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Abstract

Background: The OMIM database is a tool used daily by geneticists. Syndrome pages include a Clinical Synopsis
section containing a list of known phenotypes comprising a clinical syndrome. The phenotypes are in free text and
different phrases are often used to describe the same phenotype, the differences originating in spelling variations
or typing errors, varying sentence structures and terminological variants.
These variations hinder searching for syndromes or using the large amount of phenotypic information for research
purposes. In addition, negation forms also create false positives when searching the textual description of
phenotypes and induce noise in text mining applications.

Description: Our method allows efficient and complete search of OMIM phenotypes as well as improved data-
mining of the OMIM phenome. Applying natural language processing, each phrase is tagged with additional
semantic information using UMLS and MESH. Using a grammar based method, annotated phrases are clustered
into groups denoting similar phenotypes. These groups of synonymous expressions enable precise search, as query
terms can be matched with the many variations that appear in OMIM, while avoiding over-matching expressions
that include the query term in a negative context. On the basis of these clusters, we computed pair-wise similarity
among syndromes in OMIM. Using this new similarity measure, we identified 79,770 new connections between
syndromes, an average of 16 new connections per syndrome. Our project is Web-based and available at http://
fohs.bgu.ac.il/s2g/csiomim

Conclusions: The resulting enhanced search functionality provides clinicians with an efficient tool for diagnosis.
This search application is also used for finding similar syndromes for the candidate gene prioritization tool S2G.
The enhanced OMIM database we produced can be further used for bioinformatics purposes such as linking
phenotypes and genes based on syndrome similarities and the known genes in Morbidmap.

Background
Problem Description
Mendelian syndromes are monogenic hereditary dis-
eases, each manifesting as a combination of clinical
signs and symptoms (phenotypes). Syndromes can differ
from each other by as few as one or two phenotypes.
Not all patients display all of the known phenotypes,
even if they all have the same syndrome; for example,
for the Cystic Fibrosis syndrome, only 10% of the
patients display the “meconium ileus“ phenotype
[OMIM 219700]. Genetic Mendelian syndromes are spe-
cifically associated to a gene or group of genes.

The most important curated, comprehensive, reliable,
and updated source of information in human genetics is
the Online Mendelian Inheritance in Man (OMIM)
databank [1], which consists of some 17,000 detailed
entries on human genes and genetic disorders including
4,802 syndromes with a Clinical Synopsis section
(described below). This database is routinely used by
clinicians to diagnose patients and is also used widely
for data mining purposes [2-4].
Each OMIM entry contains free text descriptions of:

genetic loci, inheritance patterns, allelic variants, bio-
chemical and clinical features, and molecular and popu-
lation genetics. Most OMIM syndrome entries also
include a Clinical Synopsis (CS) section in structured
text that outlines signs and symptoms (phenotypic fea-
tures) accompanying the disease. The phenotypes are
presented within one or two levels of contextual infor-
mation: the first describing the heading or body system
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(such as “Head”, “Heme” or “Labs”) and an optional
subheading (for example “Eyes” may come under “Head
and Neck” and “Airways” comes under “Respiratory” in
[OMIM 272800]).
Two problems with searching and mining OMIM are

that the same phenotype can be described using very
different phrases and that negations are used widely to
indicate lack of a phenotype.
The similarity between two syndromes can be calcu-

lated using the number of shared phenotype phrases.
Regrettably, information in the CS sections is not repre-
sented in a uniform manner. No controlled vocabulary
is used for phenotype and location names. Typing errors
and synonyms for the same entity, as well as different
nomenclature for overlapping concepts, are observed in
large numbers: “trunk ataxia“ vs. “truncal ataxia“,
“hypoplastic radius“ vs. “hypoplastic radii“, “brachymeta-
carpalia“ vs. “brachymetacarpals“, “cystic renal dyspla-
sia“ vs. “renal dysplasia cystic“ vs. “renal cystic
dysplasia“ and many more.
Negation phrases are phenotype phrases describing

symptoms the patients do not have, therefore adding
mistakes to search results. For example, when searching
for “loss of vision“, we are not interested in retrieving
syndromes containing the description “no significant loss
of vision“. This further confounds calculating the simi-
larity between two syndromes since sharing a negation
phrase does not mean the syndromes are similar.

Previous Work
OMIM has already been used as a data source for data
mining in previous research. Freudenberg et al. [5]
manually processed syndrome data in OMIM and col-
lected 5 fields of information for each syndrome (episo-
dic, etiology, tissue, onset and inheritance). The
syndrome information was used to find similarity
between syndromes for prediction of gene involvement
in diseases. Their work was performed manually and the
results capture only limited aspects of the syndrome
descriptions.
In GFINDer [4], OMIM syndromes are used for

enrichment of gene lists obtained with microarray
experiments.
Cantor and Lussier [2] used phenotype headings for

clustering syndromes. Only the headings and sub-
headings were used due to the problematic nature of
the free-form clinical synopsis information in OMIM.
In this work, we address this limitation by analyzing
the free-form text of the phenotypes.
In 2006, Driel et al. [6] have created an algorithm for

automatically mapping the OMIM descriptions to
MESH (Medical Subject Headings) [7] terms. This map-
ping also aims at normalizing the free-form OMIM phe-
notype descriptions. The objective of this processing

