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Abstract

combinations.

Background: For treating a complex disease such as cancer, we need effective means to control the biological
network that underlies the disease. However, biological networks are typically robust to external perturbations,
making it difficult to beneficially alter the network dynamics by controlling a single target. In fact, multi-target
therapeutics is often more effective compared to monotherapies, and combinatory drugs are commonly used
these days for treating various diseases. A practical challenge in combination therapy is that the number of
possible drug combinations increases exponentially, which makes the prediction of the optimal drug combination
a difficult combinatorial optimization problem. Recently, a stochastic optimization algorithm called the Gur Game
algorithm was proposed for drug optimization, which was shown to be very efficient in finding potent drug

Results: In this paper, we propose a novel stochastic optimization algorithm that can be used for effective
optimization of combinatory drugs. The proposed algorithm analyzes how the concentration change of a specific
drug affects the overall drug response, thereby making an informed guess on how the concentration should be
updated to improve the drug response. We evaluated the performance of the proposed algorithm based on
various drug response functions, and compared it with the Gur Game algorithm.

Conclusions: Numerical experiments clearly show that the proposed algorithm significantly outperforms the
original Gur Game algorithm, in terms of reliability and efficiency. This enhanced optimization algorithm can
provide an effective framework for identifying potent drug combinations that lead to optimal drug response.

Background

Effective treatment of a complex disease, such as cancer,
requires practical means to control the biological net-
work underlying the disease. However, such therapeutic
intervention is difficult in practice, due to the inherent
robustness of biological networks to external perturba-
tions and changes. Biological networks are known to be
redundant at various levels, hence knocking out a speci-
fic gene or blocking a specific pathway often does not
significantly change the dynamics of the network. For
this reason, monotherapy using a single drug that tar-
gets a specific protein (or gene) is often limited in its
therapeutic effect, and multi-target therapeutics are
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considered to be much more effective [1-6]. Examples of
such multi-target therapeutics can be easily found in
cancer chemotherapy, where most of the chemotherapy
regimens consist of multiple drugs. Nowadays, combina-
tion therapies are commonly used for treating various
complex diseases, including cancer and diabetes. One
practical challenge in multi-target therapeutics is that
the number of drug combinations increases exponen-
tially, as the number of drugs and the number of possi-
ble concentrations increase. For example, if we want to
find the optimal combination of N drugs, where each
drug can take L different concentrations, there exist L™
distinct drug combinations. Even for reasonably small L
and N, the number of distinct combinations can be very
large, making it practically impossible to find the opti-
mal drug combination through exhaustive search. For
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this reason, we need a systematic method for finding the
optimal combination of multiple drugs in a huge space
of possible drug combinations.

Recently, a number of algorithms have been proposed
for efficient prediction of optimal drug combinations
[7-11]. For example, Calzolari et al. [7] proposed an
optimization framework based on search algorithms that
are derived from sequential decoding algorithms, widely
used in digital communications [12,13]. It was shown
that these search algorithms are capable of finding the
optimal drug combination using only a small fraction of
tests that would be needed for an exhaustive search [7].
Wong et al. [9] proposed another optimization frame-
work based on a stochastic optimization algorithm,
called the Gur Game algorithm [14,15]. In this work,
Wong et al. formed a closed-loop feedback control sys-
tem, where they measure the cell response to a specific
drug combination, and use the Gur Game to predict a
new drug combination that is likely to improve the cell
response. It was demonstrated that the closed-loop opti-
mization approach can effectively find potent drug com-
binations in a relatively small number of iterations [9].
Neither approaches [7,9] require any prior knowledge of
the underlying biological network, which makes these
methods easily applicable to various biological and med-
ical optimization problems. As discussed in [7], if the
biological system of interest shows a significantly non-
linear response to multiple drug combinations, a sto-
chastic search algorithm, such as the Gur Game
algorithm [9], is expected to perform better than non-
stochastic algorithms. However, if the nonlinearity is
moderate, nonstochastic search algorithms [7] may be
more preferable.

An important advantage of the stochastic optimization
approach is that it can effectively find potent drug com-
binations in the presence of multiple local optima [9].
The stochastic behavior prevents the algorithm from
being trapped in a local optimum, increasing the prob-
ability of finding the globally optimal drug combination.
Furthermore, stochastic algorithms can effectively cope
with any uncertainty or variability that may exist in the
objective function to be optimized. When our goal is to
find the best combination of multiple drugs that can
most beneficially affect the biological system at hand, we
will have to evaluate the objective function (e.g., the
desirability of the current drug combination) based on
biological measurements. In such cases, measurement
noise is practically unavoidable, hence the optimization
algorithm should be robust to random variations that
may arise from the inherent noise. From this respect,
the Gur Game algorithm, which was used in [9] for pre-
dicting effective drug combinations, is especially attrac-
tive in various biological optimization problems.
However, the Gur Game algorithm has also inherent
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limitations that may significantly degrade its overall per-
formance for certain drug response functions. In this
paper, we discuss the limitations of the original Gur
Game algorithm and propose a novel stochastic optimi-
zation algorithm that can effectively address these issues.
Based on various drug response functions, we demon-
strate that the proposed algorithm significantly outper-
forms the Gur Game algorithm, in terms of both
reliability and efficiency.

