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Abstract

Background: Advances in biotechnology offer a fast growing variety of high-throughput data for screening
molecular activities of genomic, transcriptional, post-transcriptional and translational observations. However, to date,
most computational and algorithmic efforts have been directed at mining data from each of these molecular levels
(genomic, transcriptional, etc.) separately. In view of the rapid advances in technology (new generation sequencing,
high-throughput proteomics) it is important to address the problem of analyzing these data as a whole, i.e.
preserving the emergent properties that appear in the cellular system when all molecular levels are interacting. We
analyzed one of the (currently) few datasets that provide both transcriptional and post-transcriptional data of the
same samples to investigate the possibility to extract more information, using a joint analysis approach.

Results: We use Factor Analysis coupled with pre-established knowledge as a theoretical base to achieve this goal.
Our intention is to identify structures that contain information from both MRNAs and miRNAs, and that can explain
the complexity of the data. Despite the small sample available, we can show that this approach permits
identification of meaningful structures, in particular two polycistronic miRNA genes related to transcriptional activity
and likely to be relevant in the discrimination between gliosarcomas and other brain tumors.

Conclusions: This suggests the need to develop methodologies to simultaneously mine information from different

levels of biological organization, rather than linking separate analyses performed in parallel.

Background

Currently, it is possible to observe the activity (over-,
under- expression, presence or absence of mutations) of
almost all molecules of a given type (mRNA, miRNA,
DNA) in a single screen using high-density chips [1], or
sequencing related techniques [2,3]. Lately, the number of
studies using microarray platforms for analysis of mRNA
are quickly being followed by similar analyses related to
miRNAs [4,5]. Only recently both types of variables were
analyzed simultaneously [6-8], while, typically, both types
of data are analyzed in search for (i) molecules sharing
similarity, using simply the expression available at the time
(unsupervised approaches, [9]) e.g. clustering [10,11] and
association networks [12-14] or (ii) similarity with -or
dependency from- other types of traits, providing for
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example clinical classes or other non-molecular informa-
tion on the samples (supervised approaches, [9]) i.e. Signif-
icant Analysis of Microarray (SAM [15]), Gene Set
Enrichment Analysis (GSEA [16]). However, this approach
implies to analyze separately different aspects of a system
(e.g., transcriptional and/or post-transcriptional mechan-
isms) and the results may not be concordant with analyses
of the system as a whole. For example, interactions among
miRNAs and mRNAs may be underestimated or comple-
tely overlooked. This lack of information can be expressed
as missing the emergent properties of the system. While
the concept of emergent properties is well known in Sys-
tems Theory, it has only recently become an important
concept in the area of life sciences, thanks to the relatively
new approach of Systems Biology [17-20]. Emergent prop-
erties arise from hierarchical integration of the individual
components and organizational levels of complex systems,
and, biologically, they are only manifest when the organ-
ism is considered in its entirety. Analogous to emergent

© 2011 Fronza et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:christine@picb.ac.cn
http://creativecommons.org/licenses/by/2.0

Fronza et al. BMC Bioinformatics 2011, 12:86
http://www.biomedcentral.com/1471-2105/12/86

properties in systems biology is the concept of latent vari-
ables in multivariate statistics. Latent variables are
so-called hidden variables generated in certain types of
multivariate analysis (e.g. factor analysis, see below) which
are not evident in original observed data. Rather, these
latent variables emerge from consideration of the covar-
iance patterns when a large number of relevant variables
are analyzed simultaneously. These latent variables may
reflect a summarization of causal indicators underlying
observed biological variability. Given the parallelism
between biological systems’ emergent properties and latent
variables, we sought- quite naturally- to investigate the
ability of latent variables to describe emergent properties,
by applying multivariate analysis simultaneously to differ-
ent parts of a biological system, and notably to transcrip-
tional and post-transcriptional data. Previously, successful
parallel multi-platform analyses were performed integrat-
ing genomic and transcriptional level, by using CGH
arrays or SNPs and cDNA arrays [21,22]. This approach
portend to explain variations observed at the transcrip-
tional level, based on information at the genomic level.
These approaches can annotate and map different types of
probe IDs onto genomic coordinates [23], or add analyses
at the translational level [24]. However, to date, simulta-
neous analysis of miRNA and mRNA from the same tissue
have used only profile correlations [6]. Herein, we expand
analyses of molecular covariation beyond correlation of
expression profiles by using the multivariate statistical pro-
cedure of multiple or common Factor Analysis (FA, [25]).
This procedure is widely used to reduce the dimensional-
ity of multivariate data and to do so in a manner that elu-
cidates the underlying or latent structure of the observed
variation. Succinctly speaking, for a given set of molecular
data, factor analysis partitions the observed pair-wise cor-
relations between variables into that molecular covariation
that is common between the variables from that which is
unique to the individual variables. Application of FA
directly on biological data without any a priori hypothesis
about latent variables is ideal for data reduction. With this
approach FA was used extensively to cluster microarray
data [26-28]. The use of the a priori knowledge on how
each sample maps on tumor classes to constrain the rela-
tion between the latent variables under study and the fac-
tors obtained permits further data interpretation. In other
words we perform a FA that is driven by data (hypothesis)
pre-established to find latent variables that could be inves-
tigated to obtain biological information [29]. To constrain
the factor model we used Linear Discriminant Analysis
(LDA, [25]), a technique used to classify a set of observa-
tions into categories (a dichotomy in our case). In particu-
lar, in the following we will describe the methodology and
the results obtained from applying FA to mRNA and
miRNA data simultaneously, with the goal to identify
information that is not obvious when the analysis is
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performed on the 2 datasets separately, or when using
other approaches. In particular, the identification of a set
of co-localized miRNAs (cluster) with possible relevance
for the molecular description of gliosarcomas, appears to
emerge from this analysis only, showing the potential FA
in the identification of emergent properties. Besides LDA,
other classifiers (Support Vector Machine, Naive Bayes,
Neural Network and k-Nearest-Neighbours) were also
tested and performances are listed in Table S9 of the
Additional file 1. We only briefly mention here that most
of the performances are identical for all the classifiers, and
only for the Glioblastomas discrimination LDA shows
slightly more accuracy. These results indicate that the clas-
sification analysis is robust and gives stable results inde-
pendently from the choice of the classification algorithm.
Factor analysis proceeds from a matrix of pair-wise corre-
lations to extract a small number of factors that describe
the major patterns of common covariation. More formally,
the common factor model is based on the equation D =
LF + E, where D are the observed variables, L are the com-
mon factors, F are the coefficients or scores of the factors
and E are the unique factors, under the assumptions that
the unique factors are uncorrelated whith each other and
that F and E are independent. Since only common varia-
tion is analyzed, these individual factors describe the latent
structure underlying the major patterns of molecular cov-
ariation. The sign and magnitude of the factors coefficients
reflect the extent and direction of the correlation between
each variable and individual factor and describe the rela-
tive contribution of each variable to a particular pattern of
multivariate changes. FA derives a set of factor scores that
gives the relative location of each item in the reduced
latent variable subspace. The resultant factors, coefficients
and scores are interpreted in light of biological knowledge
about the specific data under study. FA can define a biolo-
gical model about the underlying nature of molecular cov-
ariation (e.g. number of patterns of covarying elements
and their relative importance). These models are evaluated
both biologically and statistically and subsequently used to
explain the structure and dynamics of complex biological
systems. FA and Principal Component Analysis (PCA,
[30]) involve several of the same statistical components
and are both useful for data reduction. Therefore few
words on the rationale for choosing FA instead of PCA
are necessary. PCA is an exact mathematical method that
returns a single solution where each component is ortho-
gonal and represents an element of variance in the sam-
ples (both biological and non-biological). Therefore,
although it is possible to force PCA in order to relax con-
straints like orthogonality we chose to apply FA since it is
more a natural choice to analyzes the common or shared
molecular variations and thus, describe the patterns of bio-
logical variation. Besides, the method commonly used to
estimate the common or shared molecular variations are
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based on multiple regression and therefore, for most of the
applications of FA, this standard approach is stable. There
exist several approaches to perform data reduction and
classification (see for example Bayesian classifiers [31-33],
Support Vector Machine [34], K-nearest-neighbor [35]),
however, FA has already been used successfully in various
applications related to molecular biology, like the identifi-
cation of multidimensional patterns of molecular covaria-
tion able to describe proteins’ structures [36]. More
classical approaches have been designed for effective clus-
tering in the analysis of cDNA microarrays and Expressed
Sequences Tag (ESTs) [37], as well as in specific applica-
tions to identify genes and pathways related to biological
categories that could be associated to relevant phenotypes
in both yeast and humans [38] or to test and validate
hypotheses on the association of gene expression to cispla-
tin resistance in ovarian cancer cell lines [39]. One of the
advantages of this approach over hierarchical clustering is
the possibility to include genes in more than one category.
More recently, FA was used to filter informative and non-
informative data from microarray for gene expression [40].
Variations of classical FA (Bayesian factor analysis) have
been used to identify the latent structure that describes
the relationship between transcription factors and genes,
using microarray data [41]. Previously, this approach was
used to perform gene network reconstruction in E. Coli
taking advantage of literature information, DNA
sequences and expression arrays [42]. We now propose to
apply FA to the composite analysis of multilevel molecular
data.

