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Abstract

Background: Recently we have witnessed a surge of interest in using genome-wide association studies (GWAS) to
discover the genetic basis of complex diseases. Many genetic variations, mostly in the form of single nucleotide
polymorphisms (SNPs), have been identified in a wide spectrum of diseases, including diabetes, cancer, and
psychiatric diseases. A common theme arising from these studies is that the genetic variations discovered by
GWAS can only explain a small fraction of the genetic risks associated with the complex diseases. New strategies
and statistical approaches are needed to address this lack of explanation. One such approach is the pathway
analysis, which considers the genetic variations underlying a biological pathway, rather than separately as in the
traditional GWAS studies. A critical challenge in the pathway analysis is how to combine evidences of association
over multiple SNPs within a gene and multiple genes within a pathway. Most current methods choose the most
significant SNP from each gene as a representative, ignoring the joint action of multiple SNPs within a gene. This
approach leads to preferential identification of genes with a greater number of SNPs.

Results: We describe a SNP-based pathway enrichment method for GWAS studies. The method consists of the
following two main steps: 1) for a given pathway, using an adaptive truncated product statistic to identify all
representative (potentially more than one) SNPs of each gene, calculating the average number of representative
SNPs for the genes, then re-selecting the representative SNPs of genes in the pathway based on this number; and
2) ranking all selected SNPs by the significance of their statistical association with a trait of interest, and testing if
the set of SNPs from a particular pathway is significantly enriched with high ranks using a weighted Kolmogorov-
Smirnov test. We applied our method to two large genetically distinct GWAS data sets of schizophrenia, one from
European-American (EA) and the other from African-American (AA). In the EA data set, we found 22 pathways with
nominal P-value less than or equal to 0.001 and corresponding false discovery rate (FDR) less than 5%. In the AA
data set, we found 11 pathways by controlling the same nominal P-value and FDR threshold. Interestingly, 8 of
these pathways overlap with those found in the EA sample. We have implemented our method in a JAVA software
package, called SNP Set Enrichment Analysis (SSEA), which contains a user-friendly interface and is freely available at
http://cbcl.ics.uciedu/SSEA.

Conclusions: The SNP-based pathway enrichment method described here offers a new alternative approach for
analysing GWAS data. By applying it to schizophrenia GWAS studies, we show that our method is able to identify
statistically significant pathways, and importantly, pathways that can be replicated in large genetically distinct
samples.
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Background

The power of genome-wide association studies (GWAS)
to discover common genetic variants associated with
complex traits has been empirically demonstrated [1-6].
The single-SNP analysis tests genetic association on
individual SNPs and identifies only the most significant
SNPs because of the stringent statistical criteria neces-
sary for minimizing false positive hits. The identified
SNPs, however, represent only a small fraction of the
genetic variants contributing to complex traits; the
majority of the variations remain hidden within the sta-
tistical “noise” [7,8]. Genetic variants with small indivi-
dual effect sizes but jointly significant genetic effects
would be missed by single-SNP analysis. As a result,
identified genetic variants only explain a small fraction
of heritability for most studied traits[9].

It is increasingly recognized that pathway-based analy-
sis, which considers cumulative association between the
outcome and a group of SNPs or genes in a biological
pathway, can greatly complement the single-SNP
approach in understanding genetic determinants of
common diseases as well as providing insight into the
biological process of complex diseases [10-15]. A path-
way-based analysis by Baranzini et al [16] not only con-
firmed previously identified immunological pathways
but also found that neural pathways might be responsi-
ble for multiple sclerosis. Joel Hirschhorn [11] pointed
out that for many diseases, different risk loci are often
clustered in a common pathway, so when a study high-
lights the role of one or a group of loci in a disease, it
also provides important insights and predictive informa-
tion on the role of other loci within the same biological
group. He argued that the primary goal of genome-wide
association studies should not be the prediction of indi-
vidual risk loci but rather the discovery of biological
pathways underlying polygenic diseases and traits. The
genetic variants revealed in pathway-based analysis
could be used to build predictive models for complex
diseases, and provide insights on how multiple genetic
variants jointly contribute to the etiology of complex
human diseases.

