
SOFTWARE Open Access

DecGPU: distributed error correction on massively
parallel graphics processing units using CUDA
and MPI
Yongchao Liu*, Bertil Schmidt and Douglas L Maskell

Abstract

Background: Next-generation sequencing technologies have led to the high-throughput production of sequence
data (reads) at low cost. However, these reads are significantly shorter and more error-prone than conventional
Sanger shotgun reads. This poses a challenge for the de novo assembly in terms of assembly quality and scalability
for large-scale short read datasets.

Results: We present DecGPU, the first parallel and distributed error correction algorithm for high-throughput short
reads (HTSRs) using a hybrid combination of CUDA and MPI parallel programming models. DecGPU provides CPU-
based and GPU-based versions, where the CPU-based version employs coarse-grained and fine-grained parallelism
using the MPI and OpenMP parallel programming models, and the GPU-based version takes advantage of the
CUDA and MPI parallel programming models and employs a hybrid CPU+GPU computing model to maximize the
performance by overlapping the CPU and GPU computation. The distributed feature of our algorithm makes it
feasible and flexible for the error correction of large-scale HTSR datasets. Using simulated and real datasets, our
algorithm demonstrates superior performance, in terms of error correction quality and execution speed, to the
existing error correction algorithms. Furthermore, when combined with Velvet and ABySS, the resulting DecGPU-
Velvet and DecGPU-ABySS assemblers demonstrate the potential of our algorithm to improve de novo assembly
quality for de-Bruijn-graph-based assemblers.

Conclusions: DecGPU is publicly available open-source software, written in CUDA C++ and MPI. The experimental
results suggest that DecGPU is an effective and feasible error correction algorithm to tackle the flood of short
reads produced by next-generation sequencing technologies.

Background
Introduction
The ongoing revolution of next-generation sequencing
(NGS) technologies has led to the production of
high-throughput short read (HTSR) data (i.e. DNA
sequences) at dramatically lower cost compared to con-
ventional Sanger shotgun sequencing. However, the
produced reads are significantly shorter and more error-
prone. Additionally, de novo whole-genome shotgun
fragment assemblers that have been optimized for San-
ger reads, such as Altas [1], ARACHNE [2], Celera [3]
and PCAP [4], do not scale well for HTSR data. There-
fore, a new generation of de novo assemblers is required.

Several greedy short read assemblers, such as SSAKE
[5], SHARCGS [6], VCAKE [7] and Taipan [8], have
been developed based on contig extensions. However,
these assemblers have difficulties in assembling repeat
regions. The introduction of de Bruijn graphs for frag-
ment assembly [9] has sparked new interests in using
the de Bruijn graph approach for short read assembly.
In the context of short read assembly, nodes of a de
Bruijn graph represent all possible k-mers (a k-mer is a
substring of length k), and edges represent suffix-prefix
perfect overlaps of length k-1. Short read assemblers
based on the de Bruijn graph approach include EULER-
SR [10], Velvet [11], ALLPATHS [12], ABySS [13], and
SOAPdenovo [14]. In a de Bruijn graph, each single-
base error in a read induces up to k false nodes, and
since each false node has a chance of linking to some

* Correspondence: liuy0039@ntu.edu.sg
School of Computer Engineering, Nanyang Technological University, 639798,
Singapore

Liu et al. BMC Bioinformatics 2011, 12:85
http://www.biomedcentral.com/1471-2105/12/85

© 2011 Liu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:liuy0039@ntu.edu.sg
http://creativecommons.org/licenses/by/2.0

other node, it is likely to induce false path convergence.
Therefore, assembly quality of de-Bruijn-graph-based
assemblers is expected to improve by detecting and
fixing base errors in reads prior to assembly.
In addition to the error correction algorithms based

on the spectral alignment problem (SAP) in [9] and
[10], a new error correction algorithm called SHREC
[15] has been proposed using a generalized suffix trie.
Hybrid SHREC (hSHREC) [16] extends the work of
SHREC by enabling the correction of substitutions,
insertions, and deletions in a mixed set of short reads
produced from different sequencing platforms. Unfortu-
nately, due to the large size of NGS datasets, the error
correction procedure before assembly is both time and
memory consuming. Many-core GPU computing archi-
tectures have evolved rapidly and have already demon-
strated their powerful compute capability to reduce the
execution time of a range of demanding bioinformatics
applications, such as protein sequence database search
[17,18], multiple sequence alignment [19], and motif
finding [20]. As a first step, Shi et al. [21] implemented
CUDA-EC, a parallel error correction algorithm using
NVIDIA’s compute unified device architecture (CUDA),
based on the SAP approach [9], where a Bloom filter
data structure [22] is used to gain memory space effi-
ciency. This algorithm has been further optimized by
incorporating quality scores and filtration approach in
[23]. However, the drawback of this approach is the
assumption that the device memory of a single GPU is
sufficient to store the genome information of the SAP,
i.e. the spectrum T(G) (see Spectral alignment problem
subsection). Thus, a distributed error correction
approach is a good choice to further reduce execution
time and to overcome memory constraints.
In this paper, we present DecGPU, the first parallel

and distributed error correction algorithm for large-
scale HTSR datasets using a hybrid combination of
CUDA and message passing interface (MPI) [24] parallel
programming models. DecGPU provides two versions: a
CPU-based version and a GPU-based version. The CPU-
based version employs coarse-grained and fine-grained
parallelism using the MPI and Open Multi-Processing
(OpenMP) [25] parallel programming models. The
GPU-based version takes advantage of the CUDA and
MPI parallel programming models and employs a hybrid
CPU+GPU computing model to maximize the perfor-
mance by overlapping the CPU and GPU computation.
The distributed feature of our algorithm makes it a fea-
sible and flexible solution to the error correction of
large-scale HTSR datasets. Our algorithm is designed
based on the SAP approach and uses a counting Bloom
filter data structure [26] for memory space efficiency.
Even though our algorithm also uses the filtration
approach to reduce execution time like CUDA-EC, it

has intrinsic differences from CUDA-EC, such as dis-
tributed k-mer spectrums, hybrid combination of differ-
ent parallel programming models, and CUDA kernel
implementations. Compared to the hSHREC algorithm,
DecGPU shows superior error correction quality for
both simulated and real datasets. As for the execution
speed, on a workstation with two quad-core CPUs, our
CPU-based version runs up to 22× faster than hSHREC.
Furthermore, on a single GPU, the GPU-based version
runs up to 2.8× faster than CUDA-EC (version 1.0.1).
When combined with Velvet (version 1.0.17) and ABySS
(version 1.2.1), the resulting DecGPU-Velvet and
DecGPU-ABySS assemblers demonstrate the potential of
our algorithm to improve de novo assembly quality for
de-Bruijn-graph-based assemblers by correcting sequen-
cing errors prior to assembly.

Spectral alignment problem
The SAP approach detects and fixes base errors in a read
based on the k-mer set Gk of a genome G. Since the gen-
ome G is not known beforehand in a de novo sequencing
project, SAP approximates Gk using a k-mer spectrum T
(G). T(G) is the set of all solid k-mers throughout all
reads. A k-mer is called solid if its multiplicity through-
out all reads is not less than a user-specified threshold
M, and weak otherwise. If every k-mer in a read has an
exact match in T(G), the read is called a T-string. Given
an erroneous read R, SAP is defined to find a T-string R*

with minimal Hamming distance to R.
Two heuristics of SAP have been suggested: the itera-

tive approach [9] and the dynamic programming
approach [10]. The iterative approach attempts to trans-
form weak k-mers in a read to solid ones by substituting
some possibly erroneous bases through a voting algo-
rithm. The dynamic programming approach attempts to
find the shortest path that corresponds to a T-string
with minimal edit distance. The underlying algorithm
model of DecGPU is inspired by the iterative approach.

