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Abstract

Background: In the last decades, microarray technology has spread, leading to a dramatic increase of publicly
available datasets. The first statistical tools developed were focused on the identification of significant differentially
expressed genes. Later, researchers moved toward the systematic integration of gene expression profiles with
additional biological information, such as chromosomal location, ontological annotations or sequence features. The
analysis of gene expression linked to physical location of genes on chromosomes allows the identification of
transcriptionally imbalanced regions, while, Gene Set Analysis focuses on the detection of coordinated changes in
transcriptional levels among sets of biologically related genes.

In this field, meta-analysis offers the possibility to compare different studies, addressing the same biological
question to fully exploit public gene expression datasets.

Results: We describe STEPath, a method that starts from gene expression profiles and integrates the analysis of
imbalanced region as an a priori step before performing gene set analysis. The application of STEPath in individual
studies produced gene set scores weighted by chromosomal activation. As a final step, we propose a way to
compare these scores across different studies (meta-analysis) on related biological issues. One complication with
meta-analysis is batch effects, which occur because molecular measurements are affected by laboratory conditions,
reagent lots and personnel differences. Major problems occur when batch effects are correlated with an outcome
of interest and lead to incorrect conclusions. We evaluated the power of combining chromosome mapping and
gene set enrichment analysis, performing the analysis on a dataset of leukaemia (example of individual study) and
on a dataset of skeletal muscle diseases (meta-analysis approach).

In leukaemia, we identified the Hox gene set, a gene set closely related to the pathology that other algorithms of
gene set analysis do not identify, while the meta-analysis approach on muscular disease discriminates between
related pathologies and correlates similar ones from different studies.

Conclusions: STEPath is a new method that integrates gene expression profiles, genomic co-expressed regions
and the information about the biological function of genes. The usage of the STEPath-computed gene set scores
overcomes batch effects in the meta-analysis approaches allowing the direct comparison of different pathologies
and different studies on a gene set activation level.
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Background

In the last decades, microarray technology has seen such
an explosion of applications as to become a standard
tool in biomedical research. It has allowed the discovery
of many prognostic genome markers related to the
development of pathologies [1-6]. The spreading process
has brought a dramatic increase in the number of pub-
licly available datasets [7-9].

Given the high-throughput nature of microarrays,
statistical and bioinformatic methods were required to
analyse such large amounts of data. Initial studies were
focused on the identification of differentially expressed
genes and their significance in many experimental
designs (gene by gene approach). This analysis is time-
consuming and sometimes ineffective because derived
gene lists have to be interpreted, searching for patterns
of genes that have similar function or are involved in
particular processes [10]. This approach revealed that
genes that are identified as differentially expressed often
do not correlate with the phenotype under investigation.
Furthermore, their consistency often decreases when dif-
ferent studies on the same biological issue are compared
(meta-analysis approach) [11].

Meta-analysis may be broadly defined as the quantitative
review and synthesis of the results of related but indepen-
dent studies [12]. Different groups demonstrated its
applicability to microarray data. Rhodes [13] applied meta-
analysis to combine four datasets on prostate cancer to
determine genes that are differentially expressed between
clinically localized prostate and benign tissue. Parmigiani
[14] performed a cross-study comparison of gene expres-
sion for the molecular classification of lung cancer. Park
and Stegall [15] combined publicly available datasets and
their own microarray datasets to investigate the detection
of cytokine gene expression in human kidney. Meta-analy-
sis studies clearly showed that the different lists of differ-
entially expressed genes from different studies overlap
poorly due to the complicated experimental variables
embedded in array experiments. This suggests that a path-
way/gene set-based approach could improve the perfor-
mance of this type of comparison [16].

To improve microarray data analysis, the first tools
developed were based on the integration of external
genomic information such as gene location [17-19], onto-
logical annotations [20-23] or sequence features [24].

Several methods were devised to analyse gene expres-
sion as a function of physical location of genes on chro-
mosomes. These approaches, collectively referred to as
“chromosome mapping”, were applied to microarray data
of cancer studies. The studies identified regions with
transcriptional imbalances that reflected large chromoso-
mal aberrations typical of such pathologies. Examples of
these applications are the Locally Adaptive statistical
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Procedure (LAP) [17] and the MicroArray Chromosome
Analysis Tool (MACAT) [18]. LAP was applied to com-
pare gene expression data of acute myeloid leukaemia
(AML) with and without trisomy on chromosome 8. LAP
correctly identified the over-expressed region on chro-
mosome 8 of patients where DNA amplification was
present. MACAT was applied to compare T and B lym-
phocytes from patients with acute lymphoblastic leukae-
mia (ALL), identifying a marked over-expression of the
region that contains genes of class II major histocompat-
ibility complex (MHCII, chr:6p21.33-6p21.2) in the B
lineage. Recently, a chromosome mapping approach
based on the Haar Wavelet transformation (Chromo-
wave) [19] was applied to a dataset of Huntington’s
disease. The study demonstrated that the aberrant inter-
action between the mutant huntingtin protein and its
transcriptional co-activators, such as histone acetyltrans-
ferase, leads to large areas of transcriptional imbalances
[25].

A more popular method for the integration of gene
expression profiles with additional information is based on
ontological and pathway annotations and is called Gene
Set Analysis (GSA). This approach evaluates gene expres-
sion profiles among groups of related genes (gene sets),
seeking coordinated changes in the expression levels of
subsets of gene members. Usually, GSA has three main
steps: a) computing associations of each expression pattern
with a phenotype; b) computing enrichment scores for
analysed gene sets; ¢) computing the global p-value and
q-value for every tested gene set based on the appropriate
permutation test. Several implementations of the GSA
approach are now available, such as the algorithms devel-
oped by Subramanian (Gene Set Enrichment Analysis;
GSEA) [22], Tian (sigPathway) [23], Efron (with the
improvement based on the use of the maxmean statistic
for summarizing gene sets) [26] and Goeman with Global
Test [21].

