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Abstract

Background: Relative isotope abundance quantification, which can be used for peptide identification and
differential peptide quantification, plays an important role in liquid chromatography-mass spectrometry (LC-MS)-
based proteomics. However, several major issues exist in the relative isotopic quantification of peptides on time-of-
flight (TOF) instruments: LC peak boundary detection, thermal noise suppression, interference removal and mass
drift correction. We propose to use the Maximum Ratio Combining (MRC) method to extract MS signal templates
for interference detection/removal and LC peak boundary detection. In our method, MRCQuant, MS templates are
extracted directly from experimental values, and the mass drift in each LC-MS run is automatically captured and
compensated. We compared the quantification accuracy of MRCQuant to that of another representative LC-MS
quantification algorithm (msinspect) using datasets downloaded from a public data repository.

Results: MRCQuant showed significant improvement in the number of accurately quantified peptides.

Conclusions: MRCQuant effectively addresses major issues in the relative quantification of LC-MS-based proteomics
data, and it provides improved performance in the quantification of low abundance peptides.

Background

The large-scale identification, characterization and
quantification of proteins in biological samples by liquid
chromatography-mass spectrometry (LC-MS) and liquid
chromatography-tandem mass spectrometry (LC-MS/
MS)-based proteomic methods play a crucial role in bio-
medical research [1,2]. For example, in biomarker dis-
covery studies, a common aim is to elucidate a set of
proteins that can be used to reliably differentiate dis-
eased and normal samples by abundance measurements.
Precision and accuracy are critical for confident protein
biomarker discovery and validation. In “bottom-up”
approaches, proteins are cleaved by sequence-specific
proteases such as trypsin prior to analysis. A protein
fold change can be inferred from the relative abundance
of peptides across samples, where peptide identification
and quantification can be accomplished in separate
steps [3]. In this paper, we consider the problem of rela-
tive isotopic quantification of peptides in LC-MS based
on time-of-flight (TOF) instruments. It is assumed
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herein that a list of candidate peptides has been com-
piled a priori, and that we are interested in measuring
the relative abundance of their isotopes (natural or
labeled).

The measurement of peptide abundance is compli-
cated by the fact that a peptide forms both LC and MS
peaks during its LC elution interval. To quantify a pep-
tide, it requires the integration of its complete LC peaks,
which is sometimes impossible due to strong interfer-
ence from other peptide species or contaminants. How-
ever, relative quantification is still possible for the
uncorrupted segments of LC peaks with slightly differ-
ent isotopic compositions. Relative isotope abundance
measurement is particularly important in chemical and
metabolic labeling experiments for the quantification of
differential expression of isotopically-labeled peptide
pairs and their corresponding proteins. In “label-free”
LC-MS peptide detection, measurement of relative nat-
ural isotope abundance is employed for peptide detec-
tion. In both cases, there exist several significant
challenges: 1. The determination of LC peak boundaries
to exclude noisy scans; 2. Background noise suppression
in LC peaks; 3. Interference detection and removal; and
4. Mass drift correction. To achieve accurate relative
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quantification, these issues have to be addressed. Cur-
rent software packages have not addressed these issues
effectively. QUIL [4] and ProteinQuant [5] determine
LC peak boundaries by the apex and the full-width-half-
maximum (FWHM) of a peak, i.e., it is assumed that for
a given LC elution peak, the distance between its start-
ing point and its apex is the FWHM of the peak. This
assumption is problematic when elution peaks (espe-
cially low abundance ones) are asymmetrical and jagged.
Some software packages use an intensity threshold or
local minima to determine the boundaries of LC peaks.
The main problem of these methods is: one is never
sure whether noise or interference-corrupted scans are
included within the peak boundaries, which could
greatly degrade quantification accuracy. Among popular
software packages, msInspect [6] and SuperHirn [7] use
thresholds, ASAPRatio [8] and MapQuant [9] use peak
apex and FWHM. Recently, MaxQuant [10] uses local
minima for LC peak detection after Extracted-lon-
Chromatogram (XIC) smoothing. See [2] for a compre-
hensive review of software tools currently available for
LC-MS quantification.

On the problem of background noise suppression,
almost all current software packages use Savitzky-Golay
or other types of filters [6,8,10] to smooth XICs. How-
ever, through our own observation, elution process var-
iations share similar frequency characteristics with that
of instrument and Poisson noise (see [Additional file 1]
for a detailed description of this phenomenon). Applying
filters will distort elution process variations which
adversely affect quantification accuracy.

For interference detection and removal, most software
packages de-convolute peptide peaks and only consider
peak centroids. Although this procedure decouples pep-
tides with similar masses to a degree, it is susceptible to
thermal noise, which can cause errors in the calculation
of peak centroids. In addition, this procedure cannot
provide interference detection, which is critical for accu-
rate quantification.