Results and Discussion

Because miRNAs and mRNAs are processed together,
from now on, Factors will always be likely to include
both mRNAs and miRNAs in their composition. To
avoid confusion on the meaning of the word gene, we
use the term coding genes to refer to mRNAs and the
generic term genes to refer both to mRNAs and miR-
NAs. The interpretation of factors based on associating
them to mRNAs/miRNAs (separately considering posi-
tive/negative scores) is a novelty of the presented
approach, and will be discussed in details in the coming
sections. In particular, in the following we will describe:
how we identified the latent factors and we will give

Table 1 Model Selection - Discriminant Analysis
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their interpretation, both using mRNA and miRNA
(indirect) functionalities. Then, we will describe the bio-
logical structure emerging from this analyis, and we will
speculate on its clinical meaning. Finally, we offer a
comparison with the results of an analysis done in paral-
lel, although more comparisons are provided in the
Additional file 1.

Identification of Multilevel Latent Structures

We performed several Factor Analyses and obtained
Models characterized by 1 to 5 factors (named here
Model n, n = 1,..., 5). We have used Kaiser criterion [43]
to identify the number of factors that show a large var-
iance (common variance in each factor greater than a
given threshold, ¢) and therefore carry a large amount of
the information hidden in the data. Given ¢ = 1 the
number of information-rich factors appears to be 4.
Therefore, FA was performed with a growing number of
such factors, from the one with higher variance, up to 5,
to test the appropriateness of the variance threshold.
We then confirmed the validity of a subset of the Mod-
els using LDA to identify which factor (or linear combi-
nation of factors) was able to best classify tumor grade
and histopathology, based on the statistical significance
of Fisher exact test [44]. This test, suited for contin-
gency tables where one or more expected frequencies
are below 5, evaluates the null hypothesis associated
with LDA that there are no statistically significant differ-
ences between the a priori clinically defined groups. The
models for which the null hypothesis was rejected were
retained (see Table 1 and Methods for details). There-
fore, we performed 4 LDA, namely between a class and
its complement: i.e. high/low grade, anaplastic/non-ana-
plastic, glioblastoma/non-glioblastoma and gliosarcoma/
non-gliosarcoma, following the original classification in
[6]. We did not consider oligodendroglioma relevant,
because of a single sample available. Model 3 appears to
be the most suitable, since it is able to discriminate
between anaplastic and non-anaplastic tumors with
100% accuracy (based only on Factor 2) and the other
two types of tumors with = 92% accuracy. Since ana-
plastic tumors are low grade tumors, Factor 2 is relevant
in the identification of low grade tumors in general with
= 92% accuracy, since the only oligodendroglioma

Model Tumor Grade Anaplastic Glioblastoma Gliosarcoma
1 - - -
2 2 (0.92, 0.045) F2Q1, 0075) - -
3 2 (0.92, 0.045) F2(1,0015 F14+F 2 (0.92, 0.015) F 1+F 3 (0.92, 0.018)
4 2 (0.92, 0.045) F2(1, 0,0075) F 1+F 2 (0.92, 0.015) F1(0.92, 0018
5 1(0.92, 0.045) 1(1,00015) - F 5(0.92, 0018

Tumors type and grade dual discrimination. In bold Accuracy; in italic p-value.
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appears to be elusive. It is worth noting that Model 4
shows the same performance scores, but with a greater
number of factors and Factor 4 does not appear to be
involved in class identification.