One approach for pathway association analysis of
GWAS is to extend the gene set enrichment analysis
(GSEA) method, which has been successfully applied in
gene expression data analysis [17]. However, a key dif-
ference between gene expression analysis and GWAS
analysis is that each gene in GWAS is represented by
many SNPs. The challenge is to determine the number
as well as which SNPs are the best representatives for
each gene.

Most of the current methods for pathway analysis of
GWAS data are gene-based. Wang et al. [13] used the
SNP with the strongest association to represent a gene.
Choosing the smallest P-value for each gene might not
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be optimal in situations when the joint action of multi-
ple SNPs within a gene explains more variance than the
most significant SNP. For example, if a gene contains
multiple causal variants, it might not be identified by
the smallest P-value method, which reduces the power
of the subsequent pathway enrichment analysis. More-
over, this approach is likely to favour genes of large
sizes, as genes with a larger number of SNPs have a
higher chance of having significant SNPs, by chance
alone. Consequently, the effects of genes with smaller
numbers of SNPs would be underestimated. Holmans et
al. [10] proposed ALIGATOR (Association LIst Go
AnnoTatOR) method to study the significance of path-
ways. Although this method corrects variable gene sizes
by simulations, it requires a pre-determined P-value cut-
off for selecting significant SNPs and the evaluation of
pathways is gene-based, not SNP-based. Yu et al. [18]
used an adjusted P-value for each gene, and also treated
gene as the basic unit for analysis. Since the gene-based
approaches focused on testing significance at the gene-
level, they may have low power to detect pathways con-
taining only a few genes[19].

Recently, Holden et al. [20] proposed a SNP-based
pathway analysis, which used all available SNPs to repre-
sent a gene. This approach is computationally intensive
and might not be practical for genome-wide studies
with millions of SNPs. O’Dushlaine et al. [21] developed
a SNP ratio test (SRT) method which computed the
ratio of the number of significant (P < 0.05) to the num-
ber of non-significant (P >= 0.05) SNPs for each path-
way and used permutations to identify the significant
pathways. The SNP ratio test (SRT) method computes
the ratio of the number of significant (P < 0.05) to the
number of non-significant (P >= 0.05) SNPs for each
pathway, and uses permutations to quantify its statistical
significance. If there is only one gene that contains sig-
nificant SNPs, the SRT method would reduce the path-
way signal to a gene signal. By contrast, our method
uses adaptive rank truncated product and permutations
to determine the number of representative SNPs for
each gene, and each gene includes at least one SNP.
Therefore contributions from multiple genes are empha-
sized in the pathway analysis. Another disadvantage of
the SRT method is that it treats all significant SNPs
equally, which can lead to a reduction of power in
detecting significant pathways.

To address these limitations, we propose a new SNP-
based pathway analysis method, called SNP Set Enrich-
ment Analysis (SSEA), for GWAS studies. SSEA consists
of two main steps: selecting representative SNPs for
each gene, and performing pathway enrichment analysis
using all selected SNPs. In the first step, we exploit an
adaptive rank truncated product method with permuta-
tions to choose the most significant subset of SNPs for
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each gene. The number of SNPs representing a gene is
not predetermined, but data driven. Then for each path-
way, we calculate the average number of representative
SNPs for the genes within this pathway and re-select
SNPs using this number. In the second step, we modify
the existing GSEA algorithm [17] to conduct the path-
way enrichment analysis using all selected SNPs. We
rank all SNPs selected from the first step based on their
strength of association with the trait, and then test
whether the set of SNPs associated within a pathway is
significantly enriched with high ranks using a weighted
Kolmogorov-Smirnov test. Because this test is rank-
based, SNPs with smaller P-values tend to contribute
more in a pathway.

