital measurements of transcript
abundance, but require complex sequence analysis and
have a relatively high cost [5,6]. The NanoString nCoun-
ter is a novel RNA-based technology whose costs and
abilities place it firmly between microarrays and RNA-
Seq [7].

The nCounter allows digital quantification of multi-
plexed target molecules through the use of color-coded
molecular barcodes and a single-molecule imaging sys-
tem [8]. By providing discrete counts of RNA tran-
scripts, the nCounter overcomes the saturation
limitations of microarrays while avoiding the complex
sequence analysis necessitated by RNA-Seq. The plat-
form can quantify up to 800 different RNA targets
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simultaneously in up to 12 samples per run, making the
system ideal for studying differential expression and
microRNA expression assays. Hands-on time for the
assay is under one hour and the full process from input
RNA to data output can be completed in one to two
days.

Differential expression analysis is performed differently
for microarrays and RNA-Seq because of distinctions in
the underlying technologies. Microarrays measure
expression levels using optical detection of fluorescent
intensities. Two-sided t-tests are normally used with
microarray data as log normalized fluorescent intensity
levels are well modelled by the Gaussian distribution.
RNA-Seq uses sequence coverage as a measurement of
expression, producing discrete rather than continuous
data. The use of a discrete distribution like the Poisson,
or more appropriately the negative binomial [9,10], is
appropriate in this case. The NanoString nCounter is
most similar to RNA-Seq in that it processes discrete
counts of measurement similar to RNA-Seq; as such, it
is more appropriate to utilize differential expression ana-
lysis tools developed for RNA-Seq for data generated by
the NanoString nCounter. For historical reasons and to
allow comparisons, our server allows for both t-tests as
well as a negative binomial-based test for the discovery
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of differentially expressed genes, a feature that allows us
to offer an array of options in the web-based data analy-
sis package described below.

Although the technology overcomes major limitations
of microarrays and high throughput sequencing, the
data produced by the NanoString nCounter is not in a
directly usable format and must be compiled, normal-
ized, and analyzed using a variety of statistical methods.
Guidelines to achieve this are provided by the company;
however, the process is complex and generally requires
the use of Microsoft Excel running on a Windows sys-
tem. Moreover, performing statistical analysis of the
data to explore relevant trends and produce differential
expression maps requires familiarity with R and asso-
ciated packages like Bioconductor and DESeq. The use
of this software and an understanding of which analyses
must be performed and in what order is not part of
most biologists’ skill sets and so acts as a needless impe-
diment to their effective use of nCounter data.

Our NanoString web application, NanoString Differen-
tial Expression (NanoStriDE), provides a configurable,
extremely simple-to-use interface as a front end to a
fully automated analysis pipeline of R libraries and Perl
scripts. nCounter data is uploaded directly to the web-
site. Processed data with a differential expression heat-
map is made available for download within minutes.

Implementation

Controls and normalization

NanoStriDe intelligently applies positive and negative
corrections, as well as a sample content normalization
as per manufacturer guidelines to the raw data. The first
stage applied to the data is a correction to positive con-
trols. Each NanoString experiment contains synthetic
spike-in controls in the early stage preparatory mix that
allow for the correction of sample-to-sample variation
due to assay-specific factors such as differences in
amount of input material or reagents. The positive cor-
rection is calculated by

cx (rsrl) 1)

where ¢ is count data for a gene in a given sample, m
is the mean of the sum of the positive controls across
all samples, and s is the sum of all of the positive con-
trols for that given sample. The positive correction is
applied to the data only if the t-test or one-way
ANOVA was chosen. DESeq and one-way ANOVA
(negative binomial) using DESeq ANODEV uses
DESeq’s built in normalization methods.

After the positive correction is applied, one of four
negative correction methods is employed. The negative
correction subtracts background noise from the
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positively-corrected data using counts of sequence tags
known to be absent from the assay. The first three
choices of negative correction use: (a) the mean of the
negative controls for a given sample, (b) the mean of
the negative controls summed with 2 standard devia-
tions of the negative controls, or (c) the maximum of
the negative controls. For these choices, the negative
control is applied by

2)

c—nforc—n>0
0 forc—n<0

where ¢ is the count data and # is one of the values
for the aforementioned negative controls. The fourth
choice of negative control that can be applied is a one-
tailed Student’s t-test using the negative controls as one
group against all samples of a given gene as the other
group, and using this to determine the significance of a
given gene with a p-value cutoff. This fourth type of
negative correction is applied by

{ c—m
0
where ¢ is all count data for a given gene, m is the

mean of the count data for that gene across all samples,

and p is the p-value cutoff used. If the p-value is at or
above the provided cutoff (default 0.05), the counts for
the gene are not significant and are set to 0 for all sam-
ples. If the p-value is below the provided cutoff, the
mean for the count data for the gene are subtracted
from the counts for the gene and count values that fall
below zero are set to zero. As with the positive correc-
tion, the negative correction is applied to the data only
if the t-test or one-way ANOVA was chosen. DESeq
and one-way ANOVA (negative binomial) using DESeq

ANODEYV uses DESeq’s built in normalization methods.
The normalization employed after the positive and

negative correction steps depend on the type of statisti-
cal analysis selected. If DESeq or one-way ANOVA
(negative binomial) was chosen for the differential
expression, then the normalization process used within
DESeq is applied to the data and the sample content
normalization is not applied to the data as application
of the sample content normalization and the DESeq
normalization would be redundant. Refer to DESeq for
the details of the normalization process applied [10]. If
the t-test or either one-way ANOVA is chosen for the
differential expression, then one of three sample content
normalization choices is applied:

forp - value < pand (¢ —m) > 0 3)
forp - value < pand (¢ — m) < Oorforp - value > p

Option 1: Normalize to the mRNA housekeeping
genes. This normalization is applied by using For-
mula 1, where ¢ is the count data, m is the mean of
the sum of the housekeeping genes across all
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samples, and s is the sum of the housekeeping genes
for a given sample.