Interpretation of Multilevel Latent Structures mRNA
Functional Analysis

Working solely on Model 3, the mRNAs in each factor
were processed to detect enriched Gene Ontology (GO,
[45]) terms or UniProt (SP, [46]) keywords. The magni-
tude and sign of the factor scores (not the factor coeffi-
cients from the eigenvectors) give their relative
relationship with the expression of miRNA and mRNA.
Consequently, each row in the 3 factors score matrix (F1,
F2 and F3) was split into positive and negative portions
(F1" and F17; F2" and F27; F3" and F3") and analyzed
separately. F1" is associated with GO terms related to
response to stress and external stimuli. Terms from SP
keywords like secreted and glycoprotein were also found
in this subset. Thus this factor appears then to be related
with cell functions that process signal from the external
environment to the cell with membrane receptors
involved to the signal transduction. F2~ is also involved
in the signaling, including categories related to cell adhe-
sion, it appears then to be related to functions like che-
motaxis that are involved in inflammation processes.
Finally, F3" contains coding genes that are related to the
biological process that goes under the general term gene
expression. Gene expression includes all the mechanisms
such as transcription, translation, RNA maturation, pro-
teins transport and ubiquitination by which information
coded in the DNA is converted to a functional product.
All results are summarized in Table 2.

miRNA Indirect Functional Analysis

Since miRNAs are not included in any ontology data-
base, we performed an indirect functional analysis by
screening the functional terms associated with the
experimentally validated target coding genes of the miR-
NAs, extracted from TarBase [47]. Once the target

Table 2 Functional Analysis

Factor Ontology Terms Ontology

F1* Response to external stimulus GOBP

Secreted, glycoprotein SP
Plasma Membrane, transucer, extracellular, GO.MF, GO.CC,

receptor SP
F2 Signal, glycoprotein SP
Cell Adhesion SP

Extracellular region GO.CC

F3* Gene Expression GOBP

Functional analysis of the factors in Model 3. GO: Gene Ontology; BP:
Biological Process; CC: Cellular Component; MF: Molecular Function; SP: Swiss
Prot.
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coding genes were identified, they were manually anno-
tated via GO terms or SP keywords, as above (see
Table 3).

mRNa/miRNA Complex Functional Annotation

We then checked the functional classification’s coher-
ence between the indirect and direct functional analysis,
within each significantly annotated factor (i.e. F2°, F3%,
since no miRNA appeared in F1%). Thus, globally speak-
ing, F1* annotation is unchanged and related to
functions that are responsible for signal transduction. In
F27, 3 out of 7 target coding genes (CXCL12, TM6SF1
and AGTRI1) are annotated with terms that can be asso-
ciated to the categories significantly varied in the mRNA
functional analysis: F2” is then confirmed to be a factor
involved in functions related with adhesion and/or che-
motaxis. For the miRNAs in F3*, 5 out of 8 target cod-
ing genes (ARID4B, MYLIP, HIPK3, E2F1 and NCOA3)
are functionally related with the gene expression term
found in the mRNA functional analysis. Interestingly,
most of the terms (4/5) are related with mechanisms of
transcription regulation and only one with protein ubi-
quitination. After direct and indirect annotation, 2 miR-
NAs and 31 human coding genes in F3" were selected
as belonging to the same category (see Additional file 1,
Table S5). Not surprisingly, most of the coding genes in
this list are not predicted to be targets of the 2 miRNAs
that appear in the factor. In fact, the biological meaning
of the result is a set of genetic elements that share cov-
ariability in the expression pattern and we know that,
e.g. in animals, most of the control on gene expression
is performed by tuning translation. Therefore, the levels
of miRNAs and the mRNAs of direct targets are not
directly correlated [48]. As it is also suggested in [6] we
can imagine that our list of coding genes contains the
possible subset of indirect targets (functionally related
with the regulation of the transcription) of two miRNAs:
miR-17-5p, and miR-20b. Globally, F3" is confirmed to
be associated with gene expression, with transcription
regulation being the most common mechanism of
expression.

Emergent Properties

Since the transcription regulation term (F3") appears to
give the clearest biological information, coherent in
mRNAs and miRNA, we focused our efforts on this part
of the analysis. The total sets of mRNAs and miRNAs
returned from this analysis are listed in Table S6 and S7 of
the Additional file 1. Latent Structure Chromosomal Loca-
lization: Most of the miRNAs in F3" belong to two poly-
cistronic miRNA genes where miRNAs are lying in close
proximity on the chromosome. (The named clusters are
given in italics throughout the paper to improve readabil-
ity and avoid confusion with clusters emerging from
supervised or functional analyses). These polycistronic
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Table 3 Indirect Functional Analysis
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F3* F2
miRNA Target Terms miRNA Target Terms
Gene Gene
hsa-miR-9 BACE1 Endoplasmic reticulum, Golgi apparatus, hsa-miR-422b -
integral to membrane, Gol, gi apparatus,
Aspartyl protease
hsa-miR-363* - hsa-miR-23a  CXCL12 CELL ADHESION, CHEMOTAXIS, POSITIVE
REGULATION OF MONOCYTE CHEMOTAXIS,
EXTRACELLULAR SPACE
hsa-miR-20b* ARID4B TRANSCRIPTION REGULATION, NUCLEUS hsa-miR-193a -
MYLIP PROTEIN UBIQUITINATION, UBIQUITIN- hsa-miR-155 AGTRT  REGULATION OF NATRIURESIS, REGULATION
PROTEIN LIGASE ACTIVITY, NERVOUS SYSTEM OF CELL GROWTH, POSITIVE REGULATION
DEVELOPMENT OF INFLAMMATORY RESPONSE,
REGULATION OF BLOOD VESSEL SIZE BY
RENIN-ANGIOTENSIN
HIPK3 TRANSCRIPTION REGULATION, NUCLEUS LDOC1 negative regulation of cell proliferation
CDKNTA negative regulation of cell proliferation, MATR3  nuclear matrix, RNA binding, protein binding
response to toxin, response to UV, positive
regulation of programmed cell death, cyclin-
dependent protein kinase inhibitor activity
hsa-miR-19a* PTEN induction of apoptosis, regulation of cyclin- BACH1 Transcription regulation, Nucleus,
dependent protein kinase activity transcription factor activity
hsa-miR-17-5p* E2F1 TRANSCRIPTION REGULATION, NUCLEUS, TM6SF1 MEMBRANE
TRANSCRIPTION FACTOR ACTIVITY
NCOA3  POSITIVE REGULATION OF TRANSCRIPTION, TP53INP1 INDUCTION OF APOPTOSIS
DNA-DEPENDENT, NUCLEUS, HISTONE
ACETYLTRANSFERASE ACTIVITY
hsa-miR-17-3p* - -
hsa-miR-130b - -

Target coding genes and annotation terms for miRNAs that were selected in Model 3. In capital letters categories that are related with the ones found by direct
enrichment analysis on mRNAs. In italics categories not shared with the direct enrichment analysis. For F3* miRNAs marked with * belong to the identified

polycistronic miRNA genes.

miRNA genes are involved in cell proliferation, apoptosis
suppression, tumor angiogenesis [49] and T cell leukemia
[50]. The first polycistronic gene (miR-17-92) is composed
by 7 miRNAs and maps on Chromosome 13 whereas the
second one (miR-106-363) maps on Chromosome x and
contains 6 miRNAs, details are shown in Figure 1. The
two clusters are closely related, in fact, each miRNA on
one cluster has at least one homologous in the other clus-
ter except for miR-17-3p and miR-363 that do not share
homology with the other miRNAs (shown in Figure 1). As
further corroborating test, we observed that, when search-
ing the target coding genes of homologous miRNAs (miR-

20a, miR-17-5p and miR-106a) the list of predicted targets
(Targetscan, [51]) is identical for all miRNAs. Moreover,
we notice that only two homologous groups of miRNAs in
the cluster (miR-18 and miR-92) are not part of F3". If we
look at their sequence in detail we observe that they are
very similar to miR-20a with only two mismatches: one in
the loop (miR-18a and 18b) and one after the supplemen-
tary pairing region (miR-18b). This can represent a partial
functional redundancy since all the known key regions
in target recognition are identical. Conversely, miR-92
does not share any significant homology with the other
members of the cluster (except for the seed region with

19b-1 92a-1

miRNA in F3+

miR-17-92

miR-106-363

between MiRNAs.

