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Abstract

Background: RNA-protein interactions (RPIs) play important roles in a wide variety of cellular processes, ranging
from transcriptional and post-transcriptional regulation of gene expression to host defense against pathogens. High
throughput experiments to identify RNA-protein interactions are beginning to provide valuable information about
the complexity of RNA-protein interaction networks, but are expensive and time consuming. Hence, there is a
need for reliable computational methods for predicting RNA-protein interactions.

Results: We propose RPISeq, a family of classifiers for predicting RNA-protein interactions using only sequence
information. Given the sequences of an RNA and a protein as input, RPIseq predicts whether or not the RNA-
protein pair interact. The RNA sequence is encoded as a normalized vector of its ribonucleotide 4-mer
composition, and the protein sequence is encoded as a normalized vector of its 3-mer composition, based on a
7-letter reduced alphabet representation. Two variants of RPISeq are presented: RPISeq-SVM, which uses a Support
Vector Machine (SVM) classifier and RPISeq-RF, which uses a Random Forest classifier. On two non-redundant
benchmark datasets extracted from the Protein-RNA Interface Database (PRIDB), RPISeq achieved an AUC (Area
Under the Receiver Operating Characteristic (ROC) curve) of 0.96 and 0.92. On a third dataset containing only
mRNA-protein interactions, the performance of RPISeq was competitive with that of a published method that
requires information regarding many different features (e.g., mRNA half-life, GO annotations) of the putative RNA
and protein partners. In addition, RPISeq classifiers trained using the PRIDB data correctly predicted the majority
(57-99%) of non-coding RNA-protein interactions in NPInter-derived networks from E. coli, S. cerevisiae,
D. melanogaster, M. musculus, and H. sapiens.

Conclusions: Our experiments with RPISeq demonstrate that RNA-protein interactions can be reliably predicted
using only sequence-derived information. RPISeq offers an inexpensive method for computational construction of
RNA-protein interaction networks, and should provide useful insights into the function of non-coding RNAs. RPISeq
is freely available as a web-based server at http://pridb.gdcb.iastate.edu/RPISeq/.

Background
Most of the essential molecular functions of cells are gov-
erned by interactions of proteins with other proteins,
nucleic acids and small ligands. Computational studies of
protein interaction data have helped identify protein-pro-
tein interaction PPI networks in various organisms [1,2].
Similarly, studies on DNA-protein interactions have
allowed construction of transcription factor-gene regula-
tory networks [3,4]. In contrast, although several ribonu-
cleoprotein (RNP) complexes have been extensively

characterized (e.g., the ribosome, the spliceosome), post-
transcriptional regulatory networks that are mediated by
RNA-protein interactions (RPIs) are much less well studied
[5-9]. In addition to their roles in controlling gene expres-
sion at the post-transcriptional level, RPIs regulate numer-
ous fundamental biological processes, ranging from DNA
replication and transcription, to pathogen resistance, to
viral replication [10-13]. Recently, high-throughput experi-
ments have provided evidence for large numbers of RNA
binding proteins in cells, and are beginning to identify and
characterize pairs of RNAs and proteins that participate in
RPIs [14-19]. At present, however, our understanding of
RNA binding proteins lags far behind our knowledge of
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regulatory DNA binding proteins, such as transcription fac-
tors and replication factors.
Computational studies of RNA-protein interactions have

largely focused on the “interface prediction problem”, i.e.,
the problem of identifying the amino acid residues in a
protein that are likely to bind to an RNA [20-22]. Only a
few studies to date have focused on the “partner prediction
problem”, i.e., identification of specific RNA interaction
partner(s) for a known RNA binding protein, or protein
binding partner(s) for non-coding RNAs (ncRNAs).
Although large-scale experimental analyses of RPIs such
as RNAcompete [23], RIP-Chip [24], HITS-CLIP [25],
PAR-CLIP [8] are now providing valuable data about net-
works of RNA-protein interactions, these experiments are
expensive and time-consuming. Thus, there is a compel-
ling need for computational methods to accurately predict
RPIs and to construct RNA-protein interaction networks.
Given the limited number of structurally characterized
RNA-protein complexes available in the PDB [26] at pre-
sent (1,092 as of June 13, 2011) and the current availability
of only one database of ncRNA-protein interactions
(NPInter [27]), it would be especially valuable to develop
sequence-based methods that can be used to identify
potential RNA-protein partners in the absence of experi-
mental structural information regarding either partner.
Machine learning offers one of the most cost-effective

approaches to constructing predictive models in settings
where experimentally validated training data are available.
At present, however, it is unclear whether the available
experimental data regarding RNA-protein interactions are
sufficient for successfully training classifiers using machine
learning algorithms. Against this background, this study
explores machine learning approaches to train sequence-
based classifiers for predicting RPIs.