Bloom filter data structure
The spectrum T(G) is the fundamental data structure
for SAP-based error correction. For large-scale short
read error correction, the major challenges posed by
T(G) are the computational overhead for k-mer mem-
bership lookup and the memory constraint for k-mer
storage. Hash tables are advantageous in execution time
for membership lookup, but consume too much mem-
ory. Thus, we choose a Bloom filter, a very compact
hash-based data structure, to achieve efficiency in terms
of both lookup time and memory space. However, the
space efficiency of a Bloom filter is gained by allowing
false positive querying. The more elements inserted to
the Bloom filter, the higher the probability of false posi-
tive querying. As such, a Bloom filter is more suitable

Liu et al. BMC Bioinformatics 2011, 12:85
http://www.biomedcentral.com/1471-2105/12/85

Page 2 of 13

for the cases where space resources are at a premium
and a small number of false positives can be tolerated.
Both conditions are met by our error correction algo-
rithm, since false positives might only result in some
unidentified sequencing errors.
A classical Bloom filter uses a bit array with h asso-

ciated independent hash functions, supporting insertion
and membership querying of elements. Initially, all
buckets (1 bit per bucket) in a classical Bloom filter are
set to zero. When inserting or querying an element, the
h hash values of the element are first calculated using
the h hash functions. When inserting an element, the
corresponding buckets indexed by the hash values are
set to 1. When querying an element, it returns the cor-
responding buckets. The element is likely to exist if all
buckets are 1; and definitely does not exist, otherwise.
The time for insertion and querying, of an element, is of
constant time complexity, O(h), and is also independent
of the number of inserted elements. The false positive
probability (FPP) of a classical Bloom filter is calculated
as

FPP =

(
1 −

(
1 − 1

NB

)hNE
)h

≈

⎛
⎜⎝1 − e

−
hNE

NB

⎞
⎟⎠

h

=
(
1 − e−α

)h (1)

where NB is the total number of buckets, NE is the
number of elements, and a = hNE/NB.
To construct T(G), we need to record the multiplicity

of each k-mer. However, because the classical Bloom fil-
ter does not store the number of k-mer occurrences,
DecGPU instead chooses a counting Bloom filter to
represent T(G). A counting Bloom filter extends a
bucket of the classical Bloom filter from 1 bit to several
bits. DecGPU uses 4 bits per bucket, supporting a maxi-
mum multiplicity of 15. When inserting an element, it
increases (using saturation addition) the counter values
of the corresponding buckets indexed by the hash
values. When querying an element, it returns the mini-
mum counter value of all the corresponding buckets,
which is most likely to be the real multiplicity of the
element. A counting Bloom filter has the same FPP as
the corresponding classical Bloom filter.

CUDA and MPI programming models
More than a software and hardware co-processing archi-
tecture, CUDA is also a parallel programming language
extending general programming languages, such as C, C++
and Fortran with a minimalist set of abstractions for
expressing parallelism. CUDA enables users to write paral-
lel scalable programs for CUDA-enabled processors with

familiar languages [27]. A CUDA program is comprised of
two parts: a host program running one or more sequential
threads on a host CPU, and one or more parallel kernels
able to execute on Tesla [28] and Fermi [29] unified gra-
phics and computing architectures.
A kernel is a sequential program launched on a set of

lightweight concurrent threads. The parallel threads are
organized into a grid of thread blocks, where all threads
in a thread block can synchronize through barriers and
communicate via a high-speed, per block shared mem-
ory (PBSM). This hierarchical organization of threads
enables thread blocks to implement coarse-grained task
and data parallelism and lightweight threads comprising
a thread block to provide fine-grained thread-level paral-
lelism. Threads from different thread blocks in the same
grid are able to cooperate through atomic operations on
global memory shared by all threads. To write efficient
CUDA programs, it is important to understand the fea-
tures of the different memory spaces, including non-
cached global and local memory, cached texture
and constant memory as well as on-chip PBSM and
registers.
The CUDA-enabled processors are built around a fully

programmable scalable processor array, organized into a
number of streaming multiprocessors (SMs). For the
Tesla architecture, each SM contains 8 scalar processors
(SPs) and shares a fixed 16 KB of PBSM. For the Tesla
series, the number of SMs per device varies from gen-
eration to generation. For the Fermi architecture, it con-
tains 16 SMs with each SM having 32 SPs. Each SM in
the Fermi architecture has a configurable PBSM size
from the 64 KB on-chip memory. This on-chip memory
can be configured as 48 KB of PBSM with 16 KB of L1
cache or as 16 KB of PBSM with 48 KB of L1 cache.
When executing a thread block, both architectures split
all the threads in the thread block into small groups of
32 parallel threads, called warps, which are scheduled in
a single instruction, multiple thread (SIMT) fashion.
Divergence of execution paths is allowed for threads in
a warp, but SMs realize full efficiency and performance
when all threads of a warp take the same execution
path.
MPI is a de facto standard for developing portable

parallel applications using the message passing mechan-
ism. MPI works on both shared and distributed memory
machines, offering a highly portable solution to parallel
programming on a variety of machines and hardware
topologies. In MPI, it defines each worker as a process
and enables the processes to execute different programs.
This multiple program, multiple data model offers more
flexibility for data-shared or data-distributed parallel
program design. Within a computation, processes com-
municate data by calling runtime library routines, speci-
fied for the C/C++ and Fortran programming languages,

Liu et al. BMC Bioinformatics 2011, 12:85
http://www.biomedcentral.com/1471-2105/12/85

Page 3 of 13

including point-to-point and collective communication
routines. Point-to-point communication is used to send
and receive messages between two named processes,
suitable for local and unstructured communications.
Collective (global) communication is used to perform
commonly used global operations (e.g. reduction and
broadcast operations).

Implementation
DecGPU error correction algorithm
DecGPU consists of four major stages: (1) constructing
the distributed k-mer spectrum, (2) filtering out error-
free reads, (3) fixing erroneous reads using a voting
algorithm, (4) trimming (or discarding entirely) the fixed
reads that remain erroneous, and (5) an optional itera-
tive policy between the filtering and fixing stages with
intention to correct more than one base error in a single
read. The second stage filters out error-free reads and
passes down the remaining erroneous reads to the third
stage. After the erroneous reads have been fixed, the
fixed reads are either passed up to another filtering
stage or down to the trimming stage, depending on
whether the optional iterative policy is used. For a fixed
read that remains erroneous, the trimming stage
attempts to find the user-satisfied longest substring of
the read, in which all k-mers are solid (the workflow
and data dependence between stages are shown in
Figure 1).