was similar to ours: to discover connections between
phenotypes and syndromes. The MESH controlled voca-
bulary does not contain all the concepts appearing in
OMIM. As a result, this approach leads to significant
loss of data in OMIM, which has no MESH terms asso-
ciated with it, as well as some of the phenotype context.
Unified Medical Language System (UMLS) [8] is a lar-

ger medical language resource provided by the NLM. It
consists of a collection of medical vocabularies. UMLS
MetaMap [9] maps texts into UMLS concepts. Lage
et al. [3] used UMLS MetaMap [9] for mapping syn-
dromes to UMLS terms (instead of MESH). Their aim
was to use syndrome similarity in order to predict dis-
ease gene association.
This approach produces limited success, as many of

the associated syndromes found were simply variants of
the same syndrome (”Waardenburg syndrome type IIA“
and “Waardenburg syndrome type IIB“) or poor quality
association. For example, “Tuberous sclerosis (TS)“ and
“Chordoma“ were found as similar in their analysis. This
association is based on reports of both diseases found in
3 patients. This association was not described in the
Clinical Synopsis, as it is likely a random association
due to the relative large number of TS patients. Further
comparison to this work is not possible as the full
results of the OMIM analysis by Lage et al. [3] were not
published.
The methods of Driel et al. (2006) [6] and Lage et al.

(2007) [3] both ignore the context in which terms occur
in the OMIM entries and do not detect negative con-
texts around term entities (negation detection such as
NegEx [10]). Neither method provides a practical soft-
ware system for searching OMIM.
UMLS MetaMap performance in extracting biomedi-

cal terms was examined in a few articles. Pratt and
Yetisgen-Yildiz [11] compared MetaMap to three
human experts and found precision of 55% and recall of
93%. Chapman et al. [12] examined MetaMap in the
domain of respiratory findings in emergency department
reports and reported a precision of 56% and recall of
72% for clinical terms. Meystre and Haug [13] examined
results using MetaMap with all of UMLS or when defin-
ing a subset of UMLS relevant to 80 medical conditions
they were interested in. The default data set produced
precision of 76% percent and recall of 74% while the
customized subset produced similar precision (69%)
with an improved recall of 90%.
Another system for identifying UMLS terms in a

document is BioMedLEE by Lussier and Friedman [14],
with reported precision of 89% and recall of 77%. Unfor-
tunately BioMedLEE was not available for comparison
with our work.
Robinson et al. (2008) [15] manually created a data-

base of phenotypes and syndrome relations from
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OMIM, reported in 2010 [16] to contain more than
9,500 phenotype phrases built into ontology. Our
method is automatic and captures more phenotype
phrases (almost 3 times as many phrases) in a more
superficial manner (as manual clustering is more
precise).
S2G (Syndrome to Gene) [17], is a tool for finding

candidate genes for hereditary syndromes in suspect
loci. S2G is comprised of two parts: one for ranking
genes in a locus in comparison to a known gene causing
the syndrome, the other, for syndromes with no known
genes uses our search application for choosing a known
gene causing the most phenotypically similar syndrome.

Our Approach
Recognizing which phenotype phrases denote similar
phenotypes and recognizing negation phrases helps
searching (we can match the query term to all the varia-
tions under which it appears in the database) and pro-
vides critical input to further data-mining of the rich
information stored in OMIM.
Our objective in this work is to pre-process the nat-

ural language descriptions that appear in OMIM to
identify synonymous phrases denoting the same pheno-
type. For example, we want to identify that “unilateral
kidney agenesis“ and “unilateral renal agenesis“ both
denote the same phenotype. Once we have identified
such clusters of synonymous phrases, we can normalize
the natural language descriptions in OMIM: we can
recognize that two syndromes include the same pheno-
type even though their natural language descriptions are
different.
In our approach, we also attempt to use MetaMap and

the alignment it can generate between the raw OMIM
phrases and UMLS terms (as done by [3]). But this data
provides only partial categorization and we found it not
to be robust. We do not assume a priori that OMIM
terms will be found in an existing ontology or controlled
category (such as MESH or UMLS). In contrast, we
identify clusters of similar phrases (and combine several
clues to determine similarity). Our approach is close, in
terms of methodology, to the WordNet (a lexical data-
base for the English language) approach to thesaurus
construction: WordNet does not assume a priori that a
sense hierarchy exists. Instead, it identifies classes of
words that share a similar sense by grouping them in
the same class. These classes are called synsets. Simi-
larly, in our method, the clusters of similar phenotype
phrases emerge through the computation of pair-wise
similarity. We find in our experiment that this method
is more robust to the noisy data observed in a large cor-
pus such as OMIM, which evolves over a long period of
time and is maintained by a variety of experts. Precision
found in predicted synonymous phrase pairs was 93.5%