Also, automatic mass drift correction is not imple-
mented in these software packages, and users are gener-
ally expected to supply mass calibration information.
This requirement introduces another source of variabil-
ity, since the accurate determination of mass drift over
all m/z ranges is a challenging problem. These issues
become more severe when peptide abundance is low.
Consequently, they have been bottlenecks in quantitative
proteomic studies. For example, it is observed that
whenever the signal intensity is low, the measurement
of isotopically-labeled peptide pairs tends to be erro-
neous [11]. If we can computationally improve the cov-
erage of accurate quantification, the chance for protein
biomarker discovery will improve accordingly.
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We limit the scope of this paper to TOFMS instru-
ments where the Gaussian additive thermal noise model
is appropriate [12,13], (note that this is different from
the Poisson plus multinomial noise model for the XICs).
In contrast, in FTMS, the assumption of Gaussian addi-
tive noise does not hold which is noted in [12] as the
phenomenon of increased noise in XICs.

In this paper, we propose a Maximum Ratio Combin-
ing (MRC) based Quantification (MRCQuant) algorithm
to address current issues in quantification. MRCQuant
was developed based on the observation that peptide
species register identical MS peak signals (scaled and
noise corrupted) in different MS scans and m/z loca-
tions. Sometimes, the registered peaks have high Signal-
to-Noise ratios (SNRs), while in other occasions, the
peaks are noisy with low SNRs. While quantification at
high SNRs is very accurate, quantification at low SNRs
is problematic due to noise. We can extract the Maxi-
mum Likelihood estimate of peptide MS signals from
MS peaks at high SNRs using MRC, hence referred to
as MS templates. Note that these templates are
extracted directly from experiment, and are not “prede-
fined”, thus they can capture slight variations in the
shape and center locations of MS peaks caused by dif-
ferent environmental factors and instrument designs.
Subsequently, extracted MS templates can be used as
references when quantifying low SNR peaks. This
method can effectively remove background noise with-
out filtering out elution process variations. In addition,
extracted MS templates can be compared to MS peaks
for interference detection and removal. After interfer-
ence and noise removal, accurate quantification can be
performed.

MRCQuant provides measurements of isotopic abun-
dance for each peptide of interest at all charge states
and all isotope positions of interest. The output of the
algorithm can be further processed to infer relative pro-
tein abundance in labeled experiments, or the results
can be used for peptide detection based on isotope pat-
tern in LC-MS data. The peptide list of interest can be
compiled from peptides identified from multiple LC-
MS/MS runs or from LC-MS peak detection algorithms
such as msInspect [6].

Definitions
Before we describe the MRCQuant algorithm, we first
define several key terminologies that we use throughout
the paper.

1. Maximum Ratio Combining (MRC) is an aver-
aging method that has been widely applied in Tele-
communications [14] for estimating the actual
transmitted signal from multiple copies received



Haskins et al. BMC Bioinformatics 2011, 12:74
http://www.biomedcentral.com/1471-2105/12/74

through Additive White Gaussian Noise (AWGN)
channels. MRC assigns averaging weights propor-
tional to the square root of SNRs of received copies.
MRC is mathematically derived based on the Maxi-
mum Likelihood principle. MRC provides an estima-
tion of the transmitted signal with the highest SNR
possible among all averaging methods. Given a pep-
tide, we consider its MS peaks in multiple MS scans
as copies of its real MS signal, which can be opti-
mally estimated through MRC.

2. A reference template, not specific to any particu-
lar peptide, is defined as an estimation of the general
MS peak shape in an LC-MS experiment. Such a
peak shape is usually determined by instrument
characteristics and environmental factors. Slight var-
iations could exist between a reference template and
particular peptide peak. This template can be trans-
lated and adjusted (in width) to different mass/
charge (m/z) locations. (See support information for
details of template translation). A reference template
is described by its center m/z and its m/z -intensity
pair values. Reference templates can either be
extracted from LC-MS datasets at high SNRs, or can
be theoretically predicted based on instrument reso-
lution and characteristics. There may be several
reference templates at different 71/z values in an LC-
MS dataset.

3. A peptide template is defined as an estimation of
the MS peak signal registered by a specific peptide
in one experiment. Comparing to reference tem-
plates, peptide templates are better estimations of
MS peak signals for individual peptides. Peptide
templates are generally extracted from MS peaks
registered at the highest (most abundant) isotope
and charge state position of peptides, where SNRs
are high. Each peptide has its own template.

Methods

MRCQuant algorithm

Here we describe the MRCQuant algorithm for relative
peptide isotope quantification on LC-MS. The input of
the algorithm includes an LC-MS dataset and a list of
peptides to be quantified annotated by their monoisoto-
pic mass and/or amino acid sequence. The mass annota-
tion can be obtained through an LC-MS peptide
identification algorithm like msInspect. The output of
the algorithm is a matrix of abundance measurements,
with a maximum of P columns, where P is the total
number of peptides to be quantified, and whose rows
are indexed by c¢s « maxcs + iso, where c¢s € [1, maxcs]
represents charge state, maxcs is the maximum number
of charge states considered, and iso represents the iso-
tope position. For a given peptide, we need to first
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detect its LC peaks. A peptide at a given mass forms a
series of 2 D peptide peaks at different isotope and
charge state positions. These 2 D peaks form LC
and MS peaks if they are viewed from the elution time
and m/z dimension. To establish the connection
between a group of 2 D peaks to a specific peptide
mass, we need to verify that: 1. their LC peaks at differ-
ent isotope and charge state positions should be the
same; and 2. their MS peaks match a reference template
translated to their expected m/z locations. After LC
peak identification, we need to accurately detect LC
peak boundaries and perform quantification. To accom-
plish these goals, the proposed algorithm performs the
following: 1. Extracts or theoretically predicts reference
templates. 2. For each peptide of interest, performs LC
peak detection at its highest isotope and charge state
position using a reference template. 3.