For DecGPU, a processing element (PE) Pi refers to
the ith MPI process. Each MPI process has a one-to-one
correspondence with a GPU device. Each Pi therefore
consists of two threads: a CPU thread and a GPU
thread. This hybrid CPU+GPU computing model pro-
vides the potential to achieve performance maximization
through the overlapping of CPU and GPU computation.
The input reads of each stage are organized into batches
to facilitate the overlapping. In the MPI runtime envir-
onment, DecGPU ensures the one-to-one correspon-
dence between an MPI process and one GPU device by
automatically assigning GPU devices to processes using
a registration management approach. First, each process
registers its hostname and the number of qualified GPU
devices in its host to a specified master process. Sec-
ondly, the master process verifies the registrations by
checking that, for a specific host, the number of GPU
devices reported by all processes running on it must be
the same and must not be less than the number of the
processes. Finally, the master process enumerates each
host and assigns a unique GPU device identifier to each
process running on the host.

Distributed spectrum construction
DecGPU distributes the k-mer spectrum that uses a
counting Bloom filter. For the distributed spectrum,
each Pi holds a local spectrum T(G, Pi) that is a subset
of T(G). The set of all local spectrums {T(G, Pi)} forms
a partition of T(G); i.e. it holds:⎧⎪⎪⎨

⎪⎪⎩
T(G) =

NPE⋃
i=1

T(G,Pi), and

T(G,Pi)
⋂

T(G,Pj) = ∅, for i �= j

(2)

where NPE is the number of PEs. DecGPU constructs
the distributed spectrum by (nearly) evenly distributing
the set of all possible k-mers (including their reverse
complements) over all PEs. The location of a k-mer is
determined using modular hashing. A k-mer is packed
into an integer Ik by mapping the bases {A, C, G, T} to
the numerical values {0, 1, 2, 3}. The index of the PE
that owns this k-mer is computed as Ik % NPE. This dis-
tributed spectrum reduces the number of k-mers in a
single spectrum by a factor of the number of PEs. Thus,
we are able to keep an acceptable probability of false
positives of T(G) with no need for a vast amount of
device memory in a single GPU. Using this distributed
spectrum, for the membership lookup of a k-mer, all
PEs must simultaneously conduct the membership
lookup of the k-mer in their local spectrums, and then
perform collective operations to gain the final result.
For the distributed spectrum construction, intuitively,

the most effective approach is to allow each PE to build

Distributed
spectrum

construction

Filtering error-free reads

Fixing erroneous reads

Trimming erroneous fixed reads

Error-free reads and trim
m

ed reads

Read batches

Erroneous reads

Fixed reads

Discarded reads

Figure 1 Program workflow and data dependence between
different stages.

Liu et al. BMC Bioinformatics 2011, 12:85
http://www.biomedcentral.com/1471-2105/12/85

Page 4 of 13

its local spectrum on its GPU device, where thousands
of threads on the GPU device simultaneously calculate
hash values of k-mers and determine their destinations.
However, this approach requires the support for device-
level global memory consistency or atomic functions,
since different threads in the device might update the
counter value at the same address in the counting
Bloom filter. CUDA-enabled GPUs do not provide a
mechanism to ensure device-level global memory con-
sistency for all threads in a kernel when the kernel is
running. CUDA does provide the support for atomic
functions, but they are not byte-addressable. If using an
integer for a bucket of a counting Bloom filter, the
memory space efficiency of the Bloom filter will be sig-
nificantly lost. In this case, we choose the CPU + GPU
hybrid computing for the local spectrum construction of
each Pi (as shown in Figure 2). Since all input reads are
organized into batches, each Pi runs multiple iterations
to complete the spectrum construction with each itera-
tion processing a read batch. In each iteration, the CPU
thread awaits the hash values of a read batch. When the
hash values of a read batch are available, the CPU
thread inserts k-mers, which are distributed to itself,
into its local spectrum using the corresponding hash
values. In the meantime, the GPU thread reads in
another batch of reads, calculates the hash values for
this batch, and then transfers the hash values as well as
the read batch to the CPU thread.
Using CUDA, one read is mapped to one thread,

where the thread computes the hash values of all k-mers
and their reverse complements and determines their
destination PEs in the read. All reads of a batch are
stored in texture memory bound to linear memory.

Because a k-mer is frequently accessed while calculating
the hash values, the k-mer is loaded from texture mem-
ory to shared memory for improving performance. All
the following stages store and access reads and k-mers
in the same manner. A conversion table in constant
memory is used for the conversion of a nucleotide base
to its complement. The hash value arrays are allocated
in global memory using the coalesced global memory
allocation pattern [15].

Filtering out error-free reads
The core of our distributed filtering algorithm is
described as follows. For a specific read, each Pi simulta-
neously checks in its local spectrum T(G, Pi) the solidity
of each k-mer of the read. Since each k-mer corresponds
to a position in a read, Pi uses a local solidity vector SV
(Pi) to record the k-mer existence for the read. If a k-
mer belongs to T(G, Pi), the corresponding position in
SV(Pi) is set to 0 and to 1 otherwise. After completing
the solidity check of all k-mers, all PEs perform a logical
AND reduction operation on the solidity vectors {SV
(Pi)} to gain the final global solidity vector SV. The read
is error-free if all the positions in SV are 0 and erro-
neous otherwise. For each erroneous read, the values of
SV are stored into a file, along with the read, for the
future use of the fixing stage.
Figure 3 shows the workflow of each PE for filtering

out error-free reads. For each Pi, the CPU thread
receives the set {SV(Pi)} of a read batch from the GPU
thread, performs logical AND reduction operations on
{SV(Pi)} in parallel with the other PEs, and then pro-
cesses the read batch in parallel with the other PEs to
filter out error-free reads. Meanwhile, the GPU thread

Figure 2 Workflow of each PE for distributed spectrum
construction.

Figure 3 Workflow of each PE for distributed error-free read
filtering.

Liu et al. BMC Bioinformatics 2011, 12:85
http://www.biomedcentral.com/1471-2105/12/85

Page 5 of 13

reads in a batch of reads, calculates {SV(Pi)} of the batch
using its local spectrum T(G, Pi), and then transfers {SV
(Pi)} to the CPU thread. From this workflow, the calcu-
lation time of the solidity vectors on the GPUs does not
scale with the number of PEs, but the execution time of
the reduction operations and the error-free reads deter-
mination scales well with the number of PEs. Using
CUDA, one read is mapped to one thread which builds
the solidity vector of the read using T(G, Pi). The solid-
ity vectors are allocated in global memory in a coalesced
pattern.