Recently, Szabé [27] combined mRNA and compara-
tive genome hybridization results, revealing that the
major pathogenetic pathways involved in adrenocortical
tumours are related to regions with aberrant gene
expression. This work is an example of how the integra-
tion of different genomic information is useful to gain
new insight into a pathology by exploiting available
datasets. We believe that an important shortcoming of
Szabd’s described method is that it is based only on dif-
ferentially expressed genes thus defining a strict cut-off
without considering the actual level of expression.

Here, we propose a new procedure, STEPath (Statistical
Test of Expression Pattern), that scores and integrates
chromosomal region activation as an a priori step before
performing GSA. The result of this analysis is a global
expression value of gene sets weighted by chromosomal
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region activation. The plasticity of the chromosome
architecture was recently debated due to the identifica-
tion of transcription factories [28,29], but there are no
bioinformatic algorithms that consider this aspect in the
gene set analysis. Three public datasets were tested. We
demonstrated that the combination of gene expression
profiles, chromosome mapping and gene set analysis
produced gene set scores suitable to compare different
studies in a meta-analysis approach.

Results and Discussion

STEPath Algorithm

We implemented a new gene expression analysis method
that takes into account i) the activation or repression of
genes in chromosome regions [30] and ii) the evidence
that intensive transcription at one locus frequently spills
over in physically adjacent loci [31]. The STEPath algo-
rithm allows scoring and integrating these aspects of
gene regulation (i and ii; Step 1) before performing gene
set analysis (Step 2). Gene set scores from step 2 can be
used for meta-analysis studies (Step 3).

Step 1

To integrate physical locations of genes, STEPath mea-
sures the association of a gene expression profile with a
phenotype (e.g., Significance Analysis of Microarrays
(SAM) statistics [32]), rescaling it on the expression
levels of the neighbour genes. We analysed each gene in
relation to the y closest up- and down-regulated genes.
Using a permutational approach, we tested the following
hypothesis: H’, the region did not show differential
expression; H', the region is differentially expressed.

Step 2

After the computation of chromosome profiles using
significant regions, STEPath performs a gene set analysis
using SAM statistics [32] smoothed according to the chro-
mosome profiles. We defined this step as a gentle integra-
tion of the chromosome profile because the smoothing
process does not penalize gene scores; instead, it attributes
to gene members of differentially expressed regions an
additional score proportional to their own SAM score and
to the local profile. This method enhances particular sig-
nals along chromosomes that are buried in the background
due either to sample or technical heterogeneity that could
profoundly affect microarray reproducibility.

Using the smoothed statistic, an up- and down-regulation
value for every gene set was calculated. As GSA relies on
the quality of annotation and dimension of gene sets, it is
possible that the signal of a small group of coordinated
genes becomes lost in non-specific signals. If this could be
an analysis limitation, we increased GSA power by adopting
two approaches: a) we analysed the most-used database
repositories for gene sets, and b) we extracted portions of
pathways showing coordinated expression.
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a) We have compiled gene sets from Gene Ontology
(GO) [33], Kyoto Encyclopedia of Genes and Genomes
(KEGG) [33-36], BioCyc [37], BioCarta [38], SuperArray
[39] and WikiPathways [40]. The resulting database
includes Cellular Component, Molecular Function and
Biological Process (GO derived) sets, manually curated
functional pathways from BioCarta, metabolic pathways
from KEGG and specific pathways for quantitative Real
Time PCR (qRT-PCR) and microarray experiments from
SuperArray. If different annotations of the same biological
aspect may produce redundancies, they also retain specific
differences and provide both robustness and specificity
when correlated simultaneously to a phenotype (see Addi-
tional file 1; Figure S1).

b) According to Efron [26] and later confirmed by Song
[41], splitting up and down portions of gene sets
improves the statistical power of approaches where the
mean of a statistic is used to score gene sets.

Up- and down-regulation scores were independently
tested for significance using a gene-based permutation
approach. We tested the null hypothesis, H°, that the gene
set shows the same pattern of association with the pheno-
type compared to the rest of the genes. The g-values were
computed using the Benjamini Hochberg algorithm [42].
Step 3
In meta-analysis studies, step 3 primarily aims to deter-
mine if the results from one study are confirmed in
other independent studies.

For an individual study, the STEPath procedure (Step
1 plus Step 2) produces a list of gene sets with summar-
ization values (Gup and Gdown, see Methods) and an
associated q-value. Different pathologies can then be
directly compared using the gene set summarization
values produced for individual studies.

Individual analysis of Leukaemia Dataset

We tested STEPath on an expression profile dataset of
patients affected by Acute Lymphoblastic Leukaemia
(ALL; 16 with and 90 without translocation of the
Mixed-lineage leukaemia (MLL) gene).

Raw expression data (CEL files) were downloaded from
the GEO database (GEO series ID: GSE14062), processed
using a gene-based custom Chip Definition File (CDF)
[43] to better define the chip [44], and normalized using
the Robust Multichip Average (RMA) expression sum-
mary [45]. We recovered expression values for 15,953
genes. Using STEPath, we directly compared ALL with
(ALL/MLL+) and without MLL translocation (ALL/
MLL-), seeking evidence specific for MLL translocation.
Genes without chromosomal location information and
genes on chromosome Y were filtered out because pau-
city of gene expression data precludes the application of
chromosome mapping.
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This dataset was used to analyse the performance of
the main modules implemented in STEPath: chromo-
some mapping (Step 1) and gene set analysis (Step 2).
Step 1
Using our implementation, we were able to identify a
spectrum of possible imbalanced regions across all chro-
mosomes (see Additional file 1; Figure S2). We identified
the down-regulation of the region that contains the MLL
gene (Figure 1A; Additional file 2; Table S1). MLL is char-
acterized by a chromosome rearrangement, disrupting its
correct localization and transcriptional regulation [46].