Extracts peptide templates based on the MRC princi-
ple, which are used for accurate LC peak boundary
detection and interference/noise removal at lower SNRs.
Finally, quantification is performed based on peptide
templates. The goal of the algorithm is to record accu-
rate relative ion counts at all charge states and isotope
positions.

A flow diagram of the entire process is shown in
Figure 1, which is explained in detail below.

Generation of reference templates

Reference templates can either be extracted from experi-
ments directly, or obtained through theoretical predic-
tion. Theoretically predicted templates can adopt
different peak shapes according to different instrument
characteristics (resolution for example). Mass drifts can
be accounted by shifting the center of theoretically pre-
dicted templates according to mass calibrations. Next,
we discuss in detail how to extract reference templates

LC Peak Shape and Boundary
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Peptide Mass
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Figure 1 Flow diagram of the MRCQuant algorithm.
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from LC-MS data at high SNRs. Given an input peptide
list, we select a subset of peptide that register uncor-
rupted MS peaks, from which we extract a number of
reference templates centered at different m/z values.
The underlying assumption is that MS peaks registered
by the same instrument should be similar (except that
MS peaks are scaled both in m/z and intensity). Thus, it
is possible to use the estimated MS peak signals at high
SNRs as reference templates for initial LC peak detec-
tion. Note that slight deviation of actual MS signals to
reference templates is allowed since the templates are
used for LC peak detection but not quantification. The
number of templates can be selected by the user, and 4
templates have been used in our simulations with good
results. Later, when quantifying a peptide at a given m/z
value, we will not use a reference template, instead, we
will use a peptide template for accurate quantification at
low SNRs. This ensures that the template with the clo-
sest m/z value will be selected for LC peak boundary
detection, interference detection and removal.

To extract the list of reference templates, we go
through the following process for each peptide in the
input list:

1. Determine the XICs of the peptide of interest at
all charge states and isotope positions.

2. Determine the LC elution interval for the pep-
tide of interest. To achieve this, we apply a high
threshold at half maximum of the most intense
(base) LC peak among all XICs. On the XIC with
the tallest LC peak, all intervals above the thresh-
old are considered as possible LC elution intervals.
Then at the charge state of the base peak, we
further check the correlations between the LC
peaks on possible intervals at the two highest iso-
tope positions (usually '>C and '>C). The interval
corresponding to the peptide of interest should
have a high correlation; otherwise the LC peaks
must have been registered by other peptides, or
have been corrupted by interference signals. The
correlation is checked by R-squared statistics [15],
and we apply a stringent threshold (> 0.9). We
accept LC intervals with correlations higher than
the threshold. If none of the intervals pass the
threshold, we move on to the next peptide for pos-
sible template extraction. If multiple intervals have
high correlations, which indicates that multiple
peptides with similar mass occur on the same XIC,
then we reject all intervals and move on to the
next peptide since we can not detect the peptide
interval unambiguously. This iterative procedure
ensures that 1. We select a correct and unambigu-
ous elution interval for the peptide of interest, and
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2. The MS signal has not been corrupted by inter-
ference or noise.

3. If the elution interval is accepted, we determine
the range of m/z values that the reference template
spans (defined as the MS window of the template).
The size of the MS window is determined by instru-
ment resolution.

4. We average all MS peaks within the MS window
and the accepted elution interval based on the MRC
principle. The resulted MRC signal is an estimation
of the MS peak signal registered by the peptide, and
it can be used as a reference template.

After performing the above steps for each peptide, a
list of reference templates has been obtained for LC
peak detection. The details of XIC extraction, determi-
nation of MS windows, and the theoretical derivation of
reference templates can be found in [Additional file 1].

LC peak detection

After obtaining a list of reference templates, the algo-
rithm moves on to accurately detect and quantify the
LC peak for each peptide of interest. Given a peptide,
we start LC peak detection by inspecting its XICs.
Usually, several LC peaks above the background noise
level exist on an XIC, where, one is generated by the
peptide of interest and the rest belong to others. We
need to correctly identify the LC peak and its bound-
aries so that noise signals are not included in relative
quantification. We perform the following processing
steps:

Candidate LC peak generation

The goal of this step is to detect high intensity intervals
(LC peak candidates) on XICs of the peptide of interest
for further investigation. Ideally, we should perform
such detection at the most abundant charge state and
isotope position where the LC peak has the highest SNR
possible. Given peptide sequence information or mass, it
is possible to predict its isotopic pattern [16], and its
most abundant isotope position (base position). On the
other hand, it is difficult to predict the most abundant
charge state, and an exhaustive search must be con-
ducted. We perform the following processing steps at all
charge states:

1. Given a peptide’s mass (m) at a charge state (z),
determine its theoretical m/z values at different iso-
tope positions.