Figure 1 Organization of miRNA. clusters miR-17-92 and miR-106-363. Structure of the two polycistronic miRNA gene and the relations

chr 13 (+)

miRNA not in F3+
not homologous to F3+

mIRNA not in F3+
homologous to F3+
—

chr X (-)

Homolgy relationship




Fronza et al. BMC Bioinformatics 2011, 12:86
http://www.biomedcentral.com/1471-2105/12/86

miR-363). Taking into consideration all the redundancies
in the clusters, most of the transcript targets in F3* are
probably under the regulation effect of the expressed miR-
NAs. It is worth noting that a cross-hybridization effect in
miRNAs could be considered the mechanism responsible
for these association in clusters. But, as reported by the
authors of the dataset [6], each primer and probe con-
tained zip-coded sequences specifically assigned to each
miRNA to increase the specificity of each reaction so that
even small differences in miRNA were amplified and
detected. So, this artifact can be discarded as explanation
for the emerging of clusters of miRNA. Statistical Rele-
vance: Interestingly, in F3", only 2 miRNAs (hsa-mir-9
and hsa-mir-130b) out of 7 do not belong to any of these
two clusters. Their role was shown respectively to be
related to the molecular pathogenesis of ovarian cancer
[52] as well as to schizophrenia and Human T-cell leuke-
mia Virus-1 (HTLV-1) transformation [53,54]. Six more
miRNAs (miR-106a, miR-18a and miR-18b, miR-20a,
miR19b-1 and miR-19b-2) that belong to these two clus-
ters could not be part of our analysis, as they were not
part of Liu’s original dataset. Given the high density of
miRNAs in these clusters, we used the hypergeometric dis-
tribution to compute the probability associated with the
hypothesis that a random sampling would give the same
result in terms of number of cluster members in cluster
miR-17-92 (3 members out of 4 total), in cluster miR-106-
363 (2 members out of 3 total) and in both (5 members
out of 7 total). The reference group for computing the
probability consists of the total number of detected miR-
NAs (93). The resultant probabilities were Bonferroni cor-
rected and were equal to 3.6 x 1073, 0.045 and 2.3 x 1077
respectively. All three are statistically significant.

Speculations on Molecular-Clinical Implications

Ultimately, we speculated on how the two clusters that
emerge in F3" can, along with the molecular analysis
performed on F1, discriminate between gliosarcomas
and non-gliosarcomas. This choice is due to the fact
that our analysis has shown that the combination of fac-
tors that carry the more coherent functional information
(both from miRNAs and mRNAs signals) was the com-
bination able to discriminate glioscarcomas from other
tumors. Believing that such a coherence could hide
strong biological meanings we focused on gliosarcomas
the efforts to detect emergent properties. This complex
task, that cannot be fully explained with the data and
results in hand, can take advantage of intriguing obser-
vations emerging from the analysis. We notice, in fact,
that the presence of the sarcomatous element, that
derives from an endothelial hyperplasic lesion [55], is a
characteristic of these kinds of tumor. The hyperplasic
lesion is a proliferation of vessel-wall components that
contains endothelial cells, myofibroblast, smooth muscle
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cells and other components of the vascular endothelium
[56]. In [49] it is also shown that cluster miR-17-92 is
related to solid tumors angiogenesis. The finding of this
cluster, and the homologous miR-106-363, in the factor
that contributes to discriminate gliosarcomas, could
then indicate an involvement in the development of the
sarcomatous element.

Identification and Interpretation of Simple Latent
Structures

In this Section we present results obtained from analyz-
ing with FA and LDA the two datasets (mRNA and
miRNA) separately. Our original hypothesis dealt with
the ability of the complex analysis to identify emergent
properties. To evaluate this hypothesis we produced a 3
factor model with factor analysis on the two expression
matrices separately. Next, we analyzed the two series of
factor scores using separate LDA. In this Section we
identify with F,,;i Factor i obtained from the miRNA
dataset and with F,,j Factor j from the mRNA dataset (Fk
continues to identify Factor k from the joint dataset.
Regarding the identification of the latent structures, as
expected and given the larger size of the mRNA matrix,
the results in terms of discrimination power among
tumor classes and the functional analysis are unchanged.
However, the situation is different for the miRNA data.
As shown in Table 4 only high/low grade tumors and
anaplastic/non analplastic categories are predicted with
the same accuracy (and on the same factor, F,,;2). The
accuracy is lower, 0.83 (p = 0.08) versus 0.92 (p = 0.015)
for the glioblastoma/non-glioblastoma category. This
occurs because one of the glioblastomas is predicted as a
non-glioblastoma. Furthermore, the discrimination
appears to be based on a linear model composed only by
F,,;1 and not on a combination (see F1 and F2 in the
complex analysis). The discrimination between gliosarco-
mas and its dual class is the worst, as accuracy drops to
0.75 (p = 0.23) and F,,,;3 is not used in discrimination.
For what concerns the interpretation of the latent struc-
tures, out of the 18 miRNAs selected, 9 are in common
with the joint analysis and 9 represent a new set of miR-
NAs. Five of the miRNAs in the new set are associated
with biological terms, and only one (hsa-miR-126) is
shared by more than one factor (F,,;1 and F,,;2). F,,;1
contains 5 terms, F,,;2 2 terms (a subset of F,,;1) and
F,,;3 2 terms (for details see Additional file 1, Table S8).
These are related with the regulation of the transcription
(in F,,;1 and F,,;3) and they show some overlap with the
mRNAs Factors annotation. Namely, biological terms in
F,,;1 overlap with all the three F,, whereas terms in F,,;2
overlap only with F,,2. Terms in F,,;3 are found both in
F,,2 and F,,3. With respect to the comparison to the
complex analysis, since these miRNAs are mostly clus-
tered in homologous factors it is possible to associate
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Table 4 Performances of Model 3 using only miRNA data

(@) Tumor Grade (b) Anaplastic
High/Low Grade Anaplastic
P High P Low P Anap P *Anap
High 9 0 Anap 10 0
Low 1 2 * Anap 0 2
p = 0.045 p = 0.015
(c) Glioblastoma (d) Gliosarcoma
GlioblastEoma Gliosarcoma
P Gilo P*GLio P Gsar P * Gsar
Glio 5 1 Gsar 2 1
* Glio 1 5 * Gsar 2 7
p =008 p =023

These Tables shows the classification performances of Model 3 on expression
data of miRNA only. Significant classifications in bold (p < 0.05). Anap:
Anaplastic; *Anap: non Anaplastic, Glio: glioblastoma; *Glio: non glioblastoma,
Gsar: gliosarcoma; *Gsar: non gliosarcoma.