Methods

Adaptive Rank Truncated Product of SNP Association
One difficulty in extending the pathway enrichment ana-
lysis of genes to SNPs is the many-to-one mapping from
SNPs to genes. Generally, assigning the most significant
SNP to a gene might miss other informative SNPs,
while assigning too many SNPs to a gene might intro-
duce noise and decrease statistical power. Both would
introduce bias into the following pathway enrichment
analysis. We select the best representative subgroup of
SNPs for each gene in the following way.

For each SNP, a P-value is obtained by comparing the
genotype frequencies between the cases and controls
using the Pearson’s chi-square test with two degrees of
freedom. Extending the work of Yu et al. [18], we use an
adaptive rank truncated product method. The L P-values
of the L. SNPs mapped to a gene are sorted from smallest
to largest: p(1) < p(2) < ... < p), with p(;) being the lth

K

smallest P-value. We use Wk = I1 p(i) to combine the
i1

first K P-values, where K is the truncation point. Permut-
ing the phenotypes and computing the statistic in permu-
tated data allows us to assess the overall significance of
the K SNPs. In the permutation procedure, we permute
the phenotype values N times to obtain N permutated
datasets. For the nth permutated dataset, we denote the
resulting P-values as pY, ..., p, and calculate the corre-
sponding WEIK). Then the P-value for evaluating Wy, is
N
2 I(Wy =
n=1
p(wy) = N
association of the subset of SNPs and the trait, all possi-
ble values of K are calculated and the one with the smal-
lest P-value is chosen. The corresponding SNPs are used
to represent the gene.

To avoid genes with larger number of SNPs dominat-

ing a pathway in the following SNP set enrichment ana-
lysis, and to let the contributions by more genes be

calculated by Wk). To maximize the
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emphasized in pathway analysis, we require genes in the
same pathway have the same number of representative
SNPs. Therefore, for each pathway, we calculate the
average number of representative SNPs of genes and re-
select SNPs using this number in the given pathway.
The computation needed for selecting representative
SNPs for genes involves hundreds of permutations of
thousands of subjects, recalculating the test statistic in
each permutation based on about half a million SNPs,
and testing on multiple values of the cutoff (i.e. thresh-
old) point K. One way to limit the computational effort
is to set the upper limit K,per to 10 for the truncation
point K. To further reduce the computational cost, we
discard SNPs with large nominal P-values. On the other
hand, if too few SNPs are selected, we might miss SNPs
have low or moderate individual effects but jointly show
a moderate or large effect. To seek a balance, we set a
nominal threshold that is generous, say 0.05, i.e, only
SNPs with P-values less than or equal to 0.05 will be
selected. However, if none of the SNPs for a gene passes
the threshold, the smallest SNP would be selected to
avoid missing too many genes in pathway analysis. Both
Kypper and P-value thresholds are changeable in our
software; other values can be used depending on the
situation. In our experiment, we found that 10 as K
and 0.05 as the P-value threshold are useful choices.

upper

SNP-based Pathway Enrichment Analysis

To conduct pathway analysis of SNP data from GWAS,
we modified an existing gene set enrichment analysis
(GSEA) algorithm [17]. The original GSEA algorithm
ranks all genes by their significance of differential
expression and then looks for groups of biologically
relevant genes that are enriched at either the top or bot-
tom of the ranked list. To apply this idea to SNP data,
we take the N selected representative SNPs across all
the genes to form the SNP list, and compute the
P-values for comparing genotype frequencies between
cases and controls. To measure their strength of associa-
tion, we define r; = ® (1 - p;), i = 1,.., N, where ®' is
the quantile function for the standard normal distribu-
tion. Let ) = 1) 2 ... = 1) be the sorted values from
largest to smallest. A gene set sharing the same func-
tional pathway is converted to a pathway consisting of
SNPs. For a SNP-based pathway with Nz SNPs, we cal-
culate a weighted Kolmogorov-Smirnov-like running
sum [22] to measure the deviation of the pathway from
a set of randomly picked SNPs in the genome:

)" 1
ES(S) = max - /
1<i<N %, NR C%,N_NH
j<i j<i
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p

hNR = GZS |T(f)| . Here p is a parameter that con-
€

trols the weights to ensure SNPs with higher r values

tend to contribute more in the pathway level. Following

the original GSEA algorithm, we set p = 1.

wit

Statistical significance evaluation

The enrichment score is expected to be high if most SNPs
within a pathway are at the top of the list. We examine
the statistical significance of a pathway by a permutation
procedure. In each permutation, we permute (i.e.
exchange) the phenotype labels, re-compute the P-values
for SNPs and the corresponding enrichment score
(denoted as perm_ES). Due to the size of large-scale
genetic data, computational complexity would become
extremely high when the number of permutations is very
large. We used 1,000 permutation-cycles to generate the
permutated datasets. The nominal P-value is obtained by
comparing the enrichment score for the observed pheno-
types with scores computed from permutated phenotypes.

# of perm ES > obs ES

Nom P = .
# of permutations

Adjustment for multiple testing is applied to control
false positives. When many hypotheses are tested simul-
taneously, the probability that at least one type I error is
committed is large. One common approach for account-
ing for multiple testing is to control the false discovery
rate (FDR) [23]. The FDR is the expected proportion of
falsely rejected hypotheses out of the rejected hypoth-
eses. One can also control the family wise error rate
(FWER), which is the probability of making one or
more type I errors among the family of hypothesis tests.
When the number of tests is large and some of the test
hypotheses are in fact false, FWER is too conservative.
Since multiple pathways might be involved in a complex
trait, FDR, which controls the expected proportion of
false discoveries, is more suited to identifying pathways
relevant to a trait. To account for multiple testing in
our pathway analyses, we used a robust method to esti-
mate the false discovery rate proposed by Pounds and
Cheng [24]. The g-value is the minimum FDR at which
the test is called significant. For a given significant level
«, the point estimate of g-value () is defined as

q — value(a) = rtrlin FDR(t),

where FDR(t) denotes an estimate of the proportion of
tests when rejecting all null hypotheses with P-values
less than or equal to the significance threshold t.

Results
To perform SNP-based pathway enrichment analysis of
GWAS data, we developed a JAVA based software
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package called SNP Set Enrichment Analysis (SSEA) by
extending the original GSEA code. SSEA consists of
four procedures as outlined in Figure 1: 1) calculating
the P-value of the association of each SNP to a trait of
interest, 2) selecting representative SNPs for each gene
using an adaptive SNP combination method, calculating
the average number of representative SNPs for genes in
each pathway and reselecting SNPs for gene in each
pathway, 3) ranking all selected SNPs by their P-values
and testing if the SNPs from a pathway are enriched
with high ranks, and 4) calculating the FDR of the dis-
covered pathways. See Methods for details.

We applied SSEA to two large genetically distinct
GWAS data sets for schizophrenia from the Genetic
Association Information Network (GAIN, http://www.
genome.gov/19518664) studies [25], available at the
database of Genotype and Phenotype (dbGaP) [26]. The
study version we reported here is phs000021.v2.p1 with
general research use consent, which includes two sam-
ples; one is from the European American (EA) ancestry
and the other one is from African American (AA)
ancestry. Individuals in those two cohorts represent two
genetically distinct populations [27,28]. However, we
should note that the two data sets were collected and
quality controlled in a similar way, which might affect
the independence of the two data sets. Both samples
were genotyped by the Affymetrix SNP array 6.0. With
GAIN quality-control criteria and after removing redun-
dant subjects, the data sets included 1172 cases and
1378 controls in EA and 921 cases and 954 controls in
AA. Since Linkage Disequilibrium (LD) is an important
concern for selecting representative SNPs for each gene,
we used Plink http://pngu.mgh.harvard.edu/~purcell/
plink/ to prune SNPs that are in strong LD (Plink uses
0.5 as the default pairwise R* threshold, Supplementary
Table 3 in Additional file 1). The final data used in our
study consisted of 245,216 SNPs in EA and 482,914
SNPs in AA. The SNPs were assigned to genes on the
basis of being located within the gene or up to 20 kb
from the gene. Most genes are associated with more
than one SNP; we applied the adaptive rank truncated
product of SNP association algorithm described in
Method to selected representative SNPs for each gene.
For pathways, we used 215 experimentally validated
pathways from the KEGG database[29] (Release 55,
accessed 12 September).