(500 pairs of phrases were sampled randomly from the
resulting phrase clusters and evaluated by a geneticist as
similar or non-similar). 10% of the phrases were recog-
nized as negations with a precision of 89% with most
false positive being ambiguous.
Using the discovered phenotype clusters, we have cre-

ated a Web application for searching OMIM, called
CSI-OMIM, which provides much more efficient search
than the original OMIM site. CSI-OMIM supports
incremental search in the following manner: the clini-
cian enters free text description for a phenotype. The
application displays a list of matching phenotype clus-
ters found by partial string matching to the query. The
user can select the best matching clusters and continue
searching for more phenotypes. At any time, the user
can also search for the most similar syndromes match-
ing the list of selected phenotype clusters.
CSI-OMIM obtains high recall in the search for pheno-

types, because it captures the wide variability found in the
OMIM free-text descriptions. It also has improved preci-
sion (with respect to the original OMIM search engine)
because it avoids retrieving phrases in negative contexts.
Finally, the matching from phenotype clusters to syn-
drome is highly effective, because it uses the reliable syn-
drome-similarity measure (cosine similarity over the all
the phenotypes) computed over the phenotype clusters.
In the rest of the paper, we present our method to

compute clusters of similar phenotype phrases from the
various OMIM free-text descriptions, using natural lan-
guage processing methods. We then present an evalua-
tion of the quality of the acquired phenotype clusters
and of the syndrome similarity measure induced from
the clusters of similar phenotype phrases.

Construction and content
Data Collection
To prepare our analysis, we extracted and formatted data
out of the OMIM database according to the following
method. All Clinical Synopsis (CS) entries of the syn-
dromes were used to build a database of syndrome phe-
notypes; the OMIM text data is obtained from the NCBI
site (see details in Additional File 1) and the system is
updated every three months using an automatic process.
The updated data, OMIM data used for the analysis in
this paper was obtain on October 13, 2010, is automati-
cally processed using the process described below (par-
sing using a Context Free Grammar and annotating
semantic types using MetaMap. We constructed manu-
ally the CFG grammar used to parse the text, but the par-
sing is performed automatically on each update).

Defining Phenotype Areas
The contextual information of a phrase (its heading
and sub-heading) is crucial for phenotype phrase
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comparison. Only phrases with similar context should
be compared to avoid false positive results.
The list of headings and sub- headings is not strictly

maintained in OMIM. The same heading appears in dif-
ferent syndromes under slightly different names. Pheno-
types can also appear directly below headings, without a
sub-heading refinement. This variability makes it diffi-
cult to systematically exploit the contextual information
provided by the heading/sub-heading classification.
To address this lack of consistency, we manually

defined 26 areas. We selected the areas to best describe
the large and overlapping number of domains and sub
domains. For example: the “Head and Neck” heading
includes both the “Head” and “Neck” domains. “Head
and Neck” and “Head” are both included in area 17 -
“Head”, area 16 - “Neck” includes “Neck” and “Head
and Neck”. Table 1 in the Results section shows the list
of areas we constructed.

Similarity Computation
Combining Cues to Compare Phrases
The task we now approach is the following: given a set
of phrases within a single area, how can we determine

the level of similarity between any two phrases. For
example, how do we recognize that “flaring of the iliac
wings“ and “flared iliac wing“ are similar, but “flared
metaphyses“ and “flared iliac wing“ are not.
The phrases observed in the OMIM dataset are all

noun phrases. On average, they include 3.9 words; with
a maximum of 64 words for the most complex phrase
(found in syndrome 255125 in OMIM). Syntactically,
the phrases exhibit structures such as Noun, Adjective
Noun, and a few Prepositional Phrases. Figure 1 illus-
trates the distribution of the length of the Noun Phrases
observed in the OMIM Clinical Synopses. Most of the
phrases (80% out of 67,470 phrases) include between 2
and 6 words (see Figure 1).
Our intuition when comparing noun phrases is to com-

bine several sources of knowledge about the phrases to
decide on their similarity. First, because the vocabulary
used in OMIM is complex and not fully consistent (spel-
ling variations and usage of synonyms are both common),
we attempt to align each word with a known controlled
vocabulary (we use UMLS and MetaMap). Second,
because phrases exhibit complex syntactic structures (2 to
6 words), we attempt to parse the phrases into trees with

Table 1 Areas of phenotypes identified

Area Name Area# #Distinct phrases #Clusters identified Avg Similar Phrases Cluster Size % Phrases clustered in area

Syndrome names 1 4,801 278 3.45 19.9

Abdomen/gi 2 707 33 2.3 10.1

Respiratory 3 546 39 2.17 15.6

Gu/renal 4 985 44 2.25 10.0

Gu/genitalia 5 975 44 2.25 10.0

Cardiovascular 6 808 38 2.13 10.0

Muscle 7 1143 68 2.98 17.8

Endo 8 344 16 2.25 10.4

Neuro 9 4.721 247 2.68 14.0

Oncology 10 891 21 2.62 6.17

Heme 11 576 16 2.75 7.6

Immune 12 542 19 2.05 7.2

Eyes 13 2,265 152 2.5 16.8

Face 14 3,927 283 2.56 18.4

Teeth 15 3,542 258 2.48 18.1

Neck 16 3,490 252 2.49 17.9

Head 17 4,196 281 2.51 16.8

Limb 18 4,522 283 3.15 19.7

Skel 19 3,936 247 3.02 18.9

Chest 20 4,307 273 3.03 19.2

Growth 21 497 37 4.24 31.6

Nails 22 1,617 106 2.41 15.8

Skin 23 2,098 140 2.42 16.2

Hair 24 1,701 116 2.41 16.5

Lab 25 3,553 106 2.9 8.6

Misc 26 4,021 Was not clustered
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explicit modification relations. Third, because there can be
slight spelling variations in the phrases, we also use a sim-
ple edit-distance metrics to compare words.
In the rest of this section, we first describe each of the