2. At the m/z value of its base peak, estimate its MS
window and generate the XIC.

3. Apply an intensity threshold at 3 times the esti-
mated background noise standard deviation to iden-
tify LC peak candidates.
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4. Determine the FWHM elution intervals of LC
peak candidates by applying thresholds at half maxi-
mum of these LC peak candidates. These FWHM
boundaries are set as initial LC peak boundaries. In
this way, we only include MS scans with relatively
high SNRs.

5. Check the correlation between LC peaks at the
most intense and the second most intense isotope
positions within the initial boundaries of each LC
peak candidate. The correlation is checked using R-
squared statistics, and all candidates with R statistics
greater than 0.9 will be accepted. In this way, all
intervals with good correlations between two iso-
topes will be selected.

6. If the maximum R-statistic is less than 0.9, then
the LC peak candidate with the maximum R statis-
tics will be selected. This corresponds to the case
when correlations between isotope elution profiles
are poor due to noise or interference, and the pep-
tide of interest may or may not exist. In such cases,
we select the best candidate for further verification
in the MS dimension.

At the end of this process, a list of k LC peak candi-
dates, each denoted by its start and end scan, is gener-
ated at each charge state. The charge state with the
highest total ion count within initial LC peak boundaries
will be selected.

Next, one of these LC peak candidates will be identi-
fied as the initial LC peak.

LC peak identification

From previous steps, we find k LC peak candidates, but
generally only one of them is generated by the peptide
of interest, which can be further identified by matching
a reference template to the MS peaks within the elution
interval of each candidate:

1. We select the closest reference template to the
peptide of interest in m/z values, which ensures the
best match between the template and local MS
peaks. We then translate the template to the local
m/z value of the peptide of interest. Details of tem-
plate translation can be found in [Additional file 1].
2. For each LC peak candidate, estimate its local MS
peak signal by averaging all MS peaks (using MRC)
within its initial boundaries. By employing MRC,
noise in individual MS peaks will be maximally
suppressed.

3. The estimated local MS signal will be compared
to the selected reference template. The LC peak can-
didate with the best matched local MS signal will be
identified as the final LC peak.

4. If none of the local MS signals match with the
reference template well (with R statistics < 0.4), then
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LC peak detection failed for the given peptide. This
could happen when a peptide identification algo-
rithm wrongly reports the center mass of the pep-
tide, which leads to a mismatch between the
reference template and the local MS signal.
Although it is possible to correct such wrongly
reported mass, however, it is beyond the scope of
this paper.

At the end of this processing step, an LC peak has
been identified for the peptide of interest with initial
boundaries detected using a high intensity threshold at
half the maximum of the LC peak.

We do not assume specific LC peak shapes (e.g.
Gaussian), and the algorithm can be applied in various
LC conditions (e.g., different reverse-phase gradients). If
reference templates are extracted from an LC-MS
experiment directly, then they will be centered at their
theoretical m/z values plus the mass drift of the experi-
ment. Thus, mass drift will be automatically accounted
when applying such reference templates for LC peak
detection. If a theoretical reference template is used,
then its center needs to be shifted according to user
provided mass calibration information.

Peptide template extraction

For a peptide of interest, its identified LC peak has an
initial elution interval that covers the intensity region
above half of the LC peak maximum, and it is obtained
at the highest charge state and isotope position. These
conditions ensure that the MRC signal associated with
the identified LC peak is estimated at a high SNR, and
it can be treated as the peptide template of interest.
Such a template captures accurate MS peak shape infor-
mation, which can be used for LC peak boundary detec-
tion and quantification.

Accurate LC peak boundary detection

The initial LC peak boundaries are obtained by applying
a high intensity threshold, and many MS scans that
belong to the peptide of interest are excluded. We need
to accurately extend the boundaries so that all MS scans
of the peptide will be accounted. If the boundaries
exclude a significant segment of the LC peak, then
quantification will be less accurate since combining
fewer scans cannot suppress noise sufficiently. If the
boundaries are extended too far to include scans that
contain interference and noise, then quantification accu-
racy will also be reduced.

The problem of LC peak boundary detection can be
translated to the problem of detecting of all scans that
contain the peptide template. It can be further formu-
lated as a hypothesis testing problem:

HO: A given MS scan only contains noise;

H1: The scan contains noise plus the peptide
template.
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We test the hypothesis by comparing the peptide tem-
plate to the MS peak signal in a given scan. If the R-sta-
tistic is greater than a threshold (0.5), then HI is
accepted.

We start this hypothesis testing procedure from the
initial LC peak starting scan to extend the head of the
LC peak. Then we apply the same procedure to the tail
end of the peak. Whenever encountering a scan that
does not contain the template, the extension process
will be terminated.