Application of SSEA to the two schizophrenia data
sets resulted in the discovery of 22 pathways in the EA
data set and 11 pathways in the AA data set with the
nominal P-value less than or equal to 0.001. Using this
P-value cut-off, the overall FDR is controlled within 5%
for both data sets. The list of identified pathways from
each sample is shown in Additional file 1 and 2,
together with the related gene information.
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Figure 1 A diagram of procedures involved in SNP set enrichment analysis (SSEA).

Interestingly, the two data sets share 8 significant
pathways; we used Monte Carlo simulation to assess the
significance of sharing and found the P-value is less
than 1.0E-6. To examine whether our method detects
biologically relevant pathways or random combinations
of genes, we permutated genes and generated 215 ran-
dom pathways for both EA and AA data sets; Our
method only detected 6 significant pathways (P <=
0.001) in EA and 3 in AA, and none of them is shared,
indicating that the number of significant pathways
detected by our methods is more than what expected by
chance, and those significant pathways are likely to be
biologically relevant. The list of the 8 replicated path-
ways are shown in Table 1, together with their nominal
P-values, the gene set sizes and the SNP set sizes asso-
ciated with each pathway, and the full list of 22 signifi-
cant pathways in EA and 11 significant pathways in AA
are shown in Additional file 2.

Schizophrenia [MIM 181500] is a complex brain dis-
order characterized by disturbances in multiple domains
of brain function, including cognitive, emotional, and
perceptual processes [30]. Evidence for schizophrenia as
a neurodevelopment disorder began more than 30 years
ago [31] and has been accepted commonly [32]. It is

intriguing to note that the 8 pathways discovered by
SSEA in both the EA and AA samples included 4 path-
ways important for neurodevelopment and neuronal
functioning, such as axon guidance pathway, neuroactive
ligand-receptor interaction pathway, long-term depres-
sion pathway and long-term potentiation pathway. Axon
guidance pathway and neuroactive ligand-receptor inter-
action pathway are directly related to neuroplasticity
and neuropathology, and thus are important to the
genetic mechanism of schizophrenia [33]. Long-term
depression pathway and long-term potentiation pathway
were reported to be important for synaptic plasticity
development and related to schizophrenia [34,35].
Besides, axon guidance pathway, long-term depression
pathway and long-term potentiation pathway were
reported in a recent study where pathways were overre-
presented by genes disrupted by copy number variants
in schizophrenia cases [36]. Genes in the focal adhesion
pathway are principally involved in the biological pro-
cesses for synaptic transmission and cell adhesion [37].
In addition, arrhythmogenic right ventricular cardio-
myopathy (ARVC) pathway is related to cardiovascular
disease, which supports the previous study that patients
with schizophrenia had higher rates of cardiovascular
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Table 1 Eight significant pathways (P <= 0.001) discovered in both European-American ancestry and African-American

ancestry data sets of schizophrenia

PATHWAYS European Ancestry (EA) African Ancestry (AA)
Nom P GENE SIZE SNP SIZE Nom P GENE SIZE SNP SIZE

HSA04720 Long-term potentiation <0.001 67 135 0.001 67 66
HSA04270 Vascular smooth muscle contraction <0.001 107 215 <0.001 107 105
HSA05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC)  <0.001 72 144 <0.001 72 135
HSA04020 Calcium signaling pathway <0.001 168 337 <0.001 174 165
HSA04360 Axon guidance <0.001 122 245 <0.001 126 120
HSA04080 Neuroactive ligand-receptor interaction <0.001 256 509 <0.001 266 248
HSA04510 Focal adhesion <0.001 186 378 <0.001 191 186
HSA04730 Long-term depression <0001 68 134 0.001 68 129

disease and mortality compared with the general popu-
lation [38,39]. We took a further investigation of gene
intersections in the remaining two non-schizophrenia
specific pathways. We found the calcium signalling
pathway shared 40 (24%) genes with long-term potentia-
tion pathway, while vascular smooth muscle contraction
shared 40(37%) genes with long-term depression path-
way; the same genes implicated in different pathways
might be a reason for their enrichment in our study.