Results
As a first step towards computational construction of RPI
networks, we focused on the following question: Given the
sequence of an RNA-binding protein, can we predict
whether it interacts with a given RNA sequence? In devel-
oping sequence-based methods to answer this question,
we considered several reduced and alternative alphabet
representations of the input protein and RNA sequences.
Shen et al. [28] used a Conjoint Triad Feature (CTF)
representation to successfully predict protein-protein
interactions. The CTF representation essentially encodes
each protein sequence using the normalized 3-gram fre-
quency distribution extracted from a 7-letter reduced
alphabet representation of the protein sequence (See
Methods for details). A recent study [29] demonstrated the
utility of the CTF representation for predicting whether a
given protein is an RNA binding protein. Inspired by these
studies, we chose to encode each protein sequence using
the normalized k-gram frequency distributions extracted

from the 7-letter reduced alphabet representation of the
sequence. The choice of k = 3 yielded the best results. We
also explored several alternative representations of RNA
sequences and settled on encoding each RNA sequence
using normalized 4-gram frequencies extracted directly
from the 4-letter ribonucleotide alphabet representation of
the RNA sequence.
Our choice of Random Forest (RF) and Support Vector

Machine (SVM) classifiers was motivated by several stu-
dies that have successfully used them on classification
tasks that are closely related to the RPI prediction [30-33].
To rigorously evaluate the performance of these methods,
we generated two non-redundant benchmark datasets,
RPI2241 and RPI369, from PRIDB [34], a comprehensive
database of RNA-protein complexes extracted from the
PDB [26]. Most of the RNA-protein pairs in RPI2241 cor-
respond to RPIs involving rRNAs or ribosomal proteins;
the rest correspond to RPIs involving other ncRNAs or
mRNAs. RPI369 corresponds to RPIs extracted from non-
ribosomal complexes in RPI2241. “Negative” examples of
non-interacting RNA-protein pairs were generated by ran-
domly pairing proteins with RNAs and excluding the
known interacting pairs (see Methods for details).

RPISeq classifiers can reliably predict RNA-protein
interactions
We compared the performance of RPISeq-SVM and RPI-
Seq-RF classifiers to predict RPIs, using the benchmark
datasets described above. Table 1 summarizes the predic-
tion results obtained in 10-fold cross-validation experi-
ments. On the RPI2241 dataset, the prediction accuracy
was 89.6% (RF) and 87.1% (SVM); precision and recall for
both classifiers was greater than 87%. On the RPI369 data-
set, performance of both classifiers was considerably lower
with an average accuracy of only 76.2% (RF) and 72.8%
(SVM). Notably, values of the F-measure (weighted aver-
age of precision and recall) were greater than 0.70 for both
classifiers on both datasets. Thus, the performance of clas-
sifiers estimated using 10-fold cross-validation on the lar-
ger RPI2241 dataset, which includes ribosomal data, is
considerably better than that estimated using the RPI369
dataset, from which ribosomal data have been excluded.
We also performed leave-one-out cross validation for the

Table 1 Performance evaluation of RPISeq

Dataset Classifier Accuracy % Precision Recall F-measure

RPI2241 Random Forest 89.6 0.89 0.90 0.90

RPI2241 SVM 87.1 0.87 0.88 0.87

RPI369 Random Forest 76.2 0.75 0.78 0.77

RPI369 SVM 72.8 0.73 0.73 0.73

Results of 10-fold cross-validation experiments using RPI2241 and RPI369
datasets.

See Methods for definitions of performance measures.
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RF classifier. The results were not significantly different
from 10-fold cross-validation experiments.
The performance statistics reported in Table 1 were

obtained using classifiers designed to provide high predic-
tion accuracy. By varying the classification threshold value,
the prediction specificity can be increased at the expense
of a decrease in sensitivity. The corresponding trade-off
between true positive rate and false positive rate can be
seen from the receiver operating characteristic (ROC)
curve shown in Figure 1. Consistent with the results in
Table 1, ROC AUCs of 0.97 (RF) and 0.92 (SVM) were
obtained for predictions on the RPI2241 dataset, with
lower values of 0.85 (RF) and 0.81 (SVM) on the RPI369
dataset. For both classifiers, the AUC of ROC is signifi-
cantly greater than 0.50 (random), indicating the feasibility
of predicting RPIs using only sequence information from
the RNA and protein as input.