components of our analysis: alignment of words with
UMLS concepts; parsing; and edit-distance computation
as well as detection of negations. We then describe the
method used to combine these elements into a similarity
computation for any pair of phrases.
Mapping Phrases to UMLS
UMLS terms can be used to describe a large proportion
of the words or entities in the phenotype phrases. A term
may be a pathology name like “obesity“, a modifier such
as “mild“, an anatomy location such as “wrist“ or a multi-
ple word entity like “talipes equinovarus“. When we find
them, UMLS terms help us recognize multiple word enti-
ties and classify terms and words into categories such as
pathology, modifier, anatomy or named entity.
We used MetaMap Transfer [9] (version 2.4 with 2006

AA UMLS version using the default parameters) to
annotate all the phrases found in the OMIM Clinical
Synopsis with UMLS information (we use default set-
tings, this stage is automatic and takes about 12 hours
per update). MetaMap produces UMLS annotations and
performs two major tasks:
1. It identifies multi-word expressions as single terms.

For example “congenital abnormality“ is tagged as a sin-
gle token.
2. It classifies each term according to the UMLS con-

trolled vocabulary.

For example, “strokes due to coagulopathy“ is
mapped to “Strokes [CUI 0038454/Disease or Syn-
drome] and Coagulopathy [CUI 0005779/Disease or
Syndrome]”.

Not all term classifications computed by MetaMap are
correct. Previous work indicates precision as low as 0.69

[12] or 0.56 [13] if no precaution is taken. For example,
“adams stokes attacks“ is mapped to “adams“ in cate-
gory: “Health Care Related Organization“; in “functional
defects in the cortical and subcortical motor related
areas of the frontal lobe“, “cortical“ is mapped to “BARK
(ADRBK1 gene)“ in category “Gene or Genome“. Such
associations would introduce too much noise in our
phrase similarity computation.
Low precision stems from the very large number of

different terms in UMLS and the variety of vocabularies
combined in UMLS (over 30 distinct vocabularies are
merged in the free version of UMLS).
In many applications, the precision of MetaMap is

improved by focusing on a subset of the UMLS terms,
and defining smaller collections of terms in specific
domains within UMLS.
As OMIM phenotypes are extremely varied and cover

all domains, such an approach would miss too many of
the candidate UMLS concepts. Instead, we rely on
UMLS Semantic Categories (such as “Congenital
Abnormalities”) to filter UMLS concepts returned by
MetaMap. We manually defined a set of non-noisy
UMLS Semantic Types and keep only concepts that
belong to those types in the result of MetaMap. For
example, terms that belong to the “Fish”,"Bird”,"Organi-
zation” semantic types in UMLS are ignored. Those that
belong to the categories shown in Table 1 at Additional
File 1 are kept.
In our application, we exploit the MetaMap UMLS

annotations in terms of “rough semantic” categories. We
manually mapped UMLS Semantic Types into groups
according to the functional role of the terms in the phe-
notype descriptions. This reclassification of UMLS con-
cepts into new semantic groups has been suggested by
Fan and Friedman [18]. We divided the concepts into 4
semantic roles relevant for OMIM phenotype phrases
using the existing semantic classifications of UMLS. The
semantic roles we created attempt to describe the phe-
notype structure and include the following 4 categories:
pathology, anatomy, named entities and modifiers (See
Table 2).
We also use UMLS tagging to reduce the syntactic

complexity by recognizing multi-word expressions. We
present quantitative evaluation of this simplification in
the Results section.
Both the chunking of multiple words into single

tokens and their semantic categorization help build a
relevant grammar for parsing the phrases in a robust
manner.
Parsing
The syntactic structure of the phrases is critical to
decide on their similarity.
Consider the task of comparing these two phrases:

“fifth finger single interphalangeal crease“ and “single

Figure 1 Distribution of phrase instances by number of words.
Distribution of length of Noun Phrases in OMIM Clinical Synopsis.

Cohen et al. BMC Bioinformatics 2011, 12:65
http://www.biomedcentral.com/1471-2105/12/65

Page 5 of 10



flexion crease of fifth fingers“. The sub-phrase “fifth fin-
ger“ appears at the beginning of the first and at the end
of the second - the edit distance between the two strings
would therefore be quite high. However, knowledge of
the syntactic structure (NN NN vs. NN of NN) and
knowledge that the phrase “fifth finger“ is identified as a
single token of type “Anatomy” can help us compute a
more precise similarity between the two phrases.
Because the syntactic structure of phrases in OMIM

can be complex (on average 3.9 words with many phrases
containing more than 6 words), our approach is to try to
parse these expressions, and then compare the parse
trees, while taking into account the modification relations
that exist between the elements of the phrases. As is well
known in natural language processing, parsing noun
phrases can be complex because the structure of the
noun phrase can be ambiguous. For example, “altered
melatonin secretion“ may be parsed as (”altered melato-
nin“ + “secretion“) or (”altered“ + “melatonin secretion“).
Consider the following group of phrases found in