Accurate boundary detection plays a critical role in
quantification accuracy. For example, in Figure 2, we
plot the 2 D peaks of a peptide at *2C and *3C positions
in charge state 2. The peptide signal actually resides
from scan 200 to 211. In scan 194 - 199, an interfering
peptide with similar m/z produces MS peaks at the '*C
position. However, inspecting the peaks at '>C, it is evi-
dent that interference peaks do not exist in scans 194 -
199. If the interfering scans are included, the resulted
relative quantification accuracy will be greatly degraded.
In Figure 3, we compare different boundary detection
methods. The threshold method includes all scans from
the interfering peptide. The FWHM method includes a
few interfering peptide scans and excludes a few scans
that belong to the peptide of interest. In contrast, the
proposed method accurately detected the boundary
from scan 200-211.

Quantification

For a given peptide, we have obtained its peptide tem-
plate and LC peak boundaries after LC peak detection.
Based on these inputs, we can accurately quantify the
peptide at other charge state and isotope positions. At a
given “local m/z value” of low SNR, quantification con-
sists of three processing steps: 1. Obtain a local MRC

Figure 2 Example of peptide 2 D peaks with interference at
C"2. Comparison of C'? and C'* peaks reveals interference at C'? in
scans 194 - 199.
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Figure 3 Comparison of different boundary detection methods.
Comparison of C'? and C'* peaks reveals interference at C'? in scans
194 - 199.

signal by averaging all MS peaks (using MRC) within
the detected LC peak boundaries to optimally suppress
noise; 2. Compare the translated peptide template with
the local MRC signal for interference detection and
removal. This step also provides an estimation of the
scaling factor for the local MRC signal in reference to
the peptide template, which can be multiplied to the
total ion count of the template to derive the total ion
count of the peptide at the local m/z value.

Local MRC signal are derived using weights propor-
tional to the LC peak intensities obtained at the LC
peak detection stage. The details of other processing
steps are described below.

Interference detection and removal

The input to this processing step includes the local
MRC signal and the translated peptide template, whose
correlation is calculated using the R-square statistic [15].
If the correlation is greater than 0.9, then it is consid-
ered that the interference signal does not exists. Other-
wise, the local MRC signal is considered as interference
corrupted, and we have to perform interference removal
within its MS window.

We model a local MRC signal as the superposition of
the translated peptide template (scaled by a) and an
interference signal which is modeled as an order
[ polynomial. The interference removal problem is
equivalent to the accurate estimation of the scale factor
a and the polynomial parameters.

When assuming Gaussian noise, the Maximum Likeli-
hood estimation of these parameters is equivalent to
their least-square-estimation (LSE). Note that the corre-
lation between the interference and the peptide template
signal must be minimized to yield a good estimate of a.
Otherwise, the estimated interference signal could
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contain partial template signal. Consequently, besides
finding the LSE of parameters, the second objective is to
find parameters that minimize the correlation between
the template and the interference signal. In addition,
there is the constraint that both the template and the
interference signal should be positive at all m/z values.
These requirements lead us to formulate a constrained
multiple objective optimization problem. We utilize the
Quadratic Programming algorithm [17] to numerically
search for the solution of model parameters. The selec-
tion of polynomial order is based on the Bayesian Infor-
mation Criteria (BIC) [18]. See [Additional file 1] for
details.

Figure 4 shows an example of interference removal.
The peptide template in Figure 4 is extracted at a high
SNR. The local MRC signal is derived at a lower SNR.
Due to interference, the local MRC signal deviates from
the peptide template significantly. We employ the pro-
posed interference removal method to estimate the
interference and peptide signal. When performing quan-
tification, the interference signal is not counted towards
the total ion count.

Note that there exist various peak identification algo-
rithms [19,20] that are specially designed to deal with
the problem of overlapping peptide peaks. These algo-
rithms are generally exponentially complex with the
number of overlapping peaks considered. In this paper,
the focus is on accurate quantification after peptide
identification. Thus, the problem is simplified to only
extract signals for the peptide of interest. The knowl-
edge of overlapping peptides can help in improving
quantification accuracy, but since peak identification

=——— MRC Combined Local MS Signal
| — - - Estimated Interference Singal
REEIEN i Peptide Signal

intensity

0

-5

[ 0.62 0.64 0.66 0.68 0.1 0.12
Relative m/z

Figure 4 Interference Removal. The MS template is extracted at a

high SNR. The local MRC MS signal is derived at a lower SNR. The

local MRC MS signal deviates from the extracted MS template

significantly.

Page 7 of 12

algorithms may or may not provide such information,
we uniformly treat overlapping signals as interference.
The MRC process also has the effect of suppressing
interfering signals since higher weights are given to tall
MS peaks of the peptide of interest but not interfering
peaks. This treatment also limits the computational
complexity, which is linear to the number of peptides to
be quantified.

Quantification based on local MRC signal

At the end of interference removal, the local MRC sig-
nal is cleaned of interference and the scale factor a is
also derived. It is easy to show that the total ion count
C; of all MS peaks within the LC peak interval and the
total ion count of the local MRC MS signal C,, has the
relationship

Cs = Cyy * (1)

1
> w()

where w(t) are normalizing weights used for MRC.
Thus if the total ion count of the peptide template is C,,
the total ion count of the LC peak C, can be estimated

as Cp=Ci*ax where C; *a = C,, is the esti-

1
> w(t)”
mated total ion count of the local MRC signal.