Comparison with other methods for predicting RNA-
protein interactions
Bellucci et al. [35] used a variety of physicochemical prop-
erties (e.g., hydrogen-bonding propensities, secondary
structure propensities) of proteins and RNAs to predict
the interaction propensities for individual residues in the
RNA and protein sequences of a potentially interacting

pair. Because the catRAPID server [http://tartaglialab.crg.
cat] does not directly report predictions as to whether or
not a specific RNA-protein pair is expected to interact
(the “partner prediction problem”), we were not able to
directly compare our results with their method [35].
Pancaldi and Bähler et al. [36] also employed RF and

SVM classifiers, but their method uses more than 100
different features of mRNA and proteins, extracted from
the literature or computed from the protein and RNA
sequences to make predictions. Examples of such features
include mRNA half-life, predicted protein secondary
structure, Gene Ontology annotation, relative abundance
of each amino acid, codon bias. Using a dataset of 5,166
positive mRNA-protein RPI partners derived from Hogan
et al. [10], and 5,166 randomly generated negative exam-
ples of mRNA-protein pairs, Pancaldi and Bähler
reported an average accuracy of 70% in 2-fold cross-vali-
dation tests using an RF classifier based on 500 trees, and
68% using an SVM classifier using an RBF kernel with
optimized parameters [36]. They also reported that 5-
fold and leave-one-out experiments gave comparable
results. We performed 10-fold cross-validation experi-
ments on the same dataset using RPISeq-RF, which uses
only sequence information. Our RF classifier achieved an
accuracy of 68%, based on 500 trees, results comparable

Figure 1 Performance of RPISeq classifiers in predicting RPIs. Receiver operating characteristic (ROC) curves for RPI predictions, illustrating
the trade-off between true positive rate and false positive rate for RPISeq-RF (random forest) and RPISeq-SVM (support vector machine) classifiers,
using two datasets, RPI2241 and RPI369. The area under the curve (AUC) of each ROC is shown next to the curve. The AUC for a perfect classifier
is 1, and for a random classifier = 0.5.
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to the 70% reported for the RF classifier of Pancaldi and
Bähler [36]. Our SVM classifier, using a normalized poly-
kernel, gave less accurate predictions (61%) than the
SVM of Pancaldi and Bähler (68%) [36].
In the Pancaldi and Bähler study, only 5,166 out of a

total of 13,243 positive mRNA-protein pairs were actu-
ally used for prediction, because some of the features
required by the classifiers were not available for the
remaining 8,000 pairs [36]. When we tested our method
using all 13,243 pairs for cross-validation, the prediction
accuracies increased to 78% for the RF and 65% for
SVM classifier. Taken together, our experiments indicate
that the sequence-based method proposed here and the
multiple feature-based method of Pancaldi and Bähler
have comparable performance in predicting mRNA-pro-
tein interactions. Further, our results suggest that
sequences of mRNAs and proteins carry sufficient infor-
mation to allow reasonable predictions regarding
whether or not a given mRNA and protein interact.
Because feature information required by the method of
Pancaldi and Bähler may not be available in many cases,
our proposed method complements theirs, and may be
more generally applicable for predicting ncRNA-protein
partners, in addition to mRNA-protein partners.

Predicting ncRNA-protein interaction networks
An important potential application of RPISeq is compu-
tational construction of RNA-protein interaction net-
works. Recently, Nacher and Araki [37] used RPIs from
the NPInter database [27], a database of non-coding
RNA-protein interactions, to construct non-coding
RNA-protein networks for several different model
organisms. Their study revealed significant similarities
between ncRNA-protein and transcription factor-gene
regulatory networks. To explore whether RPISeq could
be useful for constructing networks of ncRNA-protein
interactions, we evaluated our method in predicting
RPIs in networks derived from NPInter. Because the
NPInter RPI pairs do not include any pairs derived from
ribosomes, in this experiment, we also compared the
performance of models trained on the RPI369 (which
lacks ribosomal sequences) versus RPI2241, to evaluate

the potential effect of strong ribosomal sequence bias
on performance.
Tables 2 and 3 show the number of RPI pairs correctly

predicted for each organism. When trained on the
RPI2241 dataset (Table 2), the RF classifier correctly pre-
dicted ~ 80% (1,349 of 1,681 total interactions). The out-
put probabilities of RPISeq are estimates of interaction
propensities for a specific RNA-protein pair. In Tables 2
and 3, the probability threshold used for “positive” inter-
actions was 0.50. Among the 1,349 interactions predicted
by the RF classifier, only 119 were predicted with prob-
abilities ≥ 0.80, and another 1,230 interactions were pre-
dicted with probabilities in the range 0.50-0.80. The SVM
classifier generally had slightly lower performance, cor-
rectly predicting ~ 66% of the interactions.
In contrast, when trained on the RPI369 dataset, the