Our method highlights interesting imbalanced regions
that contain genes involved in ALL pathology: 1) the
region containing the Homeobox genes (HOX cluster) on
chromosome 7 (Figure 1B; Additional file 2; Table S2),
and 2) the region containing Meis homeobox 1 (MEIS1)
on chromosome 2 (Figure 1C; Additional file 2; Table S3).

As discussed by Zangrando [47], HOX genes and
MEISI are up-regulated in ALL, representing a discrimi-
nant signature that separates ALL/MLL+ from ALL/
MLL-. Another gene involved in the discrimination
between ALL/MLL+ and ALL/MLL- patients is the
chondroitin sulfate proteoglycan 4 (CSPG4/NG2). NG2
encodes for a transmembrane protein located in the leu-
kaemic cell membrane and proposed as a marker for
rapid classification of ALL with MLL translocation [48].
Zangrando [47] used SAM and Predicted Analysis of
Microarray (PAM) [49] to identify this discriminant gene.
Our method pointed out this gene as well, evidencing the
goodness of our algorithm (Figure 1D; Additional file 2;
Table S4).

We compared our results with the most used approaches
to detect imbalanced regions, namely LAP [17] and
MACAT [18]. We ran these algorithms using the sug-
gested number of permutations (10,000 for LAP and 1,000
for MACAT, see Additional file 1; Figure S3 and S4) and
also with our settings (100 permutations, see Additional
file 1; Figure S5 and S6). Different numbers of permuta-
tions did not result in relevant differences in the detected
regions.

The comparison between LAP results (see Additional
file 1; Figure S3) and STEPath chromosome mapping
(see Additional file 1; Figure S2) shows that our approach
identifies more regions than LAP. We decided to pre-
serve information since this is not an independent proce-
dure, but it is later piped into a gene set analysis. Even if
LAP identifies a smaller number of imbalanced regions,
these span larger chromosome portions, such as those on
chromosome 3 (see Additional file 1; Figure S3), causing
difficult interpretation of the results.

In contrast with LAP, our procedure limits imbalanced
regions to small portions of interest that are easier to
visualize and relate to the studied phenotype. Indeed,
the LAP procedure fails to identify as imbalanced the
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MLL region on chromosome 11 and the HOX genes
cluster on chromosome 7 (Figure 2 and Additional file
1; Figure S3). LAP identified MEIS1 region on chromo-
some 2, but this region spans about 45 Mbp (from
~30 Mbp to ~75 Mbp, Figure 2 and Additional file 1;
Figure S3). Our algorithm reduces the region to
~11 Mbp (from 62 Mbp to 73 Mbp), focusing on truly
disease-related genes. These results demonstrate that
our algorithm seems to be more sensitive than LAP in
the identification of important imbalanced regions
involved in ALL.

Furthermore, our procedure reaches a greater sensitiv-
ity than MACAT in the detection of regions on chro-
mosome 2, 7, 11 and 15 (Figure 2). The profile of
chromosome 11 produced with MACAT (see Additional
file 1, Figure S4) is greatly perturbed, and it is difficult
to identify interesting regions. MACAT also failed to
evidence the MLL region (Figure 2 and Additional file 1,
Figure S4).

Step 2

We completed the STEPath procedure by integrating
chromosomal profile information in the module that
performs gene set analysis.

The choice between gene (e.g., GSEA implemented in
the limma R package [22] and sigPathway [23]) and
sample permutations (e.g., Global test [21], Principal
Coordinates and Hotelling’s T> (PCOT2) [50] and Sig-
nificance Analysis of Function and Expression (SAFE)
[20]) has been an object of debate in the literature, as
demonstrated by Efron’s [26] and Goeman’s [10] papers.
After evaluating the limits and peculiarities of both per-
mutational approaches, we chose the gene permutation
model that seems to better fit our null hypothesis (as it
is stated in step 2 - b of the algorithm description). We
compared results obtained from STEPath with two
other implementations of GSA both based on gene label
permutations: GSEA implemented in the limma R pack-
age [22] and sigPathway [23]. STEPath is the only pro-
cedure that can identify the activated HOX gene set
(Table 1). Dysregulation of HOX gene family members
was found to be a dominant mechanism of leukaemic
transformation induced by chimeric MLL oncogenes
[51,52].

To evaluate the contribution of chromosome profile
information, we performed our GSA procedure (STE-
Path) with and without chromosome profile correction.
In both cases, STEPath was able to identify the HOX
gene set probably due to a separate evaluation of up- and
down-regulated genes. However, the integration of gene
location with gene set analysis allows the combination of
different levels of biological information (co-expressed/
regulated genes) and helps to correctly identify disease-
related genes, since they have a different position in a
rank evaluation (Table 1). To confirm this effect, we also
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Figure 1 Enlargement of chromosomal regions related to leukaemia phenotype. Details on imbalanced regions calculated by STEPath
chromosome mapping. Blue line represents chromosome profile; red and light green bars represent gene statistic values (d-score).
A. Enlargement of the region of chromosome 11 containing the MLL gene (gene highlighted by the circle). B. Enlargement of the region
between 20 and 32 Mbp of chromosome 7. This region corresponds to the localization of the HOX gene cluster (cluster highlighted by the
circle). C. Enlargement of the region between 51 and 75 Mbp of chromosome 2 corresponding to the MEIST windows (gene highlighted by the
circle). D. Enlargement of the region of chromosome 15 containing the NG2 gene (gene highlighted by the circle).