OMIM:

• ossification defect of skull
• absent ossification of skull vault
• decreased skull ossification
• deficient skull ossification

Our algorithm concluded they all belong to the same
cluster of similar phenotype phrases. Wrong parsing of
the phrases could have prevented this clustering. For
example: (deficient skull ossification) parsed as (deficient
skull) (ossification) would not have been similar to (ossi-
fication defect) (of skull).
In order to parse Noun Phrases, we must decide on a

grammar and a set of categories that annotate words and
groups of words within phrases. We use regular parts of
speech (verb, adjective, noun, etc) and, in addition to tra-
ditional grammar, we introduce as well the UMLS classi-
fication of terms into the 4 categories described above:
pathology, anatomy, named entity and modifier. If a
word or a term is classified by UMLS, we keep its UMLS
tag; else we use the parts of speech tagged by a standard

parts of speech tagger (we used the LingPipe [19] tagger
trained on the Genia corpus [20]).
We then manually constructed a Context Free Gram-

mar (CFG) that captures the structure of the phenotype
description in the OMIM Clinical Synopsis. The leaves
of the parse trees are tokens annotated either by UMLS
categories (pathology, anatomy, named entity or modi-
fier) or by parts of speech tags (conjunction, adverb,
etc). Note that as discussed above, the tokens annotated
by UMLS can cover multiple words.
We create the tree using the method of chart parsing,

gradually building the parse tree by combining simpler
parts of the tree together based on the CFG starting
from the labels over the phrase in a bottom-up manner
(for more information see [21,22]). We used the Chart
parser code from AIMA [22]. Phrases longer than 11
words (1,438 such phrases were found out of 68 K)
were not parsed as the parser may not finish parsing in
a satisfactory time; these phrases are still compared to
other phrases using edit distance (computed with
dynamic programming) and still affect the similarity
measure of the syndromes containing them.

Negation Detection
Phrases that include negation are not incorporated in
any cluster and are not used for computing similarity
among syndromes. For example, “no significant loss of
vision” is not clustered together with “loss of vision”,
even though they are syntactically similar. Negation is
discovered using regular expressions in the same spirit
as NegEx [10]. We extend this approach by relying on
the structure of the parse tree using the following rules:

1. Phrases with the word “normal“ appearing any-
where (not as part of another word such as “abnor-
mal“) are marked as negations. (This is implemented
as a regular expression test.)
2. Phrases where the word “no“ appears are marked
as negations only if they contain a “Pathology” node
in their parse tree (in order to remove sentences
describing absent functions or body parts). For
example, “no dysarthria” is marked as a negation,

Table 2 Rough Semantic Categories

Rough Semantic
Category

Description Examples

Pathology or Finding Names and symptoms of diseases “Perthes”, “Hexadactyly”, “Diffuse atrophy” or “Short
finger”

Named entities Names of chemicals, functions, microorganisms or proteins “Actin”, “Tyrosine”, “Insulin” or “Agglutination”.

Anatomy The body part or organ the phenotypes occurs in. “Cranium bifidum”, “Thumb”, or “Distal femur”

Modifiers Concepts describing the phenotype and changing its
meaning.

“Absent”, “Hypoplastic”, “Mild”, “Enlarged”
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because “dysarthria” is a pathology but “no natal
teeth“ is not marked as a negation.

Clustering of Similar Phenotype Phrases
We compared all pairs of phrases within each area.
Altogether, we performed about 77 Million pairwise
phrases comparisons (this stage takes about 24 hours
using one 3.0 GHZ CPU and is executed each time we
update the data from OMIM). We define a set of rules
to decide on the similarity of 2 parsed phrases:
Successfully parsed phrases (based on our context free

grammar described above) are similar if they share
synonymous Pathology/Named Entities and Anatomy
node terms and are modified by synonymous modifiers.
Nodes annotated by MetaMap are compared by com-
paring their UMLS tag (CUI). Nodes that are not anno-
tated by MetaMap are compared as case-insensitive
string comparison. This comparison relies on the parse
tree to determine which parts should be compared (for
example: nodes annotated in both trees as “Modifiers”
would be compared to each other when comparing the
“Pathology” they modify. Both phrases must have a simi-
lar “Pathology” node for the rest of the nodes to be
compared). Phrases without a parse tree were compared
using string distance (allowing maximum distance of 2).

Results
Our objectives are: create cluster of similar phenotype
phrase and identify negation phrases. In this section we
evaluate each of the steps in our method: (1) classifica-
tion of phenotype phrases into areas; (2) MetaMap tag-
ging of the phenotype phrases; (3) parts of speech
tagging of the phrases; (4) parsing of the phrases accord-
ing to our CFG grammar; (5) negation detection; and
(6) clustering of the phrases.