SVM classifiers out-performed the RF classifiers (Table 3).
Overall, the SVM classifier correctly predicted 1,402 (83%)
and the RF classifier correctly predicted 1,115 (66%) of the
interactions. Among the 1,402 interactions correctly pre-
dicted by SVM classifier, more than 850 interactions were
predicted with probabilities ≥ 0.80, and another 525 inter-
actions were predicted with probabilities in the range 0.50
to 0.80. For the RF classifier, only 50 interactions were
predicted with probabilities ≥ 0.80.
With regard to the effects of ribosomal sequence bias,

these results are somewhat difficult to interpret. The best
“overall” prediction performance was obtained using the
SVM classifier trained on the RPI369 dataset (which lacks
ribosomal sequences), with 83.4% interactions correctly
predicted; the RF classifier trained on the RPI2241 dataset
(which includes ribosomal sequences) correctly predicted
80.2% of the total interactions. Differences in performance
of classifiers trained on the two different datasets are sig-
nificant when predictions for each model organism are
considered individually. For example, for D. melanogaster,
substantially better predictions were obtained with an RF
classifier trained on the RPI2241 dataset (98.8%) versus an
RF classifier trained on the RPI369 dataset (46.9%). In con-
trast, for predicting human and mouse RNA-protein inter-
actions, SVM classifiers trained on the RPI369 dataset
(which excludes the ribosomal sequences) provide the best

Table 2 RPISeq predictions on NPInter dataset using RF and SVM classifiers trained on RPI2241

Organism Total RPI pairs Pairs predicted by RF (%) Pairs predicted by SVM (%)

H. sapiens 1189 888 (74.7) 681 (57.3)

S. cerevisiae 254 249 (98.0) 252 (99.2)

M. musculus 120 98 (81.7) 85 (70.8)

D. melanogaster 81 80 (98.8) 72 (88.9)

E. coli 37 34 (91.9) 25 (67.6)

Total 1681 1349 (80.2) 1115 (66.3)

RPISeq predictions on interactions derived from the NPInter database for five model organisms.
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prediction performance. For yeast RPIs, both the RF and
SVM classifiers trained on RPI2241 generated excellent
predictions, 98.0% and 99.2%, respectively, whereas classi-
fiers trained on RPI369 made more errors, with correct
predictions for 66.1% (RF) and 89.0% (SVM) of the cases.
Figure 2 shows the ncRNA-protein interaction network

from S. cerevisiae, based on the data in NPInter. In Figure
2A, RPISeq predictions obtained using classifiers trained
on the RPI2241 dataset are mapped onto the network. As
described above, the SVM classifier (right) makes more
correct predictions (green edges) and fewer incorrect pre-
dictions, i.e., false negatives, (red edges) than the RF classi-
fier (left). In Figure 2B, RPISeq predictions made using
classifiers trained on the RPI369 dataset, which results in
more errors, are shown.
One protein hub (highlighted in yellow), which

appears as a green square node with connections to sev-
eral RNA nodes (pink circles), is apparent in these views
of the network. It corresponds to the yeast SEN-1 heli-
case, which is known to interact with several snoRNAs
[38]. Several RNA hubs, represented by red circular
nodes, each connected to several green protein nodes,
are also apparent. One of these RNA hubs (highlighted
in purple), corresponds to snRNA u4560, which inter-
acts with various Sm-like proteins in the LSM complex
[39].
Figure 2C shows an enlarged view of these hubs,

extracted from Figure 2B. Edges are labelled with the
interaction probabilities predicted by each classifier.
Using classifiers trained on the RPI369 dataset, the RF
classifier made more errors (i.e., predicted a known inter-
action with probability < 0.5) than the SVM classifier in
both cases: for SEN-1 helicase, the RF classifier correctly
identified only 4 out of 8 known snoRNA interactions,
whereas the SVM classifier correctly identified 6 out of 8.
Similarly, of 8 proteins known to interact with snRNA
u4560 in yeast, the RF classifier identified 6, while the
SVM classifier correctly identified all 8 interaction part-
ners. Notably, as shown in Figure 2A, both RF and SVM
classifiers trained on the RPI2241 dataset correctly iden-
tified all 8 RNA interaction partners of the SEN-1 heli-
case, and both classifiers missed only 1 of 8 protein
interaction partners of the snRNA u4560.

Discussion
Regulation of gene expression at the post-transcriptional
level is often mediated by interactions between RNA
binding proteins and mRNAs or ncRNAs [5,11,40]. In
this work, we present a new method, RPISeq, for pre-
dicting RNA-protein interaction partners, using only
sequence information, with up to 90% average accuracy.
We also demonstrate, that RPISeq can effectively predict
RNA-protein interaction networks, based on evaluation
using available data from five model organisms.