ran limma GSEA using the chromosome profile correc-
tion. 55.5% of the common gene sets resulted with lower
q-values when the analysis was integrated by the correc-

bacteria, fungi, yeast and plants).

tion for chromosome profile. Furthermore, this correc-

tion was able to filter out the glyoxylate cycle, present in
bacteria, fungi, yeast and plants (Table 2). This demon-
strates that the correction enhances the discovery of

Meta-analysis of LGMDs

ving expression datasets of limb

disease-related genes, also filtering for apparently not
informative pathways (in this case because specific for

We applied STEPath in a meta-analysis approach invol-

girdle muscular
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Figure 2 Comparison among LAP, MACAT and STEPath. Comparison of imbalanced regions on chromosomes 2, 7, 11, and 15 identified by
LAP, MACAT and STEPath. LAP procedure fails to identify as imbalanced the MLL region on chromosome 11, the HOX genes cluster on
chromosome 7, and the CSPG4 containing region on chromosome 15, while identifies MEIST region on chromosome 2. MACAT also fails to
evidence the MLL region on chromosome 11.

dystrophies type 2A (LGMD?2A, calpainopathy), type 2B
(LGMD2B, dysferlinopathy) and type 21 (LGMD2I). We
built a meta-dataset combining LGMD2A from two dis-
tinct datasets. The first was published by Bakay [53]
(GEO series ID: GSE3307); the second dataset was pub-
lished by Sdenz [54] (GEO series ID: GSE11681). Meta-
dataset details are listed in Table 3. Downloaded CEL
files were processed using gene-based custom CDF [43].
We retrieved expression for 11,302 distinct genes. Fol-
lowing a visual inspection of the quantiles distribution
(boxplot), we excluded 7 control samples from dataset
GSE3307 (see Additional file 1; Figure S7). Gene expres-
sion data were then globally normalized using the RMA
procedure [45].

We applied 4 individual STEPath procedures to
CTRLs vs LGMD2A (GSE3307), CTRLs vs LGMD2A
(GSE11681), CTRLs vs LGMD2B (GSE3307) and CTRLs
vs LGMD2I (GSE3307), where CTRLs are normal mus-
cle controls from healthy donors (Ctrl plus ADNORM in

Table 3). Ensembl features with no corresponding
EntrezGene IDs as well as features/genes belonging to
the Y chromosome were filtered out. We used STEPath
scores to perform gene set meta-analysis (Step 3)
(Figure 3).

In general, methods for meta-analysis were based on
the union or the intersection of lists of differentially
expressed genes derived from multiple studies of the
same biological issue. However, these lists have little
overlap because of biological and technical variability
[55,56], while pathway analysis often generates improved
consistency [16]. An explanation for the reduced discre-
pancies in the results of the microarray data based on
biological gene sets analysis, compared with the over
imposition of the groups of differentially expressed
genes derived from different studies, may be the correla-
tion of differentially expressed genes. In fact, the differ-
ences in their relative expression may be so small that
the choice of top-ranked genes is highly dependent on
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Table 1 Comparison of GSEA approaches

Page 7 of 16

Rank STEPath

STEPath - no correction

1 BioCarta;Erythropoietin mediated neuroprotection through NF-kB

BioCarta;Erythropoietin mediated neuroprotection through NF-kB

2 SuperArray;Homeobox (HOX) Genes

BioCarta;induction of apoptosis through DR3 and DR4/5 Death
Receptors

3 BioCarta;The IGF-1 Receptor and Longevity

BioCarta;Roles of -arrestin-dependent Recruitment of Src Kinases in
GPCR Signaling

4 BioCarta;induction of apoptosis through DR3 and DR4/5 Death
Receptors

SuperArray;Homeobox (HOX) Genes

5 BioCarta;IL12 and Stat4 Dependent Signaling Pathway in Th
Development

BioCarta;HIV-I Nef negative effector of Fas and TNF

6 BioCarta;HIV-I Nef negative effector of Fas and TNF

TCA Cycle;Metabolic Process

7 BioCarta;Roles of -arrestin-dependent Recruitment of Src Kinases in
GPCR Signaling

hsa00310;Lysine degradation

8 TCA Cycle;Metabolic Process

hsa03018;RNA degradation

9 hsa00310;Lysine degradation

hsa05014;Amyotrophic lateral sclerosis (ALS)

10 hsa03018,RNA degradation

SuperArray;Stress/Toxicity PathwayFinder

Rank GSEA - limma sigPathway

1 B Cell Receptor Signaling Pathway;Cellular Process BioCarta;Caspase Cascade in Apoptosis

2 hsa03018;RNA degradation KEGG:03050;Proteasome

3 SuperArray;G-Proteins/Signaling Molecules KEGG:04130;SNARE interactions in vesicular transport
4 TNF-alpha/NF-kB Signaling Pathway;Cellular Process SuperArray;Heat Shock Proteins

5 hsa00510;N-Glycan biosynthesis Proteasome Degradation;Physiological Process

6 hsa04142;Lysosome KEGG:00380;Tryptophan metabolism

7 SuperArray;Autophagy BioCarta;FAS signaling pathway (CD95)

8 BioCarta;Erk and PI-3 Kinase Are Necessary for Collagen Binding in KEGG:04612;Antigen processing and presentation

Corneal Epithelia

9 Translation Factors;Cellular Process

KEGG:03020;RNA polymerase

10 BioCyc;glyoxylate cycle ||

KEGG:00020,Citrate cycle (TCA cycle)

Rank comparison of tested GSA for the most 10 up-regulated gene sets. STEPath is the only procedure that was able to identify the activated HOX gene set with

a best rank using the corrected expression value based on chromosome profile.

the studies or analysis method from which genes are
inferred, as reported in [16]. Moreover there is the pos-
sibility that gene sets with no differentially expressed
genes (due by the choice of the threshold) will show an
aberrant global expression pattern because most of the
genes in the set have an even small, but coordinated
change (up- or down-regulation) allowing their identifi-
cation in different studies and increasing their
comparability.