F,,;3 with F1, F,,;2 with F2 and F,,;3 with F1). The miR-
NAs shared with the complex analysis and that return an
annotation are in F,,;2 (both miR-155 and miR-23a) and
F,.;3 (miR-155). However, without the joint analysis there
is no obvious rationale to associate miRNA factors with
mRNA factors. This is because, crucially, the 18 miRNAs
obtained are distribuited over factors that are decoupled
from the factors returned from the simple mRNA data
analysis. Therefore this approach does not suggest any
obvious association between the two sets of factors. As a
consequence, the interpretation of this latter (simple)
analysis is limited to the indirect functional annotation of
this small set of miRNA (Additional file 1, Table S8).
Therefore, the activation of the polycistronic clusters
miR-17-92 and miR-106-363 does not emerge when miR-
NAs are analysed separately. In summary, combining the
two datasets and applying FA and LDA, provides an
obvious way to associate the translational and post-
translational information. In particular, although the
mRNA latent structure is the same in the simple and
complex analysis, and consequently the functional anno-
tation is the same, hidden signals present in the smaller
dataset (miRNA set) appear to be amplified by the signals
present in the larger dataset (mRNA set) thanks to their
association in a common latent structure.

Conclusions

The capability to discriminate between a priori defined
classes can be achieved in a variety of ways (a comparison
with supervised and unsupervised algorithms is provided
in the Additional file 1). However, the capacity to generate
factors explaining the complexity of the molecular interac-
tions requires the ability to construct multilevel clusters.
With the data at hand we showed that this cannot be
achieved in parallel analysis (versus simultaneous or joint)
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of the two datasets (MRNA and miRNA) or with other
approaches we evaluated. The interpretation of factors
based on associating them to mRNA/miRNAs represents
the major contribution of this work. Certainly, the study
of [6] shows sample size limitations (12 patients enrolled)
therefore our analyses must be considered as an exemplar
of the factor analysis approach. Globally, based on this
analysis, since the miRNAs in F3" belong to two redun-
dant clusters of miRNA, we can speculate that: 1) one of
the biological functions in which these clusters could be
involved is the regulation of the transcription and 2) in
some way, in brain tumors these two clusters are active
whereas, in normal cells, only miR-17-92 appears to be
constitutively expressed. Probably both clusters act on the
same set of coding genes, but the two loci are regulated
separately in normal cells [50]. Nevertheless, despite this
strong relationship between the 2 clusters it is difficult to
understand how this redundancy works effectively in cells.
However, the finding of a possible activation of the poly-
cistronic genes miR-17-92 and miR-106-363 represents an
encouraging evidence that the factorization of the miRNA
and mRNA data can reveal latent structure in the config-
uration of the expression levels in tumor samples. Despite
obvious limitations, we believe our results clearly show
that this approach is a very powerful one for the study of
multilevel omic data, which in turn can bring more insight
into understanding the complex mechanisms of the trans-
mission of information in the cell as a whole.

Methods

In this work, we applied FA to the dataset from [6].
These data consist of 12 microarray samples (for mRNA
genome-wide expression, around 14,500 coding genes)
and 12 real-time PCR (for the profile of 93 miRNAs),
performed on the same 12 human primary brain tumor
biopsies (details in Additional file 1, Table S1). On this
test case dataset, we first identified the best FA model
(i.e. the appropriate number of factors) based on the
models’ ability to explain the relevant clinical and histo-
pathological information. Next, we characterized the fac-
tors based on 3 properties: 1) their ability to discriminate
among tumor types -this was done using Linear Discri-
minant Analysis (LDA, [25]), a supervised classifier able
to find the linear combination of factors which best sepa-
rates two pre-defined classes; 2) their functional biologi-
cal characterization with the help of literature and
databases; 3) their complex biological characterization,
by searching novel properties emerging from the joint
analysis of miRNA and mRNAs. The procedure is sum-
marized in Figure 2.

Data Preprocessing
Data from [6] were transformed by computing log, of
the intensity value of mRNA expression (miRNA data



Fronza et al. BMC Bioinformatics 2011, 12:86
http://www.biomedcentral.com/1471-2105/12/86

come already in log, from real-time PCR). Quality selec-
tion filtering was performed removing every row
(mRNA or miRNA expression across 12 experiments)
with maximum fold change below 2.5; this reduced the
dataset from 7182 IDs to 4966 IDs. The filtering was
decided to select genetic elements with strong signal of
variation. This criterion was selected as natural conse-
quence of the filtering performed by the authors of the
dataset [6] that used the same conditions to reduce the
number of the IDs. Data were also normalized in differ-
ent ways according to:

Xij — m; X
i = , were M; and m; are the maximum
Mi — m;

and minimum values in the ith row, and «x;; is the
expression of gene i on sample j.

2 _ Xij—m
Y Mi — m;
sion level in the ith row, and x; is the expression of
gene i on sample ;.

. X + Wi, where y;, is the average expres-

The two methods map the expression level in an
interval comprised between 0 and 1 the first and y; and
u; + 1 the second (in order to introduce in the model
also the difference in expression beween genes). The
two normalizations give identical results in the Factor
Analysis step as expected. In fact, expression signals
obtained from qPCR are different from signals obtained
from microarrays due to the extended dynamic range of
the former. It is common [57,58], in order to validate a
set of coding genes obtained by microarray, to express
the mRNA level in each sample as a fraction of the
expression level in the sample in which that mRNA is
most abundant. So, from this point on, miRNA and
mRNA expression data were analyzed together, as a sin-
gle expression table with normalization 56,;
Factor Analysis
The Factor Analysis model can be defined in matrix
notation as: D = LF + ¢, where D(m x n) represents the
data matrix, L(m x [) is the factors loadings matrix,
F(I x n) is the factors scores matrix and (m x n) is the
unique factors matrix. Furthermore, m are the number
of samples, # the number of genetic elements and / the
number of factors. Our model assumes that F and ¢ are
indipendent, E(F) = 0, and Cov(F) = I. Under these con-
ditions Cov(D) = LLY + Cov(e), for the sake of clarity
LL" is named communality and Cov(e) uniqueness.
Variability in a human tumor expression dataset arises
from several sources besides tumor type, including
human variability (sex, age, race) and experimental
variability (systematic and stochastic errors). Available
information is about tumor types, therefore, our model
explicitly involves tumor types variability, and groups