Option 2: Normalize to the entire miRNA sample.
The normalization is employed by using Formula 1,
where ¢ is the count data, m is the mean of the
sums of the counts for each sample, and s is the
sum of all of the counts for each sample.

Option 3: Normalize to the highest miRNA in an
assayed sample. Unlike Option 2, which uses all of
the genes, this option normalizes the data to only
the highest miRNA counts (default top 75) for a
given sample (default sample 1) for the normaliza-
tion factor.

Differential expression

After all of the relevant correction and normalization
steps have been applied, statistical tests are applied to
determine differentially expressed genes. If the data is
assumed to be distributed normally, a t-test (for two
conditions) or one-way ANOVA (for three or more con-
ditions) can be performed on the sample content-nor-
malized data to determine statistical significance. If a
negative binomial distribution is assumed, DESeq (for
two conditions, using the DESeq R library) or a one-way
ANODEV (for three or more conditions, using the
DESeq R library) can be used on the DESeq normalized
to determine statistical significance. When estimating
the dispersion factors in DESeq used for normalization,
different parameters are implemented. If only single
replicates are used for each condition, the blind method
is used to estimate dispersions with a fit-only sharing
mode. If any condition has only two biological repli-
cates, the pooled method is used with a fit-only sharing
mode. If neither of the previous two conditions is met, a
pooled method with a maximum sharing mode is used
to estimate the dispersions.

Heatmap generation and downloadable output

Only a subset of genes whose change in expression
level are statistically significant are selected for visuali-
zation in a heatmap. A user-defined p-value threshold
applied to the results from differential expression ana-
lysis removes any genes with p-values at or above the
cutoff value. This cutoff is applied to either the p-value
or to an adjusted p-value as specified by the user. The
Bonferroni, Holm, Hochberg, Hommel, Benjamini &
Hochberg, and Benjamini & Yekutieli p-value correc-
tions are available as valid adjusted p-value options. A
mean cutoff is applied using the subset from the p-
value cutoff, removing any genes with a final normal-
ized count mean at or below the cutoff value. If there
are two or more remaining genes, a heatmap represen-
tative of the differential expression analysis is
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generated on a log scale across the rows. Refer to Fig-
ure 1 for a view of the interface used to upload multi-
ple raw data files and Figure 2 for an overview of the
normalization, differential expression analysis, and
heatmap generation steps.

Results

NanoStriDE is configured to be easily accessible to biol-
ogists who employ nCounter to perform sophisticated
experiments, so that they may complete their analyses
without specialized training in biostatistics. A user’s
guide outlining how to use the website as well as details
on all options and warnings is available on the NanoS-
triDE website. The analyzed data from a completed job
can be downloaded in a number of stages and formats
from NanoStriDE. Corrected raw, normalized data,
results of differential expression analysis for all probes,
user settings, and customized readme file are available
for download in text format.

Conclusions

The NanoStriDE web application was developed to assist
biologists with performing and interpreting differential
expression analaysis from NanoString nCounter system
data. The high resolution heatmaps produced by NanoS-
triDE are suitable for use as figures in publications. If
the user wishes to independently perform differential
analysis on the data, the normalized data is additionally
provided in the output of the completed job. NanoS-
triDE was designed for ease of use allowing biologists
with limited computational experience to perform
sophisticated differential expression analysis.

NanoStriDE

NanoString Differential Expression Upload Data FAQ License About

E-mail address: |

+ Group 1: Control

Add RCC files to the control group

Filename Size Status

Drag files here,

@ Add files 0b 0%

Figure 1 Screenshot of NanoStriDE Web Interface. This
screenshot of the web interface of NanoStriDE shows the interface
used to quickly select and upload multiple NanoString raw data files
to the server for processing.
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Figure 2 NanoStriDE Workflow. The workflow of normalization
steps and heatmap generation is depicted. Correction and
normalization steps process the raw data first after which a user
selected statistical test is used to determine significant genes to
include in the heatmap generation. Not shown in this diagram is
that every process depicted between the raw data to the heatmap
generation has the intermediate data recorded and returned to the
user in the downloadable output.
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Availability and requirements
Project Name: NanoStriDE
Project Homepage: http://nanostride.soe.ucsc.edu
Operating System: Platform independent
Programming Language: Perl, PHP, R
Other Requirements: Modern HTML 5 compliant web
browser (e.g. IE 9, Firefox 8, Chrome 15, Opera 11)
License: NanoStriDE is freely available under the GPL
v2 license and can be found on the NanoStriDE web
page on the license page.
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