Fixing erroneous reads
If a mutation error occurs at position j of a read of
length l, this mutation creates up to min{k, j, l-j} erro-
neous k-mers that point to the same sequencing error.
The aim of our fixing algorithm is to transform the min
{k, j, l-j} weak k-mers to solid ones. In this case, a voting
algorithm is applied to correct the most likely erroneous
bases that result in these weak k-mers. The voting algo-
rithm attempts to find the correct base by replacing all
possible bases at each position of the k-mer and check-
ing the solidities of the resulting k-mers.
The core of our distributed fixing algorithm is

described as follows. For an erroneous read, each Pi

checks in T(G) the existence of all k-mers of the read
from left to right. Because each Pi does not hold a copy
of T(G), the existence check in T(G) is conducted using
the solidity vectors {SV} produced and saved by the fil-
tering stage. If a k-mer does not belong to T(G), each Pi
invokes the voting algorithm to compute its local voting
matrix VM(Pi) using its local spectrum T(G, Pi). After
completing the voting matrix computation, all PEs per-
form an ADDITION reduction operation on the voting
matrices {VM(Pi)} to gain the final global voting matrix
VM of the read. Then, a fixing procedure is performed
using VM to correct the erroneous read. When enabling
the optional iterative policy, for an erroneous read, a
starting position SPOS is saved after completing the pre-
vious fixing iteration, which indicates that each k-mer
starting before SPOS is solid in the read. In the current
fixing iteration, the voting matrix computation starts
from SPOS. Actually, after substituting an erroneous
base with the voted (likely) correct base, we might intro-
duce new errors even if there is really only one base
error in a read. Hence, it is not necessarily the case that
the more fixing iterations used, the more base errors
that are corrected. Figure 4 shows the pseudocode of
the CUDA kernel of the voting algorithm.
Figure 5 shows the workflow of each PE for fixing

erroneous reads. For each Pi, the CPU thread receives
the voting matrices {VM(Pi)} of a read batch from the
GPU thread, performs ADDITION reduction operations
on {VM(Pi)} in parallel with the other PEs, and then

fixes the erroneous reads in parallel with the other PEs.
The GPU thread computes its local voting matrices
{VM(Pi)} of a read batch using T(G, Pi), and then trans-
fers the voting matrices to the CPU thread.
Using CUDA, one read is mapped to a thread which

performs the voting algorithm on the read to gain the
voting matrix. From Figure 4, the execution speed of the
voting algorithm on GPUs highly depends on how fre-
quently the threads in a warp diverge. The solidity vec-
tors of the reads, used for checking k-mer existence in
T(G), are stored in texture memory bound to linear

/***
Parameters: read r of length l, the spectrums T(G) and T(G,
Pi), kmer length k, starting position spos, and voting matrix
VM[l][4]
***/
for (i = 0; i < l – 1; ++i){

for (j = 0; j < 4; ++j){
VM[i][j] = 0;

}
}
for (i = spos; i < l – k + 1; ++i){

ktuple := a copy of the kmer r[i, …, i + k – 1]
if (ktuple belongs to T(G)) continue;
for (j = 1; j < k-1; ++j){

for (each possible mutation base at position j of ktuple){
if (this new kmer belongs to T(G, Pi)){

++VM[i + j][base];
}

}
}

}

Figure 4 Pseudocode of the CUDA kernel of the voting
algorithm.

Figure 5 Workflow of each PE for fixing erroneous reads.

Liu et al. BMC Bioinformatics 2011, 12:85
http://www.biomedcentral.com/1471-2105/12/85

Page 6 of 13

memory. The voting matrices are allocated in global
memory in a coalesced pattern.

Trimming erroneous reads
After fixing errors in erroneous reads, some reads are
still not T-strings. In this case, a trimming procedure is
performed on the fixed reads that remain erroneous.
For an erroneous read, all PEs cooperate to compute the
solidity vector SV of the read using the same algorithm
as in the filtering stage. After gaining SV, the algorithm
attempts to find the user-satisfied longest substring of
the read, in which all k-mers are solid. The read is
trimmed if such a substring is found and discarded
entirely, otherwise. Each Pi runs the same workflow as
in the filtering stage, except that after gaining the solid-
ity vectors {SV} of a read batch, the CPU thread per-
forms the trimming procedure in parallel with the other
PEs, instead.

Results
We have evaluated the performance of DecGPU from
three perspectives: (1) the error correction quality both
on simulated and real short read datasets; (2) de novo
assembly quality improvement after combining our algo-
rithm with Velvet (version 1.0.17) and ABySS (version
1.2.1); and (3) the scalability with respect to different
number of compute resources for the CPU-based and
GPU-based versions respectively. Six simulated short
read datasets (the first six datasets in Table 1) and three
real Illumina GA short read datasets (the last three data-
sets in Table 1, named after their accession numbers in
NCBI Sequence Read Archive [30]) are used to measure
the accuracy of correction and the de novo assembly
quality. For the six simulated datasets, they are simu-
lated from the E. coli K12 MG1665 reference genome
(NC_000913) with different read lengths, coverage and
error rates. For the three real datasets, the SRR001665
dataset is a paired-end dataset and the other two are
single-end. The SRR001665 dataset consists of about
20.8 million paired-end 36-basepair (bp) reads generated

from a 200-bp insert size of an E. coli library
(SRX000429), and has been used in [13] and [14] to
assess the assembly qualities of various assemblers.
All the following tests are conducted on a workstation

computer and a computing cluster with eight compute
nodes that are connected by a high-speed Infiniband
switch. The workstation computer has two quad-core
Intel Xeon E5506 2.13 GHz processors and 16 GB RAM
running the Linux operating system (OS). For the com-
puting cluster, each compute node consists of an AMD
Opteron 2378 quad-core 2.4 GHz processor and 8 GB
RAM running the Linux OS with the MVAPICH2
library [31]. Furthermore, two Tesla S1070 quad-GPU
computing systems are installed and connected to four
nodes of the cluster. A single Tesla T10 GPU of a Tesla
S1070 system consists of 30 SMs comprising 240 SPs
and 4 GB RAM. If not specified, for all the following
tests, DecGPU uses the default parameters (i.e. the k-
mer length is set to 21, the multiplicity threshold M to
6, the maximum allowable number of bases to be
trimmed to 4, and one fixing iteration), and hSHREC
sets the strictness value to 5 for the first four simulated
datasets and 6 for the last two simulated datasets, using
eight threads.
We have evaluated the performance of our algorithm

using the simulated datasets in terms of: (1) the ability
to detect reads as error-free or erroneous, and (2) the
ability to correct erroneous reads. The detection of erro-
neous reads is a binary classification test, where an input
read is classified into either the error-free group or the
erroneous group. Table 2 shows the corresponding defi-
nitions of true positive (TP), false positive (FP), true
negative (TN) and false negative (FN). The sensitivity
and specificity measures are defined as

sensitivity =
TP

TP + FN
(3)

specificity =
TN

TN + FP
(4)

The results of the classification test are shown in
Table 3 for the six simulated datasets, where the sensi-
tivity and specificity values have been multiplied by 100.
From the sensitivity measure, DecGPU and hSHREC
achieve comparable performance for all datasets, where
the sensitivity is > 99.80% for each dataset, meaning that

Table 1 Simulated and real short read datasets

Datasets Read length Coverage Error rate No. of Reads

D30X1.5 36 30 1.5% 3866000

D30X3.0 36 30 3.0% 3860000

D75X1.5 36 75 1.5% 9666000

D75X3.0 36 75 3.0% 9666000

D150X1.5 72 150 1.5% 9666000

D150X3.0 72 150 3.0% 9666000

SRR006331 36 69 - 1693848

SRR016146 51 81 - 4438066

SRR001665 36 162 - 20816448

Table 2 Definitions for the read binary classification test

Classification Read Condition

Erroneous Error-free

Detected as erroneous TP FP

Detected as error-free FN TN

Liu et al. BMC Bioinformatics 2011, 12:85
http://www.biomedcentral.com/1471-2105/12/85