Page 8 of 11

other causes within the ¢ term, showing the power of
the FA method. In our work, we were interested in dis-
covering the hidden or latent structure within tumor
types, therefore FA is applied using the model D = X,
The R-package HDMD developed by Lisa McFerrin at
North Carolina State University was used to take advan-
tage of the principal axes algorithm. Communalities
were estimated by iteratively updating the diagonal of
the correlation matrix and solving the eigenvector
decomposition. Axes were rotated to simple structure
using the Promax algorithm to improve their interpret-
ability. The simple structure obtained after rotation
meets the requirements proposed by Thurstone [59,60]
to ensure the stability of FA results. The factor score
matrix was analyzed for each of the 5 models (from 1 to
5 embedded factors). The scores associated to the genes
within each factor were ranked in descending order. All
3 factors presented a similar scores distribution with
average 4 = 0 and standard deviation ¢ = 0.75. Selection
has been performed by looking at the value distribution
of each row of matrix F and then considering as genes
associated with a factor only those whose corresponding
score is outside the 20 interval. In this way, only genes
with a strong relation in the same factor were selected.

Discriminant Analysis

The factor loadings coefficients matrix of each model
was used to perform LDA. Four dichotomous categories
(given by a class and its negate, e.g. glioblastoma/non-
glioblastoma etc.) were defined (Table 1). LDA was also
performed to assess the most likely class of sample T18
which had an ambiguous classification (glioblastoma/
gliosarcoma), see Additional file 1, Table S2. R-package
MASS [61], function lda() configured to perform a clas-
sical cross-validation classification (jack-knife method,
also known as leave-one-out validation) was used. In
particular we used a step-wise greedy strategy, i.e. check-
ing performances with one factor, and adding another
factor, iteratively. All possible equivalent combination of
factors were tested, and the most performant with the
smallest number of factors involved was chosen.

Model Selection

To evaluate the performances of each factor model on
the four tumor classes, we evaluated the contingency
table obtained from the discriminant analysis by Fisher’s
exact test. The null hypothesis assuming that the discri-
mination between two tumor classes is due to chance
was rejected for p < 0.05. For models with similar pre-
diction scores we kept the one with fewer factors.

Functional Classification
On both FA and clustering (used as alternative method to
our approach, see Additional file 1) functional analysis
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was performed using the online tool DAVID [62,63]
using GO terms, Kegg pathways terms, SP keywords and
features and InterPro terms. The whole list of 4876 probe
ID was used as background population. In order to
reduce the number of non significant associations, a

resulting functional cluster was further analyzed if and
only if it contained at least one category with Benjamin
score < 0.05. The indirect functional analysis performed
to describe miRNAs relevance was performed by search-
ing manually in TarBase [47] all the known coding genes
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that are target of the miRNAs identified by the FA and
clustering. Then for each gene a list with all the asso-
ciated GO terms was compiled. Due to the small number
of targets obtained no p-value could be associated to any
GO term.

Additional material

[ Additional file 1: Supplementary information. ]

Acknowledgements

The authors would like to thank prof Casadio for organizing and actively
taking part in the exchange between the University of Bologna and PICB, for
her enthusiasm and knowledge. The authors would like to thank prof
Cavalcanti for actively and ethusiastically contributing to the exchange as
well, and they would particularly like to acknowledge him, since, to the
regret of all who knew him, has unexpectedly passed away since the
exchange was set up. This work is funded by the Sino-Swiss Science and
Technology Cooperation Project (Grant no.GJHZ0911). WRA's participation
was supported by a CAS Distinguished International Professorship. RF and
MT are Fellows of the Official Exchange Agreement between the University
of Bologna and MPG-CAS PICB.

Author details

'Key Laboratory of Computational Biology, MPG-CAS PICB, Shanghai, PR
China. Biocomputing Unit, University of Bologna, Bologna, Italy. *DEIS,
University of Bologna, Bologna, Italy. 4Depanment of Genetics, North
Carolina State University, Raleigh, NC, USA.

Authors’ contributions

RF analyzed the data with the help of MT and provided the biological
interpretation. WRA provided strong theoretical support for the study, CN
ideated the study and wrote the paper with the contribution of WRA and
RF. All authors have read and approved the final manuscript.

Received: 21 July 2010 Accepted: 30 March 2011
Published: 30 March 2011

References

1. Guiducci C, Nardini C: High Parallelism, Portability and Broad
Accessibility: Technologies for Genomics. ACM J Emerg Technol Comput
Syst 2008, 4:Article 3.

2. Holt RA, Jones SJ: The new paradigm of flow cell sequencing. Genome
Res 2008, 18(6):839-846.

3. Wang Z Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for
transcriptomics. Nat Rev Genet 2009, 10:57-63.

4. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R,
lorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A,
Vecchione A, Negrini M, Harris CC, Croce CM: A microRNA expression
signature of human solid tumors defines cancer gene targets. Proc Nat/
Acad Sci USA 2006, 103(7):2257-2261.

5. Yang N, Kaur S, Volinia S, Greshock J, Lassus H, Hasegawa K, Liang S,
Leminen A, Deng S, Smith L, Johnstone CN, Chen XM, Liu CG, Huang Q,
Katsaros D, Calin GA, Weber BL, Bltzow R, Croce CM, Coukos G, Zhang L:
MicroRNA microarray identifies Let-7i as a novel biomarker and
therapeutic target in human epithelial ovarian cancer. Cancer Res 2008,
68(24):10307-10314.

6. Liu T, Papagiannakopoulos T, Puskar K, Qi S, Santiago F, Clay W, Lao K,
Lee Y, Nelson SF, Kornblum Hl, Doyle F, Petzold L, Shraiman B, Kosik KS:
Detection of a microRNA signal in an in vivo expression set of mRNAs.
PLoS One 2007, 2(8):e804.

7. lanza G, Ferracin M, Gaf'a R, Veronese A, Spizzo R, Pichiorri F, gong Liu C,
Calin GA, Croce CM, Negrini M: mRNA/microRNA gene expression profile
in microsatellite unstable colorectal cancer. Mol Cancer 2007, 6:54.

8. Panguluri SK, Bhatnagar S, Kumar A, McCarthy JJ, Srivastava AK, Cooper NG,
Lundy RF, Kumar A: Genomic profiling of messenger RNAs and

10.

22.

24.

28.

30.

Page 10 of 11

microRNAs reveals potential mechanisms of TWEAK-induced skeletal
muscle wasting in mice. PLoS One 2010, 5.