Sequence-based prediction of RNA-protein interactions
While several computational methods for predicting net-
works of protein-protein interactions have been developed
[1,2], very few studies have focused on computational ana-
lysis or prediction of RNA-protein interactions [3,4]. One
of the major challenges in solving the “partner prediction
problem” for RNA-protein interactions is the limited
amount of experimental data currently available. Unlike
the “interface prediction problem,” for which detailed
structural information for more than 1,000 RNA-protein
complexes is available in the PDB, mRNA partners for
only a handful of RBPs are known [10]. Currently, two
basic types of information regarding RNA-protein interac-
tion partners are widely available: i) experimentally-deter-
mined structures of RNA-protein complexes, available in
primary resources such as the PDB [26] and NDB [41],
and secondary resources such as PRIDB [34] and BIPA
[42]; and ii) experimental data from in vivo or in vitro
cross-linking studies focused on individual proteins (e.g.,
SFRS1 [43], PUF [44]) or from high throughput RNA-
binding microarrays [23], stored in repositories such as
NPInter [27], CLIPZ [45] and RBPDB [46].
RPISeq requires only sequence information to generate

predictions. In the current version of RPISeq, the classifiers
were trained using only RPIs for which experimental struc-
tures are available. RPI2241 is a non-redundant training
dataset consisting of 2241 interacting RNA-protein pairs,
and includes a wide variety of different functional classes of
proteins and RNA (e.g., rRNA, tRNA, miRNA, mRNA).
rRNA-ribosomal protein pairs constitute ~ 40% of the
total, reflecting the predominance of ribosomal structures
in the current version of the PDB. To investigate the

Table 3 RPISeq predictions on NPInter dataset using RF and SVM classifiers trained on RPI369

Organism Total RPI pairs Pairs predicted by RF (%) Pairs predicted by SVM (%)

H. sapiens 1189 808 (68.0) 988 (83.1)

S. cerevisiae 254 168 (66.1) 226 (89.0)

M. musculus 120 81 (67.5) 111 (92.5)

D. melanogaster 81 38 (46.9) 53 (65.4)

E. coli 37 20 (54.0) 24 (64.9)

Total 1681 1115 (66.3) 1402 (83.4)

RPISeq predictions on interactions derived from the NPInter database for five model organisms.
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impact of this bias on machine learning methods for pre-
dicting RPIs, we also generated a smaller dataset of 369
RNA-protein partners (RPI369), from which all rRNA-con-
taining complexes had been removed (see Methods for
details).

We used RPI2241 and RPI369 as non-redundant
benchmark datasets for developing and rigorously evalu-
ating the performance of various machine learning clas-
sifiers. In cross-validation experiments, classifiers trained
and tested on the larger dataset had superior prediction

Figure 2 A. Predicted interactions using classifiers trained on the RPI2241 dataset. Among 254 known interactions, RPISeq-RF and RPISeq-
SVM classifiers correctly predicted all except 5 and 2 edges, respectively. A protein hub, highlighted in yellow, shows interactions of a helicase
(SEN1) with several snoRNAs. One of several RNA hubs, highlighted in purple, illustrates interactions of an snRNA (u4560) with various Sm-like
proteins in the LSM complex. B. Predicted interactions using classifiers trained on RPI369 dataset. Among 254 known interactions, RPISeq-
RF classifier correctly predicted 168 (66%) and RPISeq-SVM correctly predicted 226 (89%). A protein hub highlighted in yellow, shows interactions
of a helicase (SEN1) with 8 snoRNAs. One of several RNA hubs, highlighted in purple, illustrates interactions of an snRNA (u4560) with various
Sm-like proteins in the LSM complex. C. An enlarged view of the protein (SEN1) and RNA (snRNA) hubs described in B. above. Edges are
labelled with the interaction probabilities predicted by RPISeq-RF (left) and RPISeq-SVM (right) classifiers, providing estimates of the relative
pairwise interaction propensities.
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performance, indicating that the greater number and
diversity of complexes in RPI2241, relative to RPI369,
has a stronger positive effect on classification accuracy
than the potentially negative effect of sequence bias in
RPI2241. When we evaluated classifiers using indepen-
dent datasets of RPIs from NPInter, however, classifiers
trained on RPI369, in some cases, had better prediction
performance. The basis for this observation is currently
under investigation.
To identify sequence features of the proteins and RNA

important in determining their specific interactions, we
analyzed the features most frequently used by the Ran-
dom Forest classifier to predict interacting partners (see
Methods for details).
The four most often selected RNA tetrads were: AUUC,