Recently, Shen [11] proposed the integrated Meta-
Analysis of Pathway Enrichment approach (MAPE_I),
combining statistical significance at the gene and path-
way level based on a gene-wise and sample-wise permu-
tation test. Our framework is focused on this aspect of
meta-analysis, but it introduces the possibility to com-
pare different conditions, highlighting peculiarities of
each one.

To produce the main gene set signature (MGS, the
union of the pathology signature; see Methods), we chose
GSE3307 (LGMD2A, LGMD2B and LGMD?2I) as a refer-
ence study. The signature was composed of 70 gene sets:

55 Gene Ontology and 15 biological pathways that were
used to build the gene set matrix (see Methods).

Cluster analysis of the gene set matrix (derived from
the main signature) shows that the two LGMD2As from
different datasets are linked, and LGMD2B and LGMD2I
segregate separately (Figure 4B; for data matrix see
Additional file 3).

We then performed unsupervised cluster analysis [57]
on gene expression data. This analysis highlighted two
main branches that separate GSE3307 and GSE11681
datasets (Figure 4A). This demonstrates that background
noise and the presence of a batch effect is strong
enough to overcome disease-specific signals at gene
expression levels (Figure 4A). Moreover, cluster analysis
failed to separate pathologies (see Additional file 1;
Figure S8) using significant differentially expressed
genes only (significant genes identified by SAM with
False Discovery Rate = 0).

Our approach overcomes the main limitations of gene
expression meta-analysis and demonstrates that it is
useful to reveal gene set signatures that discriminate



Martini et al. BMC Bioinformatics 2011, 12:92 Page 8 of 16
http://www.biomedcentral.com/1471-2105/12/92
Table 2 GSEA approach results running limma GSEA with and without chromosome profile correction
Rank GSEA - limma g-value GSEA - limma - corrected g-value
1 B Cell Receptor Signaling Pathway;Cellular Process 1.62E-05 B Cell Receptor Signaling Pathway;Cellular Process 2.68E-05
2 hsa03018,RNA degradation 1.44E-03 SuperArray;G-Proteins/Signaling Molecules 1.33E-03
3 SuperArray;G-Proteins/Signaling Molecules 1.53E-03 hsa03018,RNA degradation 2.31E-03
4 TNF-alpha/NF-kB Signaling Pathway,Cellular Process ~ 3.79E-03 TNF-alpha/NF-kB Signaling Pathway;Cellular Process ~ 2.93E-03
5 hsa00510;N-Glycan biosynthesis 4.20E-03 Translation Factors;Cellular Process 5.30E-03
6 hsa04142;Lysosome 8.78E-03 hsa00510;N-Glycan biosynthesis 5.40E-03
7 SuperArray;,Autophagy 8.95E-03 hsa04142;Lysosome 6.40E-03
8 BioCarta;Erk and PI-3 Kinase Are Necessary for 9.36E-03 SuperArray;Autophagy 8.21E-03
Collagen Binding in Corneal Epithelia
9 Translation Factors;Cellular Process 9.38E-03 hsa05110;Vibrio cholerae infection 9.42E-03
10 BioCyc;glyoxylate cycle Il 1.06E-02 BioCarta;Erk and PI-3 Kinase Are Necessary for 9.42E-03

Collagen Binding in Corneal Epithelia

Limma GSEA algorithm was run using the chromosome profile correction. Significance of the differentially expressed gene sets increases in comparison with
results obtained without introducing chromosome profile correction, suggesting that it targets disease-related genes.

different pathologies. In this way, we can evaluate the
main signature discrimination/association power, pro-
jecting it into the second study (Figure 3, point 3).

Meta-analysis of Skeletal Muscular diseases
We extended the analysis performed for LGMDs includ-
ing more variability with different skeletal muscular dis-
eases (all samples reported in the Table 3).

Raw expression files (CEL files) were downloaded
from the GEO database [7] (GEO series IDs GSE3307
and GSE11681) and processed using a gene-based cus-
tom CDF, as previously discussed. Normalized gene
expression for 11,302 genes was used in the STEPath
analysis. Extended datasets were used to evaluate if
increased variability affects the meta-analysis procedure.

Table 3 Details of muscle disease dataset

We extracted signatures from all skeletal muscle dis-
eases in the dataset GSE3307 to build the MGS used in
the cluster analysis. Cluster analysis showed that
increased variability of initial samples did not affect
clustering results since LGMDs still clustered together;
different datasets of LGMD2A were still in close proxi-
mity (Figure 4C; for matrix, see Additional file 4).

We compared STEPath meta-analysis results with a
meta-analysis approach based on different GSA scores.
Similarly for STEPath, we built a MGS matrix using
scores derived by both sigPathway and GSEA (as imple-
mented in limma). Clustering results of the MGS matrix
from both sigPathway and GSEA failed to co-segregate
the two LGMD2A datasets and the entire group of
LGMDs (Figure 4D and 4E).