In Figure 5, we show an example of the effect of noise
reduction by MRC. At a lower SNR position, the peptide
signal in an individual scan is very noisy (signal in
dashed line). In contrast, the local MRC combined sig-
nal has a much higher SNR, and it is very close to the
peptide template.

20 T T T T

Local MRC MS signal at low SNR
= = = Translated extracted MS template

80~ ’

N R Tallest MS peak at low SNR

intensity

ol
909.88 909.9 909.92 909.94 909.96 909.98 910 910.02 910.04 910.06
m/z

Figure 5 The Translated template at a lower isotope position.
The peptide signal in an individual scan is very noisy (signal in
dashed line). In contrast, the MRC combined signal has a much
higher SNR, and it is very close to the extracted MS template.
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Data Collection and processing

We developed our algorithm based on an LC-MS data-
set collected from a tryptic digest of horse myoglobin at
a concentration of 600 fmol (unless noted, all illustra-
tions in this paper are generated based on this dataset).
For reference, we also obtained an LC-MS/MS dataset
for peptide sequence information at 100 fmol. LC-MS/
MS was performed with a splitless nanoLC-2 D pump
(Eksigent), a 50 ym-i.d. column packed with 10 cm of
5 pum-o.d. C18 particles, and a linear ion trap tandem
mass spectrometer (LTQ-XLS; ThermoFisher). The top
7 most abundant eluting ions were fragmented by (data-
dependent) collision-induced dissociation (CID). The LC
gradient was 2 to 98% 0.1% formic acid/acetonitrile in
60 min (60-120 min) at 400 nL/min. Tandem mass
spectra were extracted by Mascot Distiller version 2.3.1.
Charge-state-deconvolution and deisotoping were not
performed. All MS/MS samples were analyzed using
Mascot (Matrix Science, London, UK; version 2.3.2).
Mascot was set up to search the Swiss-Prot database
assuming the digestion enzyme trypsin. Mascot was
searched with a fragment ion mass tolerance of 0.80 Da
and a parent ion tolerance of 2.0 Da. Oxidation of
methionine and iodoacetamide derivative of cysteine
were specified in Mascot as variable modifications. LC-
MS was performed with a splitless nanoLC-2 D pump
(Eksigent), a 50 ym-i.d. column packed with 10 cm of
5 micro-o.d. C18 particles, and a time-of-flight mass
spectrometer (MicrOTOF; Bruker Daltonics). The LC
gradient was 2 to 98% 0.1%formic acid/acetonitrile in 60
min (60-120 min) at 400 nL/min. Mascot search cor-
rectly linked 13 peptides observed in the sample to
horse myoglobin with an 80% sequence coverage.

For algorithm verification, we downloaded a QTOF
dataset from the repository of Seattle Proteome Center
at http://regis-web.systemsbiology.net/PublicDatasets/.
The repository was created for testing various algo-
rithms. It contains LC-MS/MS datasets of an 18 protein
digest. For details of data collection please refer to [21].
There are multiple LC-MS/MS datasets collected on
various instruments within the repository. We down-
loaded datasets related to protein mixture 4 of the 18
protein mix. Among which, from a total of 21 runs on
LTQ-FT, QStar and QTOF, we compiled a list of 784
LC-MS/MS-identified peptides for the same protein
mixture. These peptides were all identified with a Pepti-
deProphet™ [22] score greater than 0:9. We also per-
formed LC-MS peak detection using msInspect on one
of the QTOF datasets QT 20060925_mix4_23.mzxml
(mix4_23) that identified 1952 peptides. Subsequently
we quantify these peptides by MRCQuant. Mslnspect
was selected because it is the most representative LC-
MS peptide identification and quantification algorithm
and has been shown to outperform other peak detection
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algorithms [23]. It applies a conservative noise threshold
initially. Subsequently, MS scans are centroided; XICs
are smoothed; LC peak length filter is applied; and LC
peaks that appear and disappear together are pooled
and treated as signals registered by identical peptides at
different isotope positions and charge states. Subse-
quently, peptides are identified by comparing their theo-
retically predicted isotope patterns and measured
isotope patterns using Kullback-Leibler(KL) distance.
Other popular software packages such as ASAPRatio [8]
differ slightly in the details, but the main procedure, MS
peak detection in each MS scan followed by quantifica-
tion based on XICs, is similar to that of msInspect.
Among these software packages, msInspect provides
relative quantification accuracy measurements in the
form of KL distance, which enables us to compare per-
formances. Other software packages do not provide this
measurements, therefore, relative quantification accuracy
cannot be accessed.

When using the msInspect software package (Build
599) to process mix4_23 dataset, we tried to optimize
the number of peptides being reported. We selected the
“walksmooth” option when running the command “find-
Peptides”, and we set msInspect parameters “minpeaks”
to 2 and “maxkl” to 10. The “walksmooth” option
greatly improves the number of features as well as the
KL scores reported. A total of 1952 features were
reported. In comparison, if the default settings of msIn-
spect are used, 933 features were reported with worse
KL scores.