As a comparison, we also applied another two meth-
ods, smallest P-value and PLINK set-based tests [40], to
the two GAIN data sets. The smallest P-value method,
which only used the SNP with the smallest P-value to
represent a gene, detected 6 and 2 significant pathways
in EA and AA data sets, respectively; only one was
shared by both data sets. This showed our method
could improve the power of detecting causal pathways
by using multiple SNPs to represent a gene. For the set-
based test method (with parameters —set-p 0.05, —set-r2
0.5, the same as that in our method), 3 significant path-
ways were detected in EA, and 2 in AA, but none was
shared between the two data sets. One reason for the
loss of power of these two methods might be their
favouring of pathways containing large numbers of
genes and genes with large number of SNPs, as larger
pathways are expected to show more significant genes
or SNPs just by chance. We checked several potential
factors that might affect pathway significance: pathway
size, gene size, total bp content, and average content.
We found these factors are uncorrelated with pathway
significance (Supplementary Figure 1a,b,c,d in Addi-
tional file 1), confirming that using multiple representa-
tive SNPs per gene and permutations are able to reduce
the bias introduced by gene and pathway sizes.

Relaxing the nominal P-value cut-off to 0.01, with
FDR g-value controlled within 10%, resulted in 40 sig-
nificant pathways detection in EA data set, and 27 sig-
nificant pathways in AA data set. Among them, 17
pathways are shared (Monte Carlo simulation P-value

for sharing is less than 1.0e-6). The full list of 17 shared
pathways is shown in Table 2.

Discussion

The traditional strategy for GWAS studies tests one
SNP at a time. Although widely used, single-SNP
GWAS analysis does not have adequate power to
detect SNPs that have marginally weak, but jointly
strong genetic effects. Jointly analyzing SNPs within
the same biological pathway simultaneously comple-
ments the single-SNP analysis and can reveal new
insights to the understanding of complex human traits.
Our SNP set enrichment analysis operates on repre-
sentative SNPs of genes and then combines the effects
of SNPs within the same pathway by a weighted
Kolmogorov-Smirnov running sum statistic test [22].
This strategy has the potential to increase the chance
of identifying genetic variants that that individually
have a modest risk.

Compared to gene set enrichment analysis, the SNP
set enrichment analysis is a much larger scale and is
more computationally challenging. Several pathway-
based methods have recently been developed to analyse
GWAS [13,20,41-44]. In general, these methods can be
classified into two categories, depending upon how
representative SNPs for each gene are chosen: one
selects the most significant SNP per gene, and the other
selects all SNPs located within a gene [20]. Both
approaches have limitations. Using all available SNPs
per gene not only poses computational challenges, but
also introduces significant amounts of noise into the
analysis. Using the most significant SNP per gene might
miss SNPs with moderate strength individually but
strong effects jointly, and in addition it introduces biases
of favouring large extensive pathways and genes with
greater numbers of SNPs. The SSEA method we pro-
posed uses an adaptive approach to choose SNPs in
each gene, and can eliminate the limitations of other
strategies.
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Table 2 Seventeen significant pathways (P <= 0.01) discovered in both European-American and African-American

ancestry samples of schizophrenia

PATHWAYS European Ancestry (EA) African Ancestry (AA)
Nom P GENE SIZE SNP SIZE Nom P  GENE SIZE SNP SIZE