Distribution of phenotype phrases into areas
Our method identifies clusters of similar phenotype
phrases (i.e., phrases have similar meaning) within each
area. We originally found 159 distinct headings and sub-
headings in the Clinical Synopsis sections in OMIM. We
mapped every phenotype phrase to one or more of the
26 areas on the basis of its heading/sub-heading location
in OMIM, syndrome names were gathered in a dedi-
cated area (see Table 2 of the Additional File 1).
Area 26, “Misc”, is not used further in clustering

experiments. Phrases in this area include: “variable phe-
notype” or “reduced penetrance“.
This manual classification improved overall the consis-

tency of the rough classification of phenotypes. The
granularity we obtain with 25 areas allows us to signifi-
cantly reduce the complexity of the task of finding syno-
nym phrases: we avoid false positive matches by only
comparing phrases within the same area. In addition,

the consistent classification in areas improves the preci-
sion of UMLS mapping, as has been discussed in the
past by Chapman et al. [12].

MetaMap Performance
In the dataset of all Clinical Synopsis phrases in the
clustered areas (31,778 distinct phrases out of 67,470
phrases extracted from OMIM.txt), Meta Map tagged
78% of the word tokens and identified on average 1.9
concepts (CUIs) per phrase. MetaMap tagged 41,566
concept instances in the dataset covering 104,673
words. Many of the identified concepts include more
than one word (33,591 concept instances of more than
one word were identified). The grouping of words into
multi-word tokens by MetaMap significantly reduces
the syntactic complexity of the phrases: before the
MetaMap treatment, phrases have an average length of
3.86 tokens (standard deviation of 2.02); after the Meta-
Map tagging, phrases have an average length of 2.48
tokens (with standard deviation of 1.4). For example:
“bowed radius“, “bowing of the radius“, “bowing of
radius“ and “bowed radii“ are all changed to “bowing
radius“.
We did not measure explicitly the precision of the

MetaMap annotations after filtering according to UMLS
Semantic Types.

Parsing Results
The parse trees we obtained have an average height of
3.75 and size of 5.3 nodes on average. The parser found
an acceptable parse tree (i.e., one matching our gram-
mar) in about 90% of the phrases. The percentage of
phrases parsed successfully varies between the different
areas (84% - 93%). In one area (25 - lab) parsing
encountered problems due to the different structure of
the phrases which includes many prepositions in the
same sentence and a large number of named entities.
Figure 2 shows example parse trees that demonstrate
the multi-word tokens tagged by MetaMap.

Negation Detection Results
860 distinct phrases were identified as negation phrases
(3.2% of the phrases in the applied areas: 2 - 25). Preci-
sion (the fraction of correctly identified negations out of
all identified negations), measured by manual inspection
of 10% of the negation phrases (chosen randomly and
tagged manually as negated or not-negated), was 89%
with most false positive phrases being ambiguous for
human readers as well (”low to normal IQ“, “plasma tes-
tosterone is normal or increased“). Measuring the recall
(number of negation phrases identified/number of nega-
tion phrases in the database), in the absence of a well
annotated examples set, is too difficult.
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When searching OMIM using our website, negation
phrases are marked by italics. These phrases are also not
included in the similar phrase clusters (”loss of vision“ is
not grouped with “no significant loss of vision“ even though
both contain the phenotype “loss of vision“) see Figure 3.

Clustering of Similar Phenotype Phrases Results
Our algorithm groups similar phrases into clusters
that are recognized as synonyms (see Figure 4). We

obtained altogether 1,680 clusters of similar phenotype
phrases covering 4,551 distinct phrases with on aver-
age 2.7 phrases per clusters of similar phenotype
phrases.
Clusters of similar phenotype phrases cover 13,009

phrase instances (about 20% of the overall phrase
instances in the clustered areas). The distribution of
clusters per area that we eventually obtained is shown
in Table 1.

(a)”brainstem hypoplasia”

NP

PathologyNP

AnatomyPhrase

Anatomy

brainstem

PathologyPhrase

Pathology

hypoplasia

(b)”mri shows brainstem hypoplasia”

NP

ModifierNP

ModifierNP

NN

mri

ModifierNP

NN

shows

PathologyNP

AnatomyPhrase

Anatomy

brainstem

PathologyPhrase

Pathology

hypoplasia

(c)”hypoplasia of the brainstem”

NP

PathologyNP

PathologyPhrase

Pathology

hypoplasia

AnatomyPhrase

Anatomy

brainstem

Figure 2 Parsing result. a) The phrase “brainstem hypoplasia” parsed. The token “brainstem” was recognized by MetaMap as UMLS term (CUI
C0006121) of semantic type “Body Part, Organ, or Organ Component” and the token “hypoplasia” was identified as CUI C0243069 of semantic
type “Pathologic Function”. b) Parse tree of the phrase “mri shows brainstem hypoplasia”, same concepts were recognized as in (a), “mri” is
marked as a noun and “shows” is marked as a noun as well since we view the phrases as noun phrases without verbs. c) Parse tree of the
phrase “hypoplasia of the brainstem”, the entire phrase is reduced by MetaMap to the two concepts identified in (a), only in reversed order.
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For example: “hyperreflexia in the lower limbs“ is clus-
tered with “hyperreflexia especially of the lower limbs“,
for two reasons: a) in the parse tree of both the “Pathol-
ogy” node is similar b) both nodes are connected to a
similar “Anatomy” node.
In Figure 2 we see 3 phrases which are clustered

together due to an identical PathlogyNounPhrase sub-
tree in the parse tree of phrases (a) and (b), and a Path-
logyNounPhrase sub-tree with identical Pathology and
Anatomy between (c) and (a).
Precision found in predicted synonymous phrase pairs