Butte A: The use and analysis of microarray data. Nature Reviews Drug
Discovery 2002, 1:951-960.

Quackenbush J: Computationa Analysis of Micorarray Data. Nat Rev Genet
2001, 2(6):418-427.

Madeira SC, Oliveira AL: Biclustering Algorithms for Biological Data
Analysis: A Survey. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 2004, 1:24-45.

Margolin AA, Nemenman |, Basso K, Klein U, Wiggins C, Stolovitzky G,
Favera RD, Califano A: ARACNE: An Algorithm for the Reconstruction of
Gene Regulatory Networks in a Mammalian Cellular Context. 2004.
Meyer PE, Lafitte F, Bontempi G: minet: A R/Bioconductor package for
inferring large transcriptional networks using mutual information. BMC
Bioinformatics 2008, 9:461-461.

Neretti N, Remondini D, Tatar M, Sedivy JM, Pierini M, Mazzatti D, Powell J,
Franceschi C, Castellani GC: Correlation analysis reveals the emergence of
coherence in the gene expression dynamics following system
perturbation. BMC Bioinformatics 2007, 8(Suppl 1).

Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays
applied to the ionizing radiation response. Proc Natl Acad Sci 2001,
98(9):5116-5121.

Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J,
Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ,
Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES,
Hirschhorn JN, Altshuler D, Groop LC: PGC-1a-responsive genes involved
in oxidative phosphorylation are coordinately downregulated in human
diabetes. Nat Genet 2003, 34(3):267-273.

Kitano H: Systems Biology: A Brief Overview. Science 2002,
295(5560):1662-1664.

Hocquette JF: Where are we in genomics? Journal of Physiology and
Pharmacology 2005, 56(3):37-70.

Ahn AC, Tewari M, Poon CS, Phillips RS: The Limits of Reductionism in
Medicine: Could Systems Biology Offer an Alternative? PLoS Medicine
2006, 3(6):€208.

Ahn AC, Tewari M, Poon CS, Phillips RS: The Clinical Applications of a
Systems Approach. PLoS Medicine 2006, 3(7):e209.

Yao J, Weremowicz S, Feng B, Gentleman RC, Marks JR, Gelman R,
Brennan C, Polyak K: Combined cDNA array comparative genomic
hybridization and serial analysis of gene expression analysis of breast
tumor progression. Cancer Res 2006, 66(8):4065-4078.

Lindblad-Toh K, Tanenbaum DM, Daly MJ, Winchester E, Lui WO,
Villapakkam A, Stanton SE, Larsson C, Hudson TJ, Johnson BE, Lander ES,
Meyerson M: Loss-of-heterozygosity analysis of small-cell lung
carcinomas using single-nucleotide polymorphism arrays. Nat Biotechnol
2000, 18(9):1001-1005.

Yang TP, Chang TY, Lin CH, Hsu MT, Wang HW: ArrayFusion: a web
application for multi-dimensional analysis of CGH, SNP and microarray
data. Bioinformatics 2006, 22(21):2697-2698.

Mijalski T, Harder A, Halder T, Kersten M, Horsch M, Strom TM, Liebscher HV,
Lottspeich F, de Angelis MH, Beckers J: Identification of coexpressed gene
clusters in a comparative analysis of transcriptome and proteome in
mouse tissues. Proc Natl Acad Sci USA 2005, 102(24):8621-8626.

Johnson RA, Wichern DW: Applied Multivariate Statistical Analysis Upper
Saddle River, NJ: Prentice Hall; 2002.

Sherlock G: Analysis of large-scale gene expression data. Brief Bioinform
2001, 2(4):350-62.

Peterson LE: Factor analysis of cluster-specific gene expression levels
from cDNA microarrays. Comput Methods Programs Biomed 2002,
69(3):179-88.

Lozano JJ, Soler M, Bermudo R, Abia D, Fernandez PL, Thomson TM,

Ortiz AR: Dual activation of pathways regulated by steroid receptors and
peptide growth factors in primary prostate cancer revealed by Factor
Analysis of microarray data. BMC Genomics 2005, 6:109.

Crijns APG, Gerbens F, Plantinga AED, Meersma GJ, de Jong S, Hofstra RMW,
de Vries EGE, van der Zee AGJ, de Bock GH, te Meerman GJ: A biological
question and a balanced (orthogonal) design: the ingredients to eciently
analyze two-color microarrays with Confirmatory Factor Analysis. BMC
Genomics 2006, 7:232.

Jollie T: Principal Component Analysis New York: Springer-Verlag New York
Inc; 1986.


http://www.biomedcentral.com/content/supplementary/1471-2105-12-86-S1.PDF
http://www.ncbi.nlm.nih.gov/pubmed/18519653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19015660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19015660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16461460?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16461460?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19074899?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19074899?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17726534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17716371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17716371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12461517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11389458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15579438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15579438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18959772?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18959772?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17430560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17430560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17430560?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11309499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11309499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12808457?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12808457?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12808457?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11872829?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16077195?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16681415?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16681415?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16683861?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16683861?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16618726?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16618726?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16618726?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10973224?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10973224?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16935928?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16935928?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16935928?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15939889?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15939889?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15939889?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11808747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12204446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12204446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16107210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16107210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16107210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16968534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16968534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16968534?dopt=Abstract

Fronza et al. BMC Bioinformatics 2011, 12:86
http://www.biomedcentral.com/1471-2105/12/86

31

32,

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

52.

53.

54.

Langley P, Iba W, Thompson K: An analysis of Bayesian classifiers.
Proceedings of AAAI 1992, 92:223-228.

Friedman N: The bayesian structural em algorithm. Proceedings of the
Conference on Uncertainty in Artificial Intelligence 1998, 98:129-138.

Persson O, Krogh M, Saal LH, Englund E, Liu J, Parsons R, Mandahl N,

Borg A, Widegren B, Salford LG: Microarray analysis of gliomas reveals
chromosomal position-associated gene expression patterns and
identifies potential immunotherapy targets. J Neurooncol 2007, 85:11-24.
Furey TS, Cristianini N, Duy N, Bednarski DW, Schummer M, Haussler D:
Support vector machine classification and validation of cancer tissue
samples using microarray expression data. Bioinformatics 2000,
16(10):906-14.

Theilhaber J, Connolly T, Roman-Roman S, Bushnell S, Jackson A, Call K,
Garcia T, Baron R: Finding genes in the C2C12 osteogenic pathway by
k-nearest-neighbor classification of expression data. Genome Res 2002,
12:165-76.

Atchley WR, Zhao J, Fernandes AD, Driike T: Solving the protein sequence
metric problem. Proc Natl Acad Sci USA 2005, 102(18):6395-6400.
Peterson LE: Factor analysis of cluster-specific gene expression levels
from cDNA microarrays. Comput Methods Programs Biomed 2002,
69(3):179-188.