Disease  Number of Case Series ID Platform Description
samples study
LGMD2A 10 /S GSE3307  HGU133A  MUSCULAR DYSTROPHY, LIMB-GIRDLE, TYPE 2A (calpainopathy)
nLGMD2A 10 /S GSE11681 HGU133A MUSCULAR DYSTROPHY, LIMB-GIRDLE, TYPE 2A (calpainopathy)
LGMD2B 10 L/S GSE3307  HGU133A MUSCULAR DYSTROPHY, LIMB-GIRDLE, TYPE 2B (Dysferlinopathy, Miyoshi distal
myopathy)
LGMD2I 7 /S GSE3307  HGU133A MUSCULAR DYSTROPHY, LIMB-GIRDLE, TYPE 2I
BMD 5 S GSE3307  HGU133A MUSCULAR DYSTROPHY, BECKER TYPE
DMD 10 S GSE3307  HGU133A MUSCULAR DYSTROPHY, PSEUDOHYPERTROPHIC PROGRESSIVE, DUCHENNE TYPE
FSHD 14 S GSE3307  HGU133A MUSCULAR DYSTROPHY, FACIOSCAPULOHUMERAL
AQM 5 S GSE3307  HGU133A ACUTE QUADRIPLEGIC MYOPATHY
SPG4 4 S GSE3307 HGU133A SPASTIC PARAPLEGIA 4, AUTOSOMAL DOMINANT
ALS 9 S GSE3307  HGU133A AMYOTROPHIC LATERAL SCLEROSIS 1
X_EDMD 4 S GSE3307 HGU133A EMERY-DREIFUSS MUSCULAR DYSTROPHY, 1 (X-linked)
AD_EDMD 4 S GSE3307  HGU133A EMERY-DREIFUSS MUSCULAR DYSTROPHY, AUTOSOMAL DOMINANT
AbNORM 11 L/S GSE3307  HGU133A NORMAL
Ctrl 10 L/S GSE11681 HGU133A NORMAL

General information about muscular disease meta-dataset. S: Skeletal Muscular disease dataset; L: LGMD analysis.
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5) Normalization and cluster analysis
Figure 3 LGMDs analysis workflow cartoon. 1) Independent

application of STEPath to the N considered datasets (e.g., for
analysis of LGMDs LGMD2A, LGMD2B, LGMD2I from GSE3307 and
nLGMD2A from GSE11681). 2) Selection of the Main Gene set
Signature (MGS) from GSE3307 dataset. Selection was performed by
identifying gene sets having an expression value upper or lower (for
up- or down-regulated regions, respectively) than average of
expression of all significant gene sets. 3) Extraction of the MGS
expression values from all datasets considered. 4) Matrix
construction. 5) Normalization and cluster analysis.

Gene set clusters were analysed focusing on both
shared and peculiar pathology responses. Down-regu-
lated gene sets show several clusters with the same
expression level. These gene sets mainly refer to aerobic
respiration, the production of ATP and mitochondria
(Figure 5). These results are in agreement with many
microarray studies on skeletal muscle dystrophies [58]
and a previous meta-analysis work that we performed to
detect muscle atrophy signatures [59]. In many skeletal
muscle pathologies, the rate of degradation of contractile
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proteins becomes greater than the rate of replacement,
causing atrophy and modifying the balance requested for
the maintenance of skeletal muscle mass. Ubiquitination
function involved in protein degradation and gene sets
for oxidative stress and mitochondrial function appear to
be up-regulated, yet they are not discriminative among
the pathologies. Gene sets involved in oxidoreductase
activity (GO_MF: 0016641), scavenger receptor activity
(GO_MF: 0005044) and regulation of amino acids
(GO_BP: 0045764 and GO_BP: 0001934) are some exam-
ples (Figure 5). Recently, Kramerova [60] postulated that
LGMD2A and other dystrophies (Duchenne Muscular
Distrophy and Becker Muscular Dystrophy) are charac-
terized by energy deficit and increased oxidative stress.
We highlighted the activation of gene sets involved in
antioxidant activity like GO_MF: 0016681, GO_MEF:
0016679 and GO_MF:0016641 that referred to oxidore-
ductase activity.

Dysferlinopathy (LGMD2B) was characterized as dys-
trophies where dysferlin-deficient cells show abnormal-
ities in vesicular trafficking [61]. LGMD2B also presents
muscle inflammation with muscular monocytes and
macrophages that show an increased phagocytic activity
[62]. Efficient phagocytic activity depends on the pre-
sence of the coat protein complex type I (COPI) [63],
a complex that plays an essential role in the trafficking of
membrane vesicles. Our procedure reveals this relation
between vesicle trafficking impairment and enhanced
phagocytosis in LGMD2B as is demonstrated by a
marked up-regulation of GO terms that refer to COPI-
coated vesicles (GO_CC: 0030137, GO_CC: 0030663 and
GO_CC: 0030126) (Figure 5).

To search for discriminative gene sets among
LGMD2A (Calpain 3; CAPNS3 is the causative gene) and
the other skeletal muscular diseases, we performed a
template matching search [64]. In Figure 6 are reported
hierarchical clusters of gene sets identified with p-value
< 0.05.

Recently, Beckman and Spencer [65] proposed that
CAPNS3 is involved in sarcomeric protein turnover and in
the maintenance of sarcomere integrity. Collagen
(GO_CC: 0005581), collagen binding (GO_MF: 0005518)
and fibrillar collagen (GO_CC: 0005583) gene sets,
involved in the maintenance of mechanical stability of
muscle structure, sarcomere (GO_CC: 0030017), striated
muscle thick filament (GO_CC: 0005863), A band
(GO_CC: 0031672) and contractile fiber (GO_CC:
0043292) involved in the contraction process, appear to be
up-regulated in LGMD2A (Figure 6). Gene sets previously
described are also altered in LGMD2B patients that pre-
sent mutations in the dysferlin gene (DYSF), which inter-
acts with CAPN3. A secondary reduction of CAPN3 that
can affect sarcomere structure stability in LGMD2B
patients has also been demonstrated [66].
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Figure 4 Cluster analysis for LGMD expression meta-dataset. A. Unsupervised cluster analyses on gene expression data from meta-dataset of
LGMDs. Samples of each dataset are grouped separately: the GSE3307 dataset on the left branch and the GSE11681 dataset on the right. B.
Cluster tree of unsupervised cluster analysis of the Main Gene set Signature matrix from LGMDs dataset: segregation is guided by disease type
and not by dataset. C. Unsupervised cluster analysis result of gene set scores calculated with the STEPath algorithm. LGMD2A from two different
datasets clustered together. D. Unsupervised cluster analysis performed on gene set scores calculated with sigPathway algorithm (NTk was the
score used, defined as the gene-based normalized statistic obtained by permuting genes). E. Unsupervised cluster analysis based on gene set
scores calculated with the GSEA limma algorithm. Clustering based on gene set scores calculated with both sigPathway and limma algorithms
failed to link together the two LGMD2A different datasets.