was 93.5% (one thousand pairs of phrases were sampled
randomly from the resulting phrase clusters and evalu-
ated by a geneticist as similar or non-similar). Recall
was not measured due to the complexity of the problem
and lack of an expert annotated corpus.
The clusters obtained through our method are used in

two ways: when a user enters a term that is recognized
as a member of a cluster, the system searches for all
variants of the term as well. For example, if the user
searched for “thickened cranium“, results that include
“thickened skull vault“ and “thickened cranial vault“ will
also be retrieved.
We measure the quality of the acquired clusters by

measuring the improvement they bring to a data mining
application. We want to compute a similarity measure
between syndromes. To this end, we compare the Clini-
cal Synopsis section of the syndromes, after they have

been parsed and normalized - that is, all occurrences of
phrases that belongs to the same cluster, are replaced by
the same term. For example, the syndrome “CUTIS
MARMORATA TELANGIECTATICA CONGENITA”
(OMIM 219250) is normalized “bowed legs“ replaced by
the cluster: “bowing of the legs; bowed legs; bowing of
legs“. We then compute the cosine distance of the nor-
malized syndromes and compare the results when com-
puting the cosine distance without normalization.
Cluster normalization increased the number of similar

phenotypes among syndromes:
79,770 new connections between syndromes were dis-

covered among 4,802 syndromes, adding 16 new con-
nections (shared pehnotypes) per syndrome on average.
For example: the aforementioned syndrome 219250 is
now connected to “BOWING OF LEGS, ANTERIOR,
WITH DWARFISM” (OMIM 112350) through the phe-
notype “bowing of the legs“ due to the aforementioned
cluster.

Conclusions
Our work focused on pre-processing the textual compo-
nent of the OMIM dataset using Natural Language Pro-
cessing methods, and produced clusters of similar
phenotype descriptions. These similar clusters allow us
to propose an enhanced search system of the OMIM
database and to perform effective data-mining on the
OMIM textual descriptions and discover similarities
among syndromes.
Our work unifies parts of the methods used by Lage

et al. [3] and Van Driel et al. [6] and improves the pre-
cision of the results by dividing Clinical Synopsis
phrases into areas and using MetaMap to get both
UMLS and MESH information. We provide a robust
application capable of being updated regularly and offer-
ing a wealth of organized phenotypic data of OMIM
syndromes.
Precision found in predicted synonymous phrase pairs

was 93.5%. 3.2% of the phrases were recognized as nega-
tions with a precision of 89%. We identified 79,770 new
connections between syndromes - on average 16 new
connections per syndrome.
Using the new curated database, we provide an online

search application for clinicians with improved search
accuracy. The improved data is used to find similarity
between syndromes in order to find candidate genes for
hereditary syndromes as part of the S2G application
[17]. The enhanced OMIM database we produced can
be further used for bioinformatics purposes as a basis
for identifying connections between syndromes. Another
product of our work is an accurate connection of syn-
dromes’ phenotypes to the UMLS and MeSH, this can
be applied further in the development of literature

Figure 3 CSI-OMIM: Negation detection. Negations are marked
with italics and are ignored in the clustering process.

Figure 4 CSI-OMIM: Clusters of similar phrases. Clusters of
similar phrases results of “white matter abnormalities” search.
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mining tools and search applications. The database is
available in our website (in the FAQ section).
Our system contains over to 31 thousand phenotype

phrases in comparison to 9,500 in the Human Pheno-
type Ontology (HPO) [15,16]. Our method may be used
as a way to augment HPO by suggesting synonyms or
improve syndrome comparison by including terms
which are not yet in the vocabulary but exist in OMIM.
Another aspect of our work is the principle of detect-

ing similarity between phenotype descriptions that can
be applied to vocabularies using the semantic roles we
defined as anchors for comparison. These rough seman-
tic categories (Pathology or finding, Anatomy or body
area, Modifiers and named entities, see Table 2.) can
assist in detecting similarity of concepts by identifying
important cues in the phrases: pathologies and anatomy
region and named entities (in this order), and then com-
paring the modifiers. This distinction can enhance both
statistical driven methods for similarity computation by
measuring co-occurrence in documents and construc-
tion and improvement of manually built ontologies such
as HPO.
Our pre-processing allows finding similarity between

syndromes based on different measures of the descrip-
tions using the rough semantic categories. For example
similarity can be calculated based only on anatomical
location terms or only pathology terms. Syndrome simi-
larity can also be calculated using only a subset of the
anatomical areas such as: similarity based only on the
“Hair”, “Nails” and “Skin” areas.

Additional material

Additional file 1: Supplementary Material. Details of data acquisition,
UMLS division into rough semantic categories and division of heading/
sub-headings into areas.

Acknowledgements
The authors deeply thank the Morris Kahn Family Foundation for making
this study possible.

Author details
1The Morris Kahn Laboratory of Human Genetics, National Institute for
Biotechnology in the Negev (NIBN), Ben-Gurion University, Beer-Sheva, Israel.
2Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel.

Authors’ contributions
RC and AG contributed to the design of the study equally. RC carried out
the design of the comparison algorithm the implementation and drafting
the article. ME contributed in evaluating the results and drafting the article.
OB coordinated the study and helped draft the manuscript. All authors read
and approved the final manuscript.