Lozano JJ, Soler M, Bermudo R, Abia D, Fernandez PL, Thomson TM,

Ortiz AR: Dual activation of pathways regulated by steroid receptors and
peptide growth factors in primary prostate cancer revealed by Factor
Analysis of microarray data. BMC Genomics 2005, 6:109-109.

Crijns AP, Gerbens F, Plantinga AE, Meersma GJ, de Jong S, Hofstra RM, de

Vries EG, van der Zee AG, de Bock GH, te Meerman GJ: BMC Genomics 2006,

7:232-232.

Kasim A, Lin D, Van Sanden S, Clevert DA, Bijnens L, Géhlmann H,
Amaratunga D, Hochreiter S, Shkedy Z, Talloen W: Informative or
Noninformative Calls for Gene Expression: A Latent Variable Approach.
Statistical Applications in Genetics and Molecular Biology 2010, 9:Article 4.
Pournara I, Wernisch L: Factor analysis for gene regulatory networks and
transcription factor activity profiles. BMC Bioinformatics 2007, 8:61-61.
Sabatti C, James GM: Bayesian sparse hidden components analysis for
transcription regulation networks. Bioinformatics 2006, 22(6):739-746.

von Zerssen D: Psychiatric syndromes from a clinical and a biostatistical
point of view. Psychopathology 1985, 18(2-3):88-97.

Sokal RR, Rohlf FJ: Biometry New York: Freeman; 2003.

Consortium TGO: Creating the Gene Ontology Resource: Design and
Implementation. Genome Res 2001, 11(8):1425-1433.

Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S,

Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA,
O'Donovan C, Redaschi N, Yeh LSL: The Universal Protein Resource
(UniProt). Nucleic Acids Res 2005, , 33 Database: D154-9.

Papadopoulos GL, Reczko M, Simossis VA, Sethupathy P, Hatzigeorgiou AG:
The database of experimentally supported targets: a functional update
of TarBase. Nucleic Acids Res 2009, , 37 Database: D155-8.

Williams AE: Functional aspects of animal microRNAs. Cell Mol Life Sci
2008, 65(4):545-62.

Mendell JT: miRiad roles for the miR-17-92 cluster in development and
disease. Cell 2008, 133(2):217-22.

Landais S, Landry S, Legault P, Rassart E: Oncogenic potential of the miR-
106-363 cluster and its implication in human T-cell leukemia. Cancer Res
2007, 67(12):5699-707.

Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by
adenosines, indicates that thousands of human genes are microRNA
targets. Cell 2005, 120:15-20.

Laios A, OToole S, Flavin R, Martin C, Kelly L, Ring M, Finn SP, Barrett C,
Loda M, Gleeson N, D'Arcy T, McGuinness E, Sheils O, Sheppard B, O

Leary J: Potential role of miR-9 and miR-223 in recurrent ovarian cancer.
Mol Cancer 2008, 7:35.

Burmistrova OA, Goltsov AY, Abramova LI, Kaleda VG, Orlova VA, Rogaev El:
MicroRNA in schizophrenia: genetic and expression analysis of miR-130b
(22911). Biochemistry (Mosc) 2007, 72(5):578-82.

Yeung ML, ichirou Yasunaga J, Bennasser Y, Dusetti N, Harris D, Ahmad N,
Matsuoka M, Jeang KT: Roles for microRNAs, miR-93 and miR-130b, and
tumor protein 53-induced nuclear protein 1 tumor suppressor in cell
growth dysregulation by human T-cell lymphotrophic virus 1. Cancer Res
2008, 68(21):8976-85.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Page 11 of 11

Feigin IH, Gross SW: Sarcoma arising in glioblastoma of the brain. Am J
Pathol 1955, 31(4):633-53.

Kishikawa M, Tsuda N, Fuijii H, Nishimori |, Yokoyama H, Kihara M:
Glioblastoma with sarcomatous component associated with myxoid
change. A histochemical, immunohistochemical and electron
microscopic study. Acta Neuropathol 1986, 70:44-52.

Wu H, Neilson JR, Kumar P, Manocha M, Shankar P, Sharp PA, Manjunath N:
miRNA profiling of naive, effector and memory CD8 T cells. PLoS One
2007, 2(10):e1020.

Wang H, Ach RA, Curry B: Direct and sensitive miRNA profiling from low-
input total RNA. RNA 2007, 13:151-9.

Thurstone LL: A single plane method of rotation. Psychometrika 1946,
11:71-9.

Thurstone LL: Factorial analysis of body measurements. Am J Phys
Anthropol 1947, 5:15-28.

Venables WN, Ripley BD: Modern Applied Statistics with S. fourth edition.
New York: Springer; 2002 [http://www stats.ox.ac.uk/pub/MASS4], ISBN 0-
387-95457-0.

Dennis GJ, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA:
DAVID: Database for Annotation, Visualization, and Integrated Discovery.
Genome Biol 2003, 4(5):P3.

Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis
of large gene lists using DAVID bioinformatics resources. Nat Protoc
2009, 4:44-57.

doi:10.1186/1471-2105-12-86

Cite this article as: Fronza et al: Joint analysis of transcriptional and
post- transcriptional brain tumor data: searching for emergent
properties of cellular systems. BMC Bioinformatics 2011 12:86.

~
Submit your next manuscript to BioMed Central
and take full advantage of:
e Convenient online submission
e Thorough peer review
¢ No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
¢ Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BioMed Central
J



http://www.ncbi.nlm.nih.gov/pubmed/17634744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17634744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17634744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11120680?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11120680?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11779842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11779842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15851683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15851683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12204446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12204446?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16107210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16107210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16107210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20196754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20196754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17319944?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17319944?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16368767?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16368767?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4059494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4059494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11483584?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11483584?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18957447?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18957447?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17965831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18423194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18423194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17575136?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17575136?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15652477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15652477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15652477?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18442408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17573714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17573714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18974142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18974142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18974142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14388124?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3088903?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3088903?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3088903?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17925868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17105992?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17105992?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20986722?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20290958?dopt=Abstract
http://www.stats.ox.ac.uk/pub/MASS4
http://www.ncbi.nlm.nih.gov/pubmed/12734009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131956?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and Discussion
	Identification of Multilevel Latent Structures
	Interpretation of Multilevel Latent Structures mRNA
	Functional Analysis
	miRNA Indirect Functional Analysis
	mRNa/miRNA Complex Functional Annotation
	Emergent Properties

	Speculations on Molecular-Clinical Implications
	Identification and Interpretation of Simple Latent Structures

	Conclusions
	Methods
	Data Preprocessing
	Factor Analysis
	Discriminant Analysis
	Model Selection
	Functional Classification

	Acknowledgements
	Author details
	Authors' contributions
	References