Page 7 of 13

only very few erroneous reads remain undetected. How-
ever, as for the specificity measure, the performance of
hSHREC degrades very fast with the increase of dataset
size and coverage. For each of the last four simulated
datasets, the specificity of DecGPU is > 99.80%, clearly
outperforming hSHREC. For the two low-coverage
D30X1.5 and D30X3.0 datasets, DecGPU gives poorer
specificity than hSHREC. However, after setting the
multiplicity threshold M to 3 and 2, instead of the
default 6, DecGPU yields a specificity of 99.52% and
99.32% for the two datasets respectively, better than
hSHREC.
The performance of correcting erroneous reads is

evaluated using the simulated datasets from two aspects.
The first aspect is to compare the error rates before and
after error correction. The error rates are calculated by
doing a base-by-base comparison with their respective
original reads (without errors). It is possible that a cor-
rected read does not have the same length with its origi-
nal read. In this case, the shorter read is mapped with
no gaps to the longer one by iteratively changing the
starting positions. We choose the mapping with the
minimal number of base errors, and then add the num-
ber of bases in the shorter one to the total number of
bases for the future calculation of error rates. For
DecGPU, we vary the number of fixing iterations with
the intention to find and correct more than one erro-
neous base in a single read. We have compared the
accuracy and execution time of DecGPU to hSHREC
(see Table 4) on the above workstation with eight CPU
cores. Table 4 shows that DecGPU significantly reduces
the error rates of all datasets (particularly reducing the
error rate of D75X1.5 from 1.500% to 0.248% and the
error rate of D75X3.0 from 3.000% to 0.988%), clearly
outperforming hSHREC. Furthermore, on the dual
quad-core workstation, the CPU-based DecGPU version
runs up to 22× faster when performing one fixing

iteration and up to 19× faster when performing two fix-
ing iterations compared to hSHREC. For DecGPU, the
error rates are further reduced for all datasets when
using two fixing iterations instead of only one. However,
we found that a further increase of iterations does not
significantly reduce the error rates further. As for the
execution time, the second fixing iteration does not
result in a large execution time increase, since it only
corrects the remaining erroneous reads.
The second aspect is to evaluate the correct correction

rate, incorrect correction rate, and the rate of newly
introduced errors, relative to the total number of origi-
nal base errors. When performing error correction, cor-
rection operations will result in the following four cases:

• Correct Corrections (CC): meaning that original
erroneous bases have been changed to the correct
ones;
• Incorrect Corrections (IC): meaning that original
erroneous bases have been changed to other wrong
ones;
• Errors Unchanged (EU): meaning that original
erroneous bases remain the same;
• Errors Introduced (EI): meaning that original cor-
rect bases have been changed to be incorrect, thus
introducing new base errors.

In this paper, we define three measures relative to the
total number of original base errors: correct correction
rate RCC, incorrect correction rate RIC, and correction
error rate REI, to facilitate the error correction accuracy
comparison. RCC indicates the proportion of the original
erroneous bases that have been corrected, REI indicates
the proportion of the original erroneous bases that have
been changed to other wrong bases, and REI indicates
the ratio of the original correct bases that have been
changed to be incorrect. For RCC, the larger value

Table 3 Summary of the classification test for simulated datasets

Datasets Algorithm TP FP FN TN Sensitivity Specificity

D30X1.5 DecGPU 1620660 349908 253 1895179 99.98 84.41

hSHREC 1617685 13998 3228 2231089 99.80 99.38

D30X3.0 DecGPU 2575411 660533 306 629750 99.99 48.81

hSHREC 2571520 31367 4197 1258916 99.84 97.57

D75X1.5 DecGPU 4053688 23 1024 5611265 99.97 100.00

hSHREC 4053827 4990124 885 621164 99.98 11.07

D75X3.0 DecGPU 6435328 3481 1621 3225570 99.97 99.89

hSHREC 6436305 3129803 644 99248 99.99 3.07

D150X1.5 DecGPU 6406078 2 5395 3254525 99.92 100.00

hSHREC 6411346 3185858 127 68669 100.00 2.11

D150X3.0 DecGPU 8578176 1 8651 1079172 99.90 100.00

hSHREC 8586743 1056392 84 22781 100.00 2.11

Liu et al. BMC Bioinformatics 2011, 12:85
http://www.biomedcentral.com/1471-2105/12/85

Page 8 of 13

means the better performance, and for RIC and REI, the
smaller value the better performance. The RCC, RIC and
REI measures are calculated as

RCC =
CC

CC + IC + EU
(5)

RIC =
IC

CC + IC + EU
(6)

REI =
EI

CC + IC + EU
(7)

In this test, for DecGPU, we do not trim the fixed
reads that remain erroneous, and use two fixing itera-
tions. For hSHREC, we only use the reads that have the
same lengths with their original reads after correction,
because the correspondence relationship between bases
is difficult to be determined for two reads of different
lengths. Table 5 shows the performance comparison in
terms of the three measures between DecGPU and
hSHREC, where the value of RCC, RIC and REI has been
multiplied by 100. For RCC, hSHREC yields better per-
formance for the first three datasets and DecGPU

performs better for the last three datasets. However,
hSHREC degrades very rapidly (down to 5.73%) with the
increase of coverage and original error rate, while
DecGPU remains relatively consistent. For RIC and REI,
DecGPU clearly outperforms hSHREC for each dataset,
where DecGPU miscorrected ≤ 0.04% bases and intro-
duced ≤ 0.08% new base errors, but hSHREC miscor-
rected ≥ 0.30% (up to 0.73%) bases, and introduced ≥
6.95% (up to 47.67%) new base errors.
Furthermore, we have measured the error correction

quality of DecGPU in terms of mapped reads after align-
ing the reads to their reference genome. We vary the
maximum allowable number of mismatches in a single
read (or seed) to see the proportion changes. The
SRR001665 dataset and Bowtie (version 0.12.7) [32]
short read alignment algorithm are used for the evalua-
tion. For Bowtie, the default parameters are used except
for the maximum allowable number of mismatches, and
for hSHREC, we have set the strictness value to 7. The
proportion of mapped reads is calculated in three cases:
exact match, ≤ one mismatch, and ≤ two mismatches
(see Figure 6). After error correction with DecGPU, the
proportion of mapped reads is higher than the original
reads in each case. However, after error correction with

Table 4 The error rates and execution time comparison for DecGPU and Hybrid SHREC

Datasets Original Error Rate (%) Corrected Error Rate (%) Time (seconds)

DecGPU hSHREC DecGPU hSHREC

one fixing two fixing one fixing two fixing

D30X1.5 1.498 0.426 0.341 0.713 125 145 2721

D30X3.0 3.003 1.773 1.625 2.014 164 217 2882

D75X1.5 1.500 0.347 0.248 3.936 288 348 4380

D75X3.0 3.000 1.262 0.988 4.058 375 473 5079

D150X1.5 1.500 0.579 0.348 3.233 981 1118 11047

D150X3.0 3.001 1.781 1.241 4.082 1254 1489 12951

Table 5 Performance comparison with respect to RCC, RIC and REI measures

Datasets Algorithms CC IC EU EI RCC RIC REI

D30X1.5 DecGPU 1275967 191 809207 893 61.19 0.01 0.05

hSHREC 1736112 10960 214851 125381 88.49 0.56 6.95

D30X3.0 DecGPU 1611459 344 2567906 2932 38.55 0.01 0.08

hSHREC 2983112 27448 764097 326466 79.03 0.73 9.38

D75X1.5 DecGPU 3373714 388 1844213 530 64.65 0.01 0.02

hSHREC 1431267 27988 3256061 2219648 30.35 0.59 47.67

D75X3.0 DecGPU 5425615 746 5013497 1122 51.97 0.01 0.02

hSHREC 757454 29924 9248234 1250738 7.55 0.30 12.76

D150X1.5 DecGPU 7242425 2913 3196883 1004 69.36 0.03 0.04

hSHREC 741722 37618 9034830 3345778 7.56 0.38 34.47

D150X3.0 DecGPU 11221669 7593 9655700 2121 53.73 0.04 0.05

hSHREC 1152718 71504 18896523 3136637 5.73 0.36 15.94

Liu et al. BMC Bioinformatics 2011, 12:85
http://www.biomedcentral.com/1471-2105/12/85