The peptides reported by msInspect were further pro-
cessed by MRCQuant. We used extracted templates at
high SNRs as reference MS templates. We rejected
some mslnspect reported features either because: their
reported msInspect KL scores are negative, or our algo-
rithm determines that the LC peaks reported by msIn-
spect cannot be found. The latter case could be caused
by inaccurate mass reporting by msInspect. When the
mass is reported inaccurately, the reference template
and the local MS signal would deviate from each other
significantly, and our algorithm rejects LC peaks when
the R statistic between the reference template and the
local MS signal is less than 0.4. Correcting the incor-
rectly reported mass is a peptide identification problem
which is beyond the scope of this paper. This results in
a peptide list of length 964 with accurately reported
mass values.

Relative quantification accuracy evaluation

To perform relative quantification accuracy evaluation,
we need to introduce an appropriate metric. The ideal
way to evaluate relative quantification accuracy is to
compare the measured ratios of natural isotopes to that
of theoretically predicted ones. However, none of the
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software packages report abundance levels at different
isotope positions directly. MsInspect reports KL scores
which can be used to access relative quantification accu-
racy indirectly. Given measured natural isotope ratios
[p(1), p(2), ...] and theoretically predicted ones [g(1), g
(2), ...J, (When sequence information is available, natural
isotope ratios can be calculated exactly. Otherwise, at a
given mass, they can be estimated from its mass [24]),
the KL score is evaluated using the following formula:

KL(plla) = " p(i) #log"). @
- q(i)

If two sets of isotope ratios entirely agree with one
another, then their KL score equals to zero. Otherwise, a
KL score is always positive, and the larger it is, the bigger
the difference between the two sets of isotope ratios.

Different KL scores indicate different levels of quanti-
fication accuracy, and it is possible to compare the per-
formance of different algorithms by the reported
number of peptides at different KL score thresholds. For
example, we can claim that algorithm one is better than
algorithm two, if algorithm one reports more peptides
with KL scores less than a threshold.

Obviously, we cannot set the KL threshold to infinity,
and now the question becomes what could constitute an
“acceptable range of KL thresholds”. We know that
given a KL score, there always exist the probability that
it is the divergence between an arbitrarily generated and
an authentic isotope distribution. The higher the KL
score is, the higher the probability. If the KL score of a
reported peptide is high, it is very probable that the real
peptide signal does not exist, and the reported isotope
distribution is generated based on observations of ran-
dom noise. This probability is defined as the False-
Detection-Rate (FDR), which can be converted from a
KL score in reference to a KL null distribution (the dis-
tribution of KL scores between authentic peptide and
arbitrarily generated isotope ratios). Obviously, when the
FDR is high, it is not meaningful to compare the
reported number of peptides between two algorithms
anymore, since a significant portion of reported peptides
should have been falsely detected. In this paper, we
adopt a cutoff FDR of 12%, and we compare the number
of reported peptides at different FDRs less than 0.12.

Given a KL score reported by an algorithm, to convert
it to FDR, the p-value of the KL score is first generated
based on the KL null distribution. Subsequently, the
FDR is estimated using the method described in [25]
based on the p-value. The Matlab function, mafdr(-), is
used to estimate the FDRs from the p-values.

The null distribution on KL score is generated by
calculating the KL scores between arbitrarily generated
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isotope distributions with authentic ones. Without
observations, an arbitrary distribution on isotopes is
generated by drawing maxiso random numbers uni-
formly distributed on 0 [1], and then these numbers
are normalized to form a distribution. We generate
authentic theoretical isotope distributions by randomly
drawing mass values from the peptide list reported by
mslnspect, and then for these mass values, we calcu-
late their theoretical isotope ratios using the method
in [24].

Results and Discussion

We applied MRCQuant to both peptide lists identified
by msInspect and LC-MS/MS. The performance of
MRCQuant is measured by the number of reported pep-
tides at FDRs that are less then 0.12. Peptides reported
with low FDRs/KLs are considered as accurately quanti-
fied ones. See Figure 6 for an illustration of the algo-
rithm verification process. Note that the direct
comparison of computing time between MRCQuant and
mslnspect is not possible because mslnspect is a com-
bined peak identification and quantification algorithm,
while MRCQuant focuses on quantification only. The
complexity of MRCQuant is linear in complexity, i.e. the
processing time is linear to the number of peptides to
be quantified. On a Dell T7500 workstation, the proces-
sing time for the msInspect list was below half an hour.

Source
* mzxml file
—

mslnspect

LC/MS2 -I_l
Peptide Lis LC/MS

Peptide List /

/

V.