Results

Limitations of the Gur Game Algorithm

Let x = (x1, X9, ... , xn) be an N-dimensional vector that
represents the combination of N drugs, where x,, is the
concentration of the nth drug. We define fix) to be the
normalized drug response function that measures the
desirability of a given drug combination x. We assume
that 0 < flx) < 1 for x € X, where X is the set of all pos-
sible drug combinations under consideration.
A response of f{x) = 0 implies that the combination x is
completely ineffective, while fix) = 1 implies that the
given x results in the optimal therapeutic outcome. Our
main goal is to find the optimal drug combination x*
that maximizes the normalized drug response f(x) as
follows:

x* = arg max f(x).
xeX

Recently, Wong et. al [9] adopted a stochastic search
algorithm called the Gur Game algorithm to find the
most effective drug combination. They showed that the
Gur Game algorithm can efficiently find potent drug
combinations in a large combinatorial solution space.
The basic idea of the Gur Game algorithm is to take a
random walk in a finite state automaton (FSA) to find
the optimal combination, where each state in the FSA
represents a distinct drug combination. At each step,
the normalized drug response f(x) is evaluated at the
current state (i.e., for the current drug combination),
based on which the algorithm randomly chooses the
next state (i.e., a new drug combination) that is likely to
improve the response. This is achieved as follows. The
algorithm generates N random numbers r,, € [0,1] for n =
1, ..., N. Each r, is compared to the current drug response
fx). If fix) <r,, the nth drug is “penalized” and the concen-
tration x,, is updated accordingly. Otherwise, the nth drug
is “rewarded” and its concentration is updated accordingly.
This is illustrated in Figure 1A for the nth drug. Suppose
the current concentration of the drug is x,, = c. If the cur-
rent drug response f{x) is smaller than the randomly gen-
erated number r,, the algorithm penalizes the drug by
switching the concentration to x, = ¢;_;. In case f(x)
exceeds r,, the drug is rewarded and the algorithm
switches the concentration to x,, = ¢x,;. Note that the
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Figure 1 Choosing the next state. (A) In the Gur Game algorithm, the next drug concentration for rewarding or penalizing the current
concentration is predetermined. (B,C) The proposed algorithm determines the next concentration for rewarding or penalizing the current
concentration by comparing the current drug response to the previous drug response.

In the original Gur Game algorithm, the
rewarding state transition and the penalizing
state transition are predetermined.

In the proposed algorithm, the rewarding and
penalizing state transitions are determined
by comparing the current drug response f(x)
to the previous drug response f(x,,)-

Case-l:

(i) if changing x, from ¢, to ¢, increases the
response: f(X;.,) < f(x), or

(ii) If changing x, from c,,, to c, decreases
the response: f(x.,) > f(x)

Case-ll

(i) if changing x, from c,_, to c, decreases the
response: f(x,) > f(x), or

(i) If changing x, from ¢, to c, increases

the response: f(X,) < f(x),

direction of state transition for rewarding (or penalizing)
the current drug concentration is predetermined. Accord-
ing to this method, the current drug concentration x has a
higher probability of being rewarded if fx) is high. On the
contrary, the concentration x will be more likely to be
penalized if f(x) is low. This will probabilistically drive the
FSA to more desirable states that result in more effective
drug responses. It should be noted that the algorithm
allows a small probability of penalizing the current drug
concentration even if the drug response f(x) is high (>
0.5). This stochastic property prevents the algorithm from
being trapped in local maxima, thereby increasing the
chance of finding the global maximum. In addition to this,
the randomness can make the search algorithm robust
against possible measurement noise in f{x). This is an
important feature when our goal is to use this search algo-
rithm in conjunction with biological experiments.

Despite its many advantages, the Gur Game algorithm
has also inherent limitations. To see this more clearly, let

us consider the toy examples shown in Figure 2. Suppose
we want to find the optimal concentration x of a single
drug that maximizes the drug response flx). We assume
that there are five possible drug concentrations x € {cy, ¢,
.., 5}, hence our goal is to find the optimal concentration

x* = argmax f(x),
xefcy e

among the five concentrations, using the Gur Game
algorithm. For this purpose, we use the FSA shown in
Figure 2A. This FSA rewards a given drug concentration
¢ by increasing it further if ¢ is higher than the central
concentration (i.e., ¢z in this example), unless ¢ is
already the maximum allowed concentration. On the
contrary, if the current concentration ¢ is lower than
the central concentration, the FSA rewards it by
decreasing the concentration further, unless ¢ is already
the minimum allowed concentration. If ¢ is at the cen-
ter, either direction is chosen with equal probability.
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Figure 2 An illustrative example. (A) The finite state automaton used by the Gur Game algorithm. (B) An example of a drug response f(x)
whose values is always below 0.5. (C) An example of a drug response whose value is always above 0.5.

> reward: if f(x) = r,

v

First of all, consider the drug response flx) depicted in
Figure 2B. As we can see, the value of f(x) is always
below 0.5 and the concentration that maximizes the
response is x* = ¢5. Since flx) < 0.5 for every possible
concentration x, the probability that a uniformly distrib-
uted random number r € [0,1] will exceed fix) is always
larger than 0.5. More precisely, we have

P{x is penalized } = P{ f(x) <r} > P{x is rewarded } = P{ f(x) 2}, Vx.

Therefore, the state (i.e., concentration) x = ¢z will
have a higher steady-state probability compared to other
states, and the random walk will visit x = ¢3 more often
than the other states. As a consequence, the Gur Game
algorithm probabilistically prefers the suboptimal con-
centration x = ¢3 over the optimal concentration x = cs.
Next, let us assume that the drug response f(x) is as
shown in Figure 2C