Page 9 of 13

hSHREC, the proportion for each dataset goes down in
each case. This might be caused by the fact that some
reads become very short after error correction with
hSHREC.
Error correction prior to assembly is important for

short read assemblers based on the de Brujin graph
approach. To demonstrate how our algorithm affects de
novo assembly quality, we have assessed the assembly
quality before and after using our algorithm to correct
errors for two popular assemblers: Velvet (version
1.0.17) and ABySS (version 1.2.1). Both assemblers do
not internally incorporate error correction prior to
assembly. We have carefully tuned the parameters with
the intention to gain the highest assembly quality for
the stand-alone Velvet and ABySS assemblers. We com-
pared the assemblers in terms of N50, N90 and

maximum contig or scaffold sizes using the three real
datasets. The N50 (N90) contig or scaffold size is calcu-
lated by ordering all assembled sequences by length, and
then adding the lengths from the largest to the smallest
until the summed length exceeds 50% (90%) of the
reference genome size. For these calculations, we use
the reference genome sizes of 877438, 2801838, and
4639675 for the datasets SRR006331, SRR016146 and
SRR001665 respectively. For the calculation of scaffold
sizes, the intra-scaffold gaps are included. To see the
difference in assembly quality before and after error cor-
rection, we use the same set of parameters with the
stand-alone assemblers for our resulting DecGPU-Velvet
(D-Velvet) and DecGPU-ABySS (D-ABySS) assemblers
to conduct the assembly work (assembly results are
shown in Table 6), where DecGPU uses two fixing itera-
tions. From Table 6, D-Velvet yields superior N50 contig
sizes to Velvet, with not always higher N90 and maxi-
mum contig sizes, for all datasets. D-ABySS gives com-
parable N50, N90 and maximum contig sizes with
ABySS for all datasets. When scaffolding the paired-end
SRR001665, D-ABySS produces larger N50 scaffold size
than ABySS, but D-Velvet failed to outperform Velvet.
However, after further tuning the assembly parameters,
D-Velvet yields superior N50 scaffold size to Velvet for
SRR001665 (see Table 7). Moreover, larger N50 contig
sizes are produced by D-ABySS on SRR006331 and
SRR016146 respectively, which are better than the
outcome of ABySS. All these results suggest that our
algorithm has the potential to improve the de novo
assembly quality for de-Bruijn-graph-based assemblers.

Table 6 Assembly quality and parameters for different assemblers

Datasets Type Assembler N50 N90 MAX #Seq Parameters

SRR006331 Contig Velvet 6229 1830 21166 288 k = 23, cov_cutoff = auto

D-Velvet 7411 1549 17986 282

ABySS 5644 1505 15951 334 k = 24

D-ABySS 4789 1216 12090 371

SRR016146 Contig Velvet 34052 7754 112041 301 k = 31, cov_cutoff = auto

D-Velvet 34898 7754 134258 292

ABySS 34124 7758 112038 297 k = 33

D-ABySS 34889 7916 134314 297

SRR001665 Contig Velvet 17900 4362 73058 601 k = 29, cov_cutoff = auto

D-Velvet 18484 4687 73058 586

ABySS 18161 4364 71243 603 k = 30

D-ABySS 18161 4604 73060 595

Scaffold Velvet 95486 26570 268283 179 k = 31,exp_cov = auto, cov_cutoff = auto

D-Velvet 95429 26570 268084 175

ABySS 96308 25780 268372 124 k = 33, n = 10

D-ABySS 96904 27002 210775 122

92.3
96.7 97.196.9 97.4 97.7

79.8

86.6 88.2

60

70

80

90

100

Exact match 1 mismatch 2 mismatches

Pr
op

or
tio

n
of

 m
ap

pe
d

re
ad

s (
%

)

Maximum number of mismatches

Original
DecGPU
hSHREC

Figure 6 Percentage of mapped reads as a function of
maximum number of mismatches.

Liu et al. BMC Bioinformatics 2011, 12:85
http://www.biomedcentral.com/1471-2105/12/85

Page 10 of 13

The number of assembled sequences ("#Seq” column in
Tables 6 and 7) only counts in the sequences of lengths
≥ 100 bps, and the assembly output can be obtained
from Additional file 1.
The execution speed of DecGPU is evaluated using

the three real datasets in terms of: (1) scalability of the
CPU-based and GPU-based versions with respect to dif-
ferent number of compute resources, and (2) execution
time of the GPU-based version compared to that of
CUDA-EC (version 1.0.1) on a single GPU. Both of the
assessments are conducted on the already described
computing cluster. In addition to the absolute execution
time, we use another measure, called Million Bases Pro-
cessed per Second (MBPS), to indicate execution speed
and make the evaluation more independent of datasets.
Table 8 gives the execution time (in seconds) and MBPS
of the two versions on different number of CPU cores
and different number of GPUs respectively. On a quad-
core CPU, DecGPU achieves a performance of up to
1.7 MBPS for the spectrum construction ("Spectrum”
row in the table) and up to 2.8 MBPS for the error cor-
rection part ("EC” row in the table). On a single GPU,
our algorithm produces a performance of up to 2.9
MBPS for the spectrum construction and up to 8.0
MBPS for the error correction part. However, it can also
be seen that our algorithm does not show good runtime
scalability with respect to the number of compute

resources for either version. This is because our algo-
rithm intends to solve the memory constraint problem
for large-scale HTSR datasets, i.e. it requires the combi-
nation of results from distributed spectrums through
collective reduction operations on all reads, limiting its
runtime scalability. Subsequently, we compared the
execution speed of our algorithm with that of CUDA-
EC on a single Tesla T10 GPU (see Figure 7), where
CUDA-EC sets k-mer length to 21 and the minimum
multiplicity to 5. DecGPU runs on average about 2.4×
faster than CUDA-EC, with a highest of about 2.8 ×.
As mentioned above, DecGPU achieves memory effi-

ciency through the use of a counting Bloom filter. From
Equation 1, the FPP of a counting Bloom filter depends
on the values h and a. DecGPU uses eight hash func-
tions (i.e. h = 8) and has a maximal NB of 232. Thus, for
specific values of a and FPP, we can calculate the maxi-
mal value of NE. Table 9 shows the FPP and the maxi-
mal NE for a counting Bloom filter for some
representative values of a. In the following, we will dis-
cuss how to estimate the maximal size of a short read
dataset that can be processed with a fixed FPP by NPE

MPI processes (i.e. we are using NPE counting Bloom fil-
ters on NPE compute nodes). Following [11], the
expected number of times a unique k-mer in a genome
is observed in a short read dataset with coverage C and
read length L can be estimated as