AGUG, UUUU and UCAA. Notably, these tetrads were
found in the interfacial region in only 15% of the cases
examined. The most frequently selected conjoint triad in
protein sequences was {I, L, F, P}{A, G, V}{R, K}, which
represents twenty-four possible amino acid triplets (e.g.,
IAR, IAK, IGR, IGK...). The complete list of important
RNA and protein features is provided as Supplemental
data S1 (Additional file 1). Although additional experi-
ments and analyses of these features will be required to
extract precise “rules” that specify a particular RNA-pro-
tein interaction, our current analysis indicates that at least
50 features (a combination of RNA and protein features)
are required to accurately classify a given RNA-protein
pair as interacting or not.
In this study, RPISeq accurately predicted RPIs in both

cross-validation experiments using the benchmark datasets
and in experiments on independent datasets. This suggests
that normalized k-mer frequency distributions of RNA and
protein sequences (specifically, reduced alphabet represen-
tations of protein sequences) in combination with appro-
priate machine learning methods, provide an effective
approach to construct RPI predictors. Because the data
used in this study represent only a small fraction of cellu-
lar RNA-protein complexes and interactions, we anticipate
that more accurate predictions will be possible when lar-
ger and more diverse datasets of experimentally validated
RPIs become available.

Comparison with other available methods
The method of Pancaldi and Bähler [36], which was
developed to predict mRNA-protein interactions (rather
than ncRNA-protein interactions), also uses RF and SVM
classifiers, but requires a much more extensive set of fea-
tures regarding the mRNAs and proteins. Input for the
classifiers, which consists of a vector constructed by con-
catenating the features of potential RNA and protein
partners (e.g., isoelectric point of protein, protein locali-
zation, mRNA half-life), cannot be extracted or calcu-
lated from sequence information alone. This requirement

restricts the applicability of this method in practice:
Pancaldi and Bähler were not able to extract the neces-
sary features for a majority of interactions in their RPI
dataset. The RPISeq methods do not suffer from this lim-
itation because they require only sequence-derived
features to make reliable predictions. In fact, the perfor-
mance of RPISeq improved substantially (by 8% in accu-
racy) when evaluated on the entire dataset of Pancaldi
and Bähler. Thus, for predicting mRNA-protein interac-
tions, the sequence-based approach implemented in
RPISeq provides performance comparable to that of clas-
sifiers that require a more extensive set of features,
including those that cannot be extracted from RNA and
protein sequences alone.

Application of RPISeq to constructing RNA-protein
interaction networks
Encouraged by the success of RPISeq in predicting specific
RPIs, we examined its effectiveness in constructing RNA-
protein interaction networks in several model organisms,
using only information derived from RNA and protein
sequences. The networks were extracted from the “ncRNA
binds protein” category of NPInter [27], currently the only
available database of functional interactions of ncRNA
with proteins. RPISeq was able to successfully predict the
interactions of a single protein with multiple RNAs (pro-
tein hubs), as well as interactions of a single RNA with
multiple proteins (RNA hubs).
In the case of the yeast, S. cerevisiae, RPISeq provided

excellent predictions of RPIs: both the RF and SVM clas-
sifiers trained on the RPI2241 dataset correctly predicted
> 98% of interactions in the NPInter database [27]. The
RPISeq-RF classifier trained on the RPI2241 dataset also
correctly identified a large majority of interactions in the
D. melanogaster (99%) and E. coli (92%) networks. For
human and mouse networks, however, classifiers trained
on the RPI369 dataset gave better performance, with the
RPISeq-SVM classifier correctly identifying 83% of the
interactions in human and 93% in the mouse. It is impor-
tant to note that these evaluations are based on predict-
ing only known “positive” interactions currently available
in NPInter [27]; “negative” data regarding non-interacting
protein-RNA-protein pairs are not included in NPInter.
Because the experimental data in NPInter are incom-
plete, it is problematic to assume that RNA-protein pairs
not included in NPInter do not, in fact, interact. Also,
some experimentally-determined RPIs included in NPIn-
ter could correspond to false positives.
Given the relatively small sizes of the RNA-protein net-

works analyzed in this study, differences in the results
obtained using different classifiers to predict RPIs in differ-
ent species must be interpreted with caution. It will be
important to evaluate these methods on larger, more com-
plete datasets of experimentally validated RNA-protein
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interactions as they become available. On the whole, our
results suggest that RPISeq should be valuable for con-
structing and analyzing regulatory RNA-protein interac-
tion networks.