Implementation The second integration was tested on gene expression
All functions to perform STEPath analysis are written in  datasets both from leukaemia and skeletal muscle dis-
R (http://www.r-project.org/, version 2.10.1), and they eases evidencing the importance of integration of the
are freely available as R package at http://gefu.cribi.  chromosome profiles in the gene set analysis. Integrating
unipd.it/papers/stepath under the AGPL3 licence. The two biological aspects in the STEPath algorithm (locus
implementation depends on bioconductor [67] version  transcription that spills over into its physical neighbour
2.5 (for affy R package [68]) and samr R package (http:// loci and co-regulation of gene sets), we have demon-
CRAN.R-project.org/package=samr). strated that STEPath produces gene set expression
The present implementation is microarray platform-  scores that are suitable to directly compare different
independent and potentially could be applied to any diseases and studies to perform meta-analyses.

kind of gene-phenotype association score (SAM t-test, We applied STEPath and the meta-analysis approach
t-test). to limb girdle muscular dystrophies (LGMDs), highlight-

ing the co-segregation of two different studies of
Conclusions LGMD2A patients, and to a meta-dataset for inflamma-

The algorithm we developed allows the analysis of gene  tory myopathies composed of both Affymetrix arrays
expression data by integrating supplementary biological and unpublished custom oligo arrays. Results of the
information to identify gene co-expression along the study of inflammatory myopathies will be discussed in a
chromosomes and to perform a gene set analysis. The  separate paper.

integration was initially tested on a leukaemia dataset,

highlighting interesting imbalanced regions containing  Methods

genes involved in ALL pathology: 1) MLL region on chro-  STEPath algorithm

mosome 11; 2) the region containing HOX gene cluster ~ Step 1: The process to identify differentially expressed
on chromosome 7; and 3) the region containing MEIS1 on  regions can be divided into four parts: I) computation of
chromosome 2. These regions are specifically enhanced by  a per-gene statistic to measure differences in gene
the STEPath algorithm and not by LAP or MACAT. expression between two groups under investigation or


http://www.r-project.org/
http://gefu.cribi.unipd.it/papers/stepath
http://gefu.cribi.unipd.it/papers/stepath
http://CRAN.R-project.org/package=samr
http://CRAN.R-project.org/package=samr
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in one group, if microarray experiments were performed
in a competitive hybridization way, II) correction of the
statistics based on the expression level of neighbour-
hood loci, III) identification of statistically differentially
expressed regions by a permutational approach and
IV) building of per-chromosome profile.

I) In this study, we used the SAM t-statistic to mea-
sure the association of genes to the phenotype of the
two conditions. All SAM analyses were computed using
two-class unpaired comparisons between a disease state
versus a reference condition based on 100 permutations
via the samr R package [69].

II) This step computes the local index of global activa-
tion (Eup) or inhibition (Edown) for every gene i consid-
ering the neighbour genes and the local gene density.

For any given gene i, rup; is the region centred in the
transcription start site of the gene i (TSSi) that covers n
= 2 up-regulated genes upstream TSSi and n = 2 up-
regulated genes downstream TSSi. Given rup;, we can

summarize the local gene expression contribution for
up-regulated genes inside the region (S’/”), as described
in equation 1:

2 Su

qup _ uel (1)

bl
where U = {u € rup;|S, =
dinality of the set U/.
We can also define the local gene density of up-regu-
lated genes (p,;,) as reported in equation 2:

0}, and |U| denotes the car-

w U

" length (rupi)’ )

Eup; is then calculated as define by equation (3):
S/up up

9 %N
Eup; = RTIY ®3)
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where $™”_ is the mean of summarization values for
all designed rup in the chromosome c and p"?, is a per-
chromosome estimation of the global up-regulated gene
density. We defined per-chromosome global up-regulated
gene density as the mean of all local densities for every
up-regulated gene.

The ratio between S“P; and S“P, is meant to rescale
regional expression compared to the average situation in
the chromosome ¢, while the ratio between p“?; and
p“?, is meant to favour regions presenting genes more
densely distributed than the mean local densities of the
chromosome.

In parallel, for any gene i, we defined rdown; and the
summarization value Edown; as described for up-regu-
lated genes. In this case, U is defined as follows:

U = {u € rdown; |S, < 0}.

III) We adopted a permutational approach to identify
significantly different Eup; and Edown;. In particular,
SAM statistics were randomly shuffled over gene posi-
tions. We applied procedure II) and III) to B = 100 of
these permutations to compute E’up;;, and E’down;,
null distributions, where 1 < b < B (null hypothesis H:
the region is not differentially expressed). We computed
p-values for every window centred in gene i as the prob-
ability that E’up; or E’down; exceed respectively the
observed Eup; and Edown; over B permutations. We
then corrected p-values for multiple testing error using
the Benjamini Hochberg FDR control (preprocessCore r
package [70]).
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IV) The final step was performed to produce a per-
chromosome profile by scanning each chromosome
gene by gene using a window of fixed length. For
window size, we used the reference lengths for up- and
down-windows defined as the average length of all rup;
and rdown; for a given chromosome c. We used these
dimensions because they are in accordance with the
clustering scale dimensions found in mammalian gen-
omes by Firneisz [71] and Farr [72] (see Additional file
2, Table S5). We count significant (q-value < = 0.05)
up- or down-regulated window expression values pre-
sent in the fixed windows that slide gene by gene. The
up and down profile was built respectively as the frac-
tion of significant Eup or Edown present in the sliding
windows.