E(Nkmer) =
C (L − k + 1)

L
(8)

Table 7 Assembly quality and parameters after further tuning parameters for some datasets

Datasets Type Assembler N50 N90 MAX #Seq Parameters

SRR006331 Contig D-ABySS 6130 1513 16397 311 k = 24, c = 7

SRR001665 Contig D-ABySS 20068 5147 73062 565 k = 31, c = 12

Scaffold D-Velvet 101245 30793 269944 146 k = 31, exp_cov = 36, cov_cutoff = 13

Table 8 Execution time and MBPS of DecGPU on different
number of compute resources

Datasets No. of CPU cores No. of GPUs

4 8 16 32 1 2 4 8

SRR006331 Spectrum Time(s) 36 19 11 7 21 15 9 9

MBPS 1.7 3.2 5.5 8.7 2.9 4.1 6.8 6.8

EC Time(s) 35 38 41 42 9 11 18 23

MBPS 1.7 1.6 1.5 1.5 6.8 5.5 3.4 2.7

SRR016146 Spectrum Time(s) 194 96 51 30 121 86 46 48

MBPS 1.2 2.4 4.4 7.5 1.9 2.6 4.9 4.7

EC Time(s) 194 168 175 206 63 53 43 45

MBPS 1.2 1.3 1.3 1.1 3.6 4.3 5.3 5.0

SRR001665 Spectrum Time(s) 473 247 136 86 297 231 133 137

MBPS 1.6 3.0 5.5 8.7 2.5 3.2 5.6 5.5

EC Time(s) 266 223 251 306 94 85 85 99

MBPS 2.8 3.4 3.0 2.4 8.0 8.8 8.8 7.6

84

397

905

30

184

391

0

200

400

600

800

1000

SRR006331 SRR016146 SRR001665

T
im

e(
s)

Datasets

CUDA-EC
DecGPU

Figure 7 Execution time comparison between DecGPU and
CUDA-EC.

Liu et al. BMC Bioinformatics 2011, 12:85
http://www.biomedcentral.com/1471-2105/12/85

Page 11 of 13

Thus, the number of reads NR in the dataset, which
can be processed with a fixed FPP by NPE MPI pro-
cesses, can be estimated as

NR = NPE × NE × E(Nkmer)
L − k + 1

= NPE × CNE

L
(9)

From Equation 9, we can see that NR is directly propor-
tional to NPE; i.e. the maximal number of reads scales line-
arly with the number of compute nodes. Next, we use an
example to illustrate how the memory consumption of
our algorithm scales with the number of reads. For an
example dataset with C = 75 and L = 36, when NPE = 8,
the maximal NR is estimated as 2.24 billion (80.5 billion
bases) for a = 0.25 and as 4.47 billion (161.1 billion bases)
for a = 0.5. Because each bucket takes 4 bits and the maxi-
mal NB is 232, the peak memory consumption of a count-
ing Bloom filter is 2 GB. Hence, the maximal total
memory consumption is only 2 GB × NPE = 16 GB for
such large a dataset. DecGPU uses a = 0.25 by default.
The above observations and discussions demonstrate

that DecGPU has superior capabilities in both error cor-
rection quality and execution speed compared to exist-
ing error correction algorithms. Even though our
algorithm does not show good parallel scalability with
respect to different number of computing resources, the
distributed feature of our algorithm does provide a feasi-
ble and flexible solution to the error correction of large-
scale HTSR datasets.

Conclusions
In this paper, we have presented DecGPU, the first par-
allel and distributed error correction algorithm for
large-scale HTSR using a hybrid combination of CUDA
and MPI parallel programming models. Our algorithm
is designed based on the SAP approach and uses a
counting Bloom filter data structure to gain space effi-
ciency. DecGPU provides two versions: a CPU-based
version and a GPU-based version. The CPU-based ver-
sion employs coarse-grained and fine-grained parallelism
using MPI and OpenMP parallel programming models.
The GPU-based version takes advantage of the CUDA
and MPI programming models, and employs a hybrid
CPU+GPU computing model to maximize the perfor-
mance by overlapping the CPU and GPU computation.
Compared to hSHREC, our algorithm shows superior

error correction quality for both simulated and real
datasets. On a workstation with two quad-core CPUs,
our CPU-based version runs up to 22× faster than
hSHREC. On a single GPU, the GPU-based version runs
up to 2.8× faster than CUDA-EC. Furthermore, the
resultant D-Velvet and D-ABySS assemblers demon-
strate that our algorithm has the potential to improve
de novo assembly quality, through prior-assembly error
correction, for de-Bruijn-graph-based assemblers.
Although our algorithm does not show good parallel
runtime scalability with respect to the number of com-
puting resources, the distributed characteristic of
DecGPU provides a feasible and flexible solution to
solve the memory scalability problem for error correc-
tion of large-scale datasets.

Availability and requirements
• Project name: DecGPU
• Project home page: http://decgpu.sourceforge.net
• Operating system: 64-bit Linux
• Programming language: C++, CUDA, and MPI 2.0
• Other requirements: CUDA SDK and Toolkits 2.0

or higher
• Licence: GNU General Public License (GPL) version 3

Additional material

Additional file 1: Assembled sequences of different assemblers. This
file contains the assembled sequences (contigs or scaffolds) for the
assemblers Velvet, ABySS, DecGPU-Velvet and DecGPU-ABySS for the
three real datasets.

List of abbreviations
CPU: Central Processing Unit; CUDA: Compute Unified Device Architecture;
FPP: False Positive Probability; GPU: Graphics Processing Units; HTSR: High-
Throughput Short Reads; MBPS: Million Bases Processed per Second; MPI:
Message Passing Interface; NGS: Next-Generation Sequencing; OpenMP:
Open Multi-Processing; OS: Operating System; PBSM: Per-Block Shared
Memory; SAP: Spectral Alignment Problem; SIMT: Single Instruction, Multiple
Thread; SM: Streaming Multiprocessor; SP: Scalable Processor; PE: Processing
Element.

Acknowledgements
The authors thank Dr. Shi Haixiang for his helpful discussion in short read
error correction problem, thank Dr. Zheng Zejun for his help in searching for
short read datasets, and thank Dr. Liu Weiguo for his help in providing the
experimental environments.

Authors’ contributions
YL conceptualized the study, carried out the design and implementation of
the algorithm, performed benchmark tests, analyzed the results and drafted
the manuscript; BS conceptualized the study, participated in the algorithm
optimization and analysis of the results and contributed to the revising of
the manuscript; DLM conceptualized the study, participated in the analysis
of the results, and contributed to the revising of the manuscript. All authors
read and approved the final manuscript.

Received: 9 July 2010 Accepted: 29 March 2011
Published: 29 March 2011

Table 9 FPP and maximal NE for representative a value

a FPP Maximal NE

1 2.5 × 10-2 536870912

0.5 5.7 × 10-4 268435456

0.25 5.7 × 10-6 134217728

0.125 3.6 × 10-8 67108864

Liu et al. BMC Bioinformatics 2011, 12:85
http://www.biomedcentral.com/1471-2105/12/85

Page 12 of 13

http://decgpu.sourceforge.net
http://www.biomedcentral.com/content/supplementary/1471-2105-12-85-S1.ZIP

References
1. Havlak P, Chen R, Durbin KJ, Egan A, Ren Y, Song XZ, Weinstock GM,

Gibbs RA: The Atlas genome assembly system. Genome Res 2004,
14(4):721-732.