HSA04720 Long-term potentiation 0.001 67 66 <0001 69 135
HSA04270 Vascular smooth muscle contraction <0.001 107 105 <0.001 13 215
HSA05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) ~ <0.001 72 135 <0001 74 144
HSA04020 Calcium signaling pathway <0.001 168 165 <0.001 174 337
HSA04972 Pancreatic secretion 0.008 93 91 <0.001 94 184
HSA04360 Axon guidance <0.001 122 120 <0.001 126 245
HSA04080 Neuroactive ligand-receptor interaction <0.001 256 248 <0.001 266 509
HSA04510 Focal adhesion <0.001 186 186 <0.001 191 378
HSA04730 Long-term depression <0.001 68 129 0.001 68 134
HSA00330 Arginine and proline metabolism 0.001 47 47 0.002 52 102
HSA04970 Salivary secretion 0.003 80 151 0.002 86 166
HSA05146 Amoebiasis 0.009 100 99 0.003 103 199
HSA05414 Dilated cardiomyopathy <0.001 88 86 0.005 90 173
HSA04070 Phosphatidylinositol signaling system 0.002 75 74 0.006 77 150
HSA04512 ECM-receptor interaction 0.001 81 81 0.007 82 161
HSA04260 Cardiac muscle contraction 0.009 63 61 0.009 67 128
HSA04540 Gap junction 0.003 80 80 0.009 85 165

It is also worthy to point out that the number of
selected SNPs varies between genes. This is because we
used permutations to decide both the number and the
set of SNPs to represent each gene. The permutation of
phenotypes and recalculation of statistical values for
about half a million SNPs and thousands of subjects is
computationally expensive. To seek a balance between
the computational complexity and not losing too much
information from SNPs, we set a nominal significance
threshold chose only SNPs with smaller P-value for
pathway analysis. To further reduce computation, we
recommend using an upper limit for the number of
representative SNPs for each gene.

Our method has a critical assumption. In combing P-
values of SNPs in a gene we assume that the P-values are
independent, although in reality some SNPs in a gene are
in linkage disequilibrium (LD). When comparing the
results with and without removing SNPs in strong LD,
we found there is no big difference between them. How-
ever, a future direction is to relax this assumption and
develop a SNP selection method that explicitly takes the
LD patterns into account rather than remove SNPs in
LD. It is interesting to note that Peng et al. [15] also
found that ignoring LD could actually lead to better
results than methods with very conservative multiple
testing corrections. The permutation test we consider
might partially alleviate the effect due to LD.

A critical component for the success of the pathway-
based analysis is the availability of a comprehensive

collection of relevant gene sets related to the disease/
genetic trait of interest. Current understanding of
gene functions and pathways is still very limited. This
is especially the case for neuropsychiatric diseases, as
most of the gene sets currently available were gener-
ated based on experiments done on tumor cell lines.
As a consequence, we have only limited knowledge
regarding the pathways involved in brain development,
and normal and pathological activities. In this regard,
the pathways discovered by SSEA for schizophrenia
are likely to be substantially incomplete. We expect
the performance would improve as better and more
comprehensive disease-related pathways become avail-
able. A future challenge is to curate pathways and
gene sets in a disease specific way, possibly by taking
advantage of the high-throughput functional genomics
tools.

Conclusion

In summary, we have developed a new SNP-based
method, called SNP Set Enrichment Analysis (SSEA), for
pathway analysis of GWAS data. SSEA selects a multiple
and varying number of SNPs to represent each gene
using an adaptive truncated product statistic. The
selected SNPs are then ranked and enrichment of path-
ways is tested using a weighted Kolmogorov-Smirnov
test. We tested SSEA in two genetically distinct GWAS
studies of schizophrenia with large samples, and discov-
ered 22 significant pathways in the European-American
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sample and 11 significant pathways in the African-
American sample. Eight important pathways were found
in both distinct samples providing support for our
method.

The SSEA method is coded in a JAVA software pack-
age with a user-friendly interface. The software is freely
available at http://cbcl.ics.uci.edu/SSEA/.

Additional material

Additional file 1: Supplementary tables and figures on genes and
pathways. Supplementary tables and figures on genes and pathways
discovered by SSEA.

Additional file 2: Detailed information on replicated pathways. A
excel file containing detailed information on replicated pathways.
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