Statistics smoothing based on chromosome profile
function
SAM statistic S was corrected according to equation 4:

SSi =Si+ (Si-pfi), (4)

where SS; is the smoothed statistic value for gene i,
and pf; is the profile value in the chromosome region
identified by the gene i (see step IV of the previous
paragraph).

Step 2: the GSA module can be divided into two
parts: 1) computation of per-gene set scores and 2) iden-
tification of significant gene sets.

1) We implemented the measurement of gene set
scores as the mean of the corrected SAM statistics, SS. In
particular, we performed the GSA computing up- and
down-regulated gene contributions separately. Let the
indices k, k = 1,...,K denotes the k”* gene set, and i, i =
1,.,I denotes the i gene. We defined an incidence matrix
M with dimensions K x I, where M, ; = 1 denotes the
presence of gene i in the k" gene set, and My ; = 0
denotes the absence of gene i in the k" gene set. We
computed a gene set up-regulation value Gupy for the k™
gene set as the mean of S5y > 0 and similarly for down-
regulated values (Gdowny).

2) To assess the significance of gene sets, we adopted a
gene-based permutational scheme to compute null distri-
butions of SS: SS’. We applied B = 100 permutations on
S, and for each permutation b, we smoothed S’, to com-
pute SS’, (null hypothesis H’: the gene set shows the same
pattern of association with the phenotype compared to the
rest of genes). We applied the procedure described in 1) to
compute Gup’, and Gdown’, null distributions for each
gene set. P-values were then calculated for Gup, and
Gdown, independently as the probability that Gup’; or
Gdown’y exceed the observed gene set score Gupy or
Gdowny over B = 100 permutations. P-values were finally
corrected according to Benjamini Hochberg FDR control.
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Step 3: step 3 compares different pathologies and dif-
ferent studies. The starting points are Gup and Gdown
summarization values of the gene sets from step 2.

A reference study was defined as the one with greater
variability. From each pathology in the reference study, a
gene set signature was extracted. It was defined as the sig-
nificant gene sets (q-value < = 0.05) with either Gup or
Gdown exceeding the mean score of significant gene sets.

We called the union of the pathology signatures main
gene set signature (MGS). Using the MGS, corresponding
summarization values from all the pathologies in all stu-
dies (from the reference study and from the validating
one) were extracted and a matrix (MGS matrix) was pro-
duced, where columns were the different pathologies, and
rows were summarization values for every gene set on the
signature. To make comparable values of each gene set
signature among different pathologies, quantile normaliza-
tion was applied. The normalized matrix provides a direct
comparison of gene set activation and inhibition across
pathologies and studies. We adopted this strategy because
signatures identified in one study should be identified in
independent studies for the same pathology; related
pathologies from different studies should cluster together.

Custom CDF

We developed a gene-based custom Chip Definition File
(CDF) by re-mapping probes of Affymetrix HGU133-
plus2 and HGU133A chips on the ENSEMBL gene data-
base (ver 56). Gene-based custom CDFs were generated
as follows: i) matching of ensemble gene sequences with
all probes present in a given gene chip (HGU133plus2,
HGU133A); ii) filtering out of non-specific probes
(probes that match more than one gene sequence); iii)
grouping of remaining probes in meta-probe sets with
at least 4 members; iv) discarding all probes not belong-
ing to any meta-probe set defined in point iii) [43].
None of the identified genes share TSS in both of the
designed CDFs. We adopted this strategy because gene
sets are defined as groups of genes and not as groups of
transcripts that could derive from alternative TSS of the
same gene.

Gene sets

We compiled a collection of gene sets using various
public databases. We used gene sets from Gene Ontol-
ogy (GO) (6,466 gene sets derived from Biological Pro-
cess, Molecular Function and Cellular Component), 204
KEGG pathways, 161 ByoCyc pathways, 102 Superarray
pathways and 111 wiki pathways. Only gene sets with
members in the CDF were used in the analysis.

Normalization
Multichip normalization was performed using RMA as
implemented in the affy bioconductor package.
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The gene set expression matrix was normalized by
quantile normalization as implemented in R package
preprocessCore.

Cluster and Template Matching Analysis
All cluster analyses were performed using the Euclidean
distance with complete linkage method. We used the
Hierarchical Cluster Analysis (HCL) implemented in the
TMeV suite (version 3.1) [73].

PTM analysis was performed using the PTM function
implemented in the TMeV suite and setting p-value
threshold at 0.05.

R packages
Limma GSEA was performed using the limma biocon-
ductor R package.

SigPathway analysis was performed using the sigpath-
way bioconductor R package.

MACAT analysis was performed using the macat bio-
conductor R package.

Additional material

Additional file 1: Additional figures. Word document containing
supplementary figures. The figures are provided one per page with a
short description.

Additional file 2: Additional tables. Excel spreadsheet file containing
supplementary tables. External link to NCBI and Gene Card databases are
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the text.

Additional file 3: LGMDs dataset data matrix. Text file containing data
matrix for LGMD dataset gene set meta-analysis.

Additional file 4: Muscle disease dataset data matrix. Text file
containing data matrix for muscular disease dataset gene set meta-analysis.
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