Proposed
Algorithm

Figure 6 Verification process.
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Performance comparison between MRCQuant and
mslinspect
We first compared the performance of MRCQuant to
that of msInspect based on the msInspect reported pep-
tide list. In Figure 7, we plot the number of reported
peptides at different FDRs by MRCQuant and msIn-
spect. From this figure, we can see that MRCQuant
reports more accurately quantified peptides than msIn-
spect at low FDRs. We used reference and peptide tem-
plates extracted from LC-MS data for these calculations.
We also compared the performance of mslnspect and
MRCQuant based on LC-MS/MS-identified peptides.
However, when allowing a 10 ppm tolerance, there are
only 31 LC-MS/MS-identified peptides that overlap with
mslnspect-reported peptides. In other words, most pep-
tides compiled from multiple LC-MS/MS runs were not
reported by mslnspect. With such a small number of
overlaps, we could not perform a meaningful compari-
son. In contrast to the low detection rate of LC-MS/
MS-identified peptides by msInspect, MRCQuant quan-
tified 423 LC-MS/MS-identified peptides in total, among
which, 203 have an FDR <= 0.1.

Performance at different intensity levels

MRCQuant is mainly designed to correctly quantify pep-
tides at low intensity levels where the effect of noise is the
most detrimental. To evaluate the performance at different
intensity levels, we sorted peptides according to their peak
intensities reported by msInspect. Then, we divided pep-
tides into 4 different groups according to their intensity
levels, and we plotted the performance curves (the number
of peptides v.s. FDR) as shown in Figure 8. MRCQuant
clearly provides similar performance to mslnspect in the

Intensity:1269.5996-0.19641
700 T T T T T
—o&— Proposed Method
60 —+— Mslnspect
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I I
0.09 0.1 0.11 0.12

I
0.08
Estimated FDR

$oa o005 o005 007
Figure 7 Number of detections v.s. estimated FDR of the
proposed algorithm and msinspect. The proposed algorithm
improves relative quantification accuracy greatly over msinspect on
low FDR regions in the number of reported peptides.
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high intensity region (33-1269); however, MRCQuant pro-
vides better performance over mslnspect in lower intensity
regions. Note that there are more peptides in low intensity
regions (> 600) than in the high intensity region (300).
Thus, MRCQuant has a much better performance on the
low intensity regions where most peptides can be found.

Effect of using different templates

MRCQuant can be configured to use extracted or theore-
tically predicted reference templates for LC peak detec-
tion, and it can also be configured to use locally
extracted peptide or reference templates for quantifica-
tion. Thus, there are four possible ways of employing
MRCQuant: (a). Use the extracted reference template for
LC peak detection and use the extracted peptide template
for quantification. (b). Use the theoretically predicted
reference template for LC peak detection and use the
extracted peptide template for quantification. (c). Use the
extracted reference template for LC peak detection and
quantification. (d). Use the theoretically predicted refer-
ence template for LC peak detection and quantification.
We tested these four cases on the LC-MS/MS-identified
peptide list. The performances are reported in Figure 9.
The selection of templates greatly affects quantification
performance. Case (a) uses the most accurate templates
possible in both LC peak detection and quantification,
and the result is the best with significantly higher number
of reported peptides on the low FDR region. The com-
parison between case (a) and case (b) reveals the effect of
mass drift on quantification accuracy. In case (a), the
extracted reference templates are used, the mass drift in
a specific LC-MS run is automatically addressed, and
thus LC peak detection is more accurate. In case (b), the
theoretically predicted MS reference template was not
adjusted for mass drift and the resulted LC peak detec-
tion result is poor. Comparing case (a) and (c), we can
see quantification accuracy degradation caused by not
using extracted peptide templates. Slight variations in
local signal peak shapes affect quantification accuracy
significantly. We also compared the performance of
using different templates based on msInspect generated
peptide list. Again, more peptides are reported with low
FRDs in case (a) than in other cases, which confirms the
importance of using extracted templates.

Conclusions
In this paper, we describe a new algorithm called
“MRCQuant” for LC-MS relative quantification of “bot-
tom-up” proteomics data based on extracted MS tem-
plates. Reference- and peptide- MS templates are
extracted from scans with relatively high SNRs using
MRC, a process that optimally suppresses noise.
Subsequently, these templates are used for detecting LC
peak boundaries, detecting interference, and removing
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Figure 9 Performance with different template selections. (LC
Peak Detection, Quantification): a. (Extracted Reference, Extracted
Peptide); b. (Theoretical Reference, Extracted Peptide); c. (Extracted
Reference, Extracted Reference); d.(Theoretical Reference, Theoretical
Reference). The selection of templates greatly affects the
quantification performance.

noise at lower SNRs. MRCQuant performs automatic
mass drift correction by utilizing extracted MS templates
which capture mass deviation from theoretical mass
values. These techniques address major deficiencies in pre-
vious LC-MS quantification algorithms effectively. We
demonstrate significant improvement in relative quantifi-
cation accuracy with a larger number of detected peptides
at low FDRs compared to msInspect. We expect that
MRCQuant can be integrated with various LC-MS proces-
sing software to improve the overall performance. For
example, MRCQuant can be readily modified and applied
in label and label-free proteomic experiments for quantita-
tive analysis. The proposed algorithm can also be incorpo-
rated in LC-MS peak detection algorithms that use isotope
ratios.

Availability and requirements

Relevant data and source Matlab scripts are available at
project home page: http://compgenomics.utsa.edu/
MRCquant.html
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