Received: 13 June 2010 Accepted: 1 March 2011
Published: 1 March 2011

References
1. McKusick VA: Mendelian Inheritance in Man and its online version,

OMIM. Elsevier 2007, 80:588-604.
2. Cantor MN, Lussier YA: Mining OMIM™ for Insight into Complex Diseases.

Ios Pr Inc 2004, 753.
3. Lage K, Karlberg EO, Storling ZM, lason P, Pedersen AG, Rigina O,

Hinsby AM, Tumer Z, Pociot F, Tommerup N: A human phenome-
interactome network of protein complexes implicated in genetic
disorders. Nature Biotechnology 2007, 25:309-316.

4. Masseroli M, Galati O, Pinciroli F: GFINDer: genetic disease and phenotype
location statistical analysis and mining of dynamically annotated gene
lists. Nucleic Acids Research 2005, 33:W717-W723.

5. Freudenberg J, Propping P: A similarity-based method for genome-wide
prediction of disease-relevant human genes. Oxford Univ Press 2002,
18:110-115.

6. Van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JA: A text-
mining analysis of the human phenome. European journal of human
genetics 2006, 14(5):535-542.

7. Lipscomb CE: Medical Subject Headings (MeSH). Bull Med Libr Assoc 2000,
88(3):265-266.

8. Bodenreider O: The Unified Medical Language System (UMLS):
integrating biomedical terminology. Nucleic Acids Research 2004, 32:
D267-D270.

9. Aronson A: Effective mapping of biomedical text to the UMLS
Metathesaurus: the MetaMap program. Proc AMIA Symp 2001, 17-21.

10. Chapman WW, Bridewell W, Hanbury P, Cooper GF, Buchanan BG: A simple
algorithm for identifying negated findings and diseases in discharge
summaries. Journal of biomedical informatics 2001, 34(5):301-310.

11. Pratt W, Yetisgen-Yildiz M: A Study of Biomedical Concept Identification:
MetaMap vs. People. AMIA 2003, 529-533.

12. Chapman WW, Fiszmanb M, Dowlinga JN, Chapmanc BE, Rindflesch TC:
Identifying Respiratory Findings in Emergency Department Reports for
Biosurveillance using MetaMap. Medinfo 2004, 11:487-91.

13. Meystre S, Haug PJ: Evaluation of medical problem extraction from
electronic clinical documents using MetaMap Transfer (MMTx). Studies in
health technology and informatics 2005, 116-823.

14. Lussier Y, Friedman C: BiomedLEE: a natural-language processor for
extracting and representing phenotypes, underlying molecular
mechanisms and their relationships. ISMB 2007.

15. Robinson PN, Kohler S, Bauer S, Seelow D, Horn D, Mundlos S: The Human
Phenotype Ontology: A Tool for Annotating and Analyzing Human
Hereditary Disease. AJHG 2008, 83(5):610-615.

16. Robinson PN, Mundlos S: The Human Phenotype Ontology. Clin Genet
2010, 77:525-534.

17. Gefen A, Cohen R, Birk OS: Syndrome to Gene (S2G): in-silico
identification of candidate genes for human diseases. Human Mutation
2010, 31(3):229-36.

18. Fan JW, Friedman C: Semantic reclassification of the UMLS concepts.
Bioinformatics 2008, 24(17):1971-1973.

19. Baldwin B, Carpenter B: LingPipe. [Http://aliasi.com/lingpipe].
20. Kim J, Ohta T, Tateisi Y, Tsujii J: GENIA corpus-a semantically annotated

corpus for bio-textmining. Bioinformatics-Oxford 2003, 19(1):180-182.
21. Caraballo SA, Charniak E: New figures of merit for the best-first

probabilistic chart parsing. Computational Linguistics 1998, 24(2):275-298.
22. Russell S, Norvig P: Artificial intelligence: a modern approach. Prentice

Hall, Englewood Cliffs, NJ; 1995.

doi:10.1186/1471-2105-12-65
Cite this article as: Cohen et al.: CSI-OMIM - Clinical Synopsis Search in
OMIM. BMC Bioinformatics 2011 12:65.

Cohen et al. BMC Bioinformatics 2011, 12:65
http://www.biomedcentral.com/1471-2105/12/65

Page 10 of 10

http://www.biomedcentral.com/content/supplementary/1471-2105-12-65-S1.DOC
http://www.ncbi.nlm.nih.gov/pubmed/17344885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17344885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17344885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16493445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16493445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10928714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11825149?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11825149?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12123149?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12123149?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12123149?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20412080?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20052752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20052752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18625612?dopt=Abstract
Http://aliasi.com/lingpipe

	Abstract
	Background
	Description
	Conclusions

	Background
	Problem Description
	Previous Work
	Our Approach

	Construction and content
	Data Collection
	Defining Phenotype Areas
	Similarity Computation
	Combining Cues to Compare Phrases
	Mapping Phrases to UMLS
	Parsing

	Negation Detection
	Clustering of Similar Phenotype Phrases


	Results
	Distribution of phenotype phrases into areas
	MetaMap Performance
	Parsing Results
	Negation Detection Results
	Clustering of Similar Phenotype Phrases Results

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	References