Conclusion
In this work, we tested whether RPISeq, a family of purely
sequence-based classifiers, can be used to predict whether
a specific RNA-protein pair is likely to interact. Our
results demonstrate that the corresponding RNA and pro-
tein sequences alone contain sufficient information to
allow reliable prediction of RPIs. Such predictions can be
used to: (i) identify putative RNA partners of a target pro-
tein, or protein partners of a target RNA; and (ii) compu-
tationally construct RNA-protein interaction networks.
The datasets used in this study are relatively small com-
pared with the large number of RNA-protein complexes
and diverse interactions that occur in cells. The increasing
availability of transcriptome-wide experimental data
should lead to improvements in computational methods
for predicting RNA-protein interactions and for modelling
regulatory networks of RNA-protein interactions. RPISeq
is freely available as a web-based server at http://pridb.
gdcb.iastate.edu/RPISeq/.

Methods
RPI benchmark datasets derived from structure-based
experimental data
For training and testing classifiers, two benchmark non-
redundant datasets of RNA-protein interacting pairs were
extracted from 943 protein-RNA complexes in PRIDB
using an 8 Å distance cut-off [34]. PRIDB is a database of
protein-RNA interfaces calculated from protein-RNA
complexes in the PDB [26]. The original 943 complexes
from PRIDB contained a total of 9,689 protein chains and
2,074 RNA chains; the final dataset RPI2241 (see below),
which contains a total of 952 protein chains and 443 RNA
chains, was derived from these complexes by applying the
following criteria. Redundant protein sequences (i.e., with
≥ 30% sequence identity) interacting with similar RNA
sequences (i.e., with ≥ 30% sequence identity) were dis-
carded. Also, redundant RNA sequences (i.e., with ≥ 30%
sequence identity) interacting with similar protein
sequences (i.e., with ≥ 30% sequence identity) were dis-
carded. Only proteins whose length is greater than 25 and
RNAs at least 15 nucleotides long were retained. This
resulted in a dataset of “positive” examples, RPI2241, con-
sisting of 2241 experimentally validated RNA-protein
pairs, and is provided as Supplemental data S2 (Additional
file 2).
To generate a balanced dataset of “non-interacting

RNA-protein pairs” (negative examples), we randomly
paired the RNAs and proteins from the 943 protein-RNA
complexes and removed similar interacting RNA-protein

pairs (a randomly generated pair A-B was discarded if
there exists a positive interaction pair C-B, and A and C
share ≥ 30% sequence identity). Because ~40% of RNA-
protein complexes in the PDB correspond to ribosomal
structures, the RPI2241 dataset is also strongly biased
towards ribosomal RPIs. Thus, we constructed a second
dataset, RPI369, which is a subset of RPI2241 generated
by removing all RPIs that contain ribosomal proteins or
ribosomal RNAs and is provided as Supplemental data S3
(Additional file 3). RPI369 contains only non-ribosomal
complexes (e.g., tRNA, mRNA, viral RNA, miRNA).

RPI datasets derived from non-structure-based
experimental data
For evaluation of our method on independent RPI data-
sets, we used two datasets of RPIs obtained from RNA
immunoaffinity purification and microarray experiments,
published by Hogan et al [10]. One dataset comprises
5,166 mRNA-protein interactions; this dataset was also
used in the study of Pancaldi and Bähler [36]. The second
dataset is larger, consisting of 13,243 RPIs, and including
all 5,166 interactions in the smaller dataset. Pancaldi and
Bähler were not able to evaluate their method on this lar-
ger dataset because of missing feature information for
RNAs and proteins involved in these interactions. Because
RPISeq uses only sequence information, we were able to
evaluate our method using all of the available data.
To test the ability of RPISeq to predict ncRNA-protein

interaction networks, we used the NPInter database http://
www.panrna.org/NPInter/, which includes eight different
categories of functional interactions between non-coding
RNAs, but excludes ribosomal RNAs and proteins. We
extracted only those interactions for which there is experi-
mental evidence for physical association of ncRNA with a
protein, i.e. the ‘ncRNA binds protein’ category.

Alternative representations of protein and RNA sequences
Each RNA-protein pair is represented as a 599-feature
vector, in which 343 features are used to encode the pro-
tein sequence and 256 features are used to encode the
RNA sequence. Proteins are encoded using the conjoint
triad feature (CTF) representation previously used by
Shen et al [28]. In this method, the 20 amino acids are
classified into 7 groups according to their dipole
moments and the volume of their side chains: {A, G, V},
{I, L, F, P}, {Y, M, T, S}, {H, N, Q, W}, {R, K}, {D, E}, {C}.
Each protein sequence is then encoded using the 7-letter
reduced alphabet. Each protein feature represents the
normalized frequency of the corresponding conjoint
triad, i.e., 3-mer in the 7-letter reduced alphabet repre-
sentation of the protein sequence. Thus, each protein
sequence is represented by a 343 (7 × 7 × 7) dimensional
vector, where each element of the vector corresponds to
the normalized frequency of the corresponding 3-mer in

Muppirala et al. BMC Bioinformatics 2011, 12:489
http://www.biomedcentral.com/1471-2105/12/489