2. Batzoglou S, Jaffe DB, Stanley K, Butler J, Gnerre S, Mauceli E, Berger B,
Mesirov JP, Lander ES: ARACHNE: a whole-genome shotgun assembler.
Genome Res 2002, 12(1):177-189.

3. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ,
Kravitz SA, Mobarry CM, Reinert KH, Remington KA, Anson EL, Bolanos RA,
Chou HH, Jordan CM, Halpern AL, Lonardi S, Beasley EM, Brandon RC,
Chen L, Dunn PJ, Lai Z, Liang Y, Nusskern DR, Zhan M, Zhang Q, Zheng X,
Rubin GM, Adams MD, Venter JC: A whole-genome assembly of
Drosophila. Science 2000, 287(5461):2196-2204.

4. Huang X, Wang J, Aluru S, Yang SP, Hillier L: PCAP: a whole-genome
assembly program. Genome Res 2003, 13(9):2164-2170.

5. Warren RL, Sutton GG, Jones SJ, Holt RA: Assembling millions of short
DNA sequences using SSAKE. Bioinformatics 2007, 23(4):500-501.

6. Dohm JC, Lottaz C, Borodina T, Himmelbauer H: SHARCGS, a fast and
highly accurate short-read assembly algorithm for de novo genomic
sequencing. Genome Res 2007, 17(11):1697-1706.

7. Jeck WR, Reinhardt JA, Baltrus DA, Hickenbotham MT, Magrini V, Mardis ER,
Dangl JL, Jones CD: Extending assembly of short DNA sequences to
handle error. Bioinformatics 2007, 23(21):2942-2944.

8. Schmidt B, Sinha R, Beresford-Smith B, Puglisi SJ: A fast hybrid short read
fragment assembly algorithm. Bioinformatics 2009, 25(17):2279-2280.

9. Pevzner PA, Tang H, Waterman MS: An Eulerian path approach to DNA
fragment assembly. Proc Natl Acad Sci USA 2001, 98(17):9748-9753.

10. Chaisson MJ, Pevzner PA: Short read fragment assembly of bacterial
genomes. Genome Res 2008, 18(2):324-330.

11. Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res 2008, 18(5):821-829.

12. Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES,
Nusbaum C, Jaffe DB: ALLPATHS: de novo assembly of whole-genome
shotgun microreads. Genome Res 2008, 18(5):810-820.

13. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I: ABySS: a
parallel assembler for short read sequence data. Genome Res 2009,
19(6):1117-1123.

14. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K,
Li S, Yang H, Wang J, Wang J: De novo assembly of human genomes
with massively parallel short read sequencing. Genome Res 2010,
20(2):265-272.

15. Salmela L: Correction of sequencing errors in a maxed set of reads.
Bioinformatics 2010, 26(10):1284-1290.

16. Schröder J, Schröder H, Puglisi SJ, Sinha R, Schmidt B: SHREC: a short read
error correction method. Bioinformatics 2009, 25(17):2157-2163.

17. Liu Y, Maskell DL, Schmidt B: CUDASW++: optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing
units. BMC Research Notes 2009, 2:73.

18. Liu Y, Schmidt B, Maskell DL: CUDASW++ 2.0: enhanced Smith-Waterman
protein database search on CUDA-enabled GPUs based on SIMT and
virtualized SIMD abstractions. BMC Research Notes 2010, 3:93.

19. Liu Y, Schmidt B, Maskell DL: MSA-CUDA: multiple sequence alignment
on graphics processing units with CUDA. 20th IEEE International
Conference on Application-specific Systems, Architectures and Processors 2009,
121-128.

20. Liu Y, Schmidt B, Liu W, Maskell DL: CUDA-MEME: accelerating motif
discovery in biological sequences using CUDA-enabled graphics
processing units. Pattern Recognition Letters 2010, 31(14):2170-2177.

21. Shi H, Schmidt B, Liu W, Müller-Wittig W: A parallel algorithm for error
correction in high-throughput short-read data on CUDA-enabled
graphics hardware. J Comput Biol 2010, 17(4):603-615.

22. Bloom BH: Space/time trade-offs in hash coding with allowable errors.
Commu ACM 1970, 13:422-426.

23. Shi H, Schmidt B, Liu W, Müller-Wittig W: Quality-score guided error
correction for short-read sequencing data using CUDA. Procedia
Computer Science 2010, 1(1):1123-1132.

24. Message Passing Interface (MPI) tutorial. [https://computing.llnl.gov/
tutorials/mpi].

25. OpenMP tutorial. [https://computing.llnl.gov/tutorials/openMP].

26. Fan L, Cao P, Almeida J, Broder AZ: Summary Cache: A Scalable Wide-
Area Web Cache Sharing Protocol. IEEE/ACM Transaction on Network 2000,
8:3.

27. Nickolls J, Buck I, Garland M, Skadron K: Scalable parallel programming
with CUDA. ACM Queue 2008, 6(2):40-53.

28. Lindholm E, Nickolls J, Oberman S, Montrym J: NVIDIA Tesla: A unified
graphics and computing architecture. IEEE Micro 2008, 28(2):39-55.

29. NVIDIA: Fermi: NVIDIA’s Next Generation CUDA Compute Architecture.
[http://www.nvidia.com/content/PDF/fermi_white_papers/
NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf].

30. NCBI homepage. [http://www.ncbi.nlm.nih.gov].
31. MVAPICH2 homepage. [http://mvapich.cse.ohio-state.edu/overview/

mvapich2].
32. Langmead B, Tranell C, Pop M, Salzberg SL: Ultrafast and memory-efficient

alignment of short DNA sequences to the human genome. Genome
Biology 2009, 10:R25.

doi:10.1186/1471-2105-12-85
Cite this article as: Liu et al.: DecGPU: distributed error correction on
massively parallel graphics processing units using CUDA and MPI. BMC
Bioinformatics 2011 12:85.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Liu et al. BMC Bioinformatics 2011, 12:85
http://www.biomedcentral.com/1471-2105/12/85

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/15060016?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11779843?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10731133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10731133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12952883?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12952883?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17158514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17158514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17893086?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17893086?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19535537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19535537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11504945?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11504945?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18083777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18083777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18349386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18349386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18340039?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18340039?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19251739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19251739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20019144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20019144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20378555?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19542152?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19542152?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19416548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19416548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19416548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20370891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20370891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20370891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20426693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20426693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20426693?dopt=Abstract
https://computing.llnl.gov/tutorials/mpi
https://computing.llnl.gov/tutorials/mpi
https://computing.llnl.gov/tutorials/openMP
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.ncbi.nlm.nih.gov
http://mvapich.cse.ohio-state.edu/overview/mvapich2
http://mvapich.cse.ohio-state.edu/overview/mvapich2
http://www.ncbi.nlm.nih.gov/pubmed/19261174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261174?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Introduction
	Spectral alignment problem
	Bloom filter data structure
	CUDA and MPI programming models

	Implementation
	DecGPU error correction algorithm
	Distributed spectrum construction
	Filtering out error-free reads
	Fixing erroneous reads
	Trimming erroneous reads

	Results
	Conclusions
	Availability and requirements
	Acknowledgements
	Authors' contributions
	References