Page 8 of 11

http://pridb.gdcb.iastate.edu/RPISeq/.
http://pridb.gdcb.iastate.edu/RPISeq/.
http://www.panrna.org/NPInter/
http://www.panrna.org/NPInter/


the sequence (see [28] for details). Based on results of
preliminary tests comparing the normalized k-mer fre-
quency representation of RNA sequences for different
values of k, we chose to encode RNA sequences using a 4
× 4 × 4 or 256-dimensional vector, in which each feature
represents the normalized frequency of the correspond-
ing 4-mer appearing in the RNA sequence (e.g., AAUG,
CGAU, GGCC)

Machine Learning Algorithms
The SVM classifier [47] classifies input samples repre-
sented in the form of n-dimensional vectors into two
classes using a hyperplane in a feature space. If the pat-
terns are not separable in the original n-dimensional input
space, a suitable non-linear kernel function is used to
implicitly map the patterns in the n-dimensional input
space into a typically higher (finite or even infinite) dimen-
sional kernel-induced feature space in which the patterns
become separable or nearly separable. Given a training set
consisting labeled examples of the form (Xi, yi) where Xi is
an n-dimensional input vector and yi = 0/1 is its label (i.e.,
the desired output of the SVM classifier for input Xi), the
SVM learning algorithm effectively selects the hyperplane
that maximizes the margin of separation between the
training samples of the two classes from among all separ-
ating hyperplanes. If the examples are not perfectly separ-
able in the kernel-induced feature space, a user-chosen
parameter C is used to trade off training error (the num-
ber of misclassified training examples) against margin for
the correctly classified training examples.
In our study, the input to the SVM classifier is a 599-

dimensional vector that encodes features of a given pair of
RNA and protein sequences as described above. The out-
put of the SVM is a binary label indicating whether the
given RNA-protein pair interact or not. We used the
Sequential Minimal Optimization SMO implementation in
Weka 3.7 [48] to train the SVM classifier. After some pre-
liminary experiments which showed that the normalized
polykernel performed better than RBF kernel on our data,
we chose the normalized polykernel function of order 2
with ε = 1.0E-12. We set C = 1.0 and tolerance parameter
T = 0.0010. We then used the option to fit a logistic
model to the output of the resulting SVM classifier to
obtain the posterior probability of class from the SVM
output for any given input.
RandomForest (RF) [49] is an ensemble of many classi-

fication trees. Each tree in the ensemble is trained on a
subset of training examples that are randomly sampled
from the given training set. At each node the best split is
chosen from a set of m variables selected at random from
the set of input features. Given a query instance, the
majority vote of all the classifiers is returned as the RF
prediction. We used the Random Forest implementation
in Weka 3.7. By default, Weka builds a RF classifier as an

ensemble of 10 trees and sets the value of m = log_2
(number of features) + 1. For most of our experiments,
we set the number of trees to 20 and 10 features were
evaluated at each node. For comparison with the method
of Pancaldi and Bähler [36], we set the number of trees
to 500.
For performing feature selection, we used AttributeSe-

lection class in Weka toolkit. We used wrapper subset
evaluator in combination with Random Forest classifier
and best first search method.

Performance Evaluation
Standard 10-fold cross-validation procedures were used
to evaluate and compare classifier performance on the
benchmark datasets. For the RF classifier, we also per-
formed leave-one-out cross-validation; results were not
significantly different from those obtained using 10-fold
cross-validation (data not shown).
We computed the following statistics, as described in

Baldi et al. [50], to measure the performance of the clas-
sifiers.

precision =
TP

TP + FP

Recall =
TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

F - Measure =
2× Precision× Recall

Precision + Recall

where TP is the number of true positives, FP is the
number of false positives, TN is the number of true
negatives, and FN is the number of false negatives.
The F-Measure is a composite indicator of perfor-

mance that attempts to “balance” precision and recall.
F-Measure values range from 0 to 1, with values close
to 1 indicating better performance. The area under the
curve (AUC) of the receiver operating characteristic
curve (ROC) was also computed. AUC values also range
from 0 to 1: the AUC = 1 for a perfect classifier and for
a random classifier = 0.5.

Additional material

Additional file 1: List of RNA and protein features important for
distinguishing interacting and non-interacting RNA-protein pairs
(S1).

Additional file 2: Positive RPIs in the RPI2241 dataset. This is a tab-
delimited file with two columns. The first column is a list of proteins and
the second column is a list of corresponding RNAs (S2).

Additional file 3: Positive RPIs in RPI369 dataset. This is a tab-
delimited file with two columns. The first column is a list of proteins and
the second column is a list of corresponding RNAs (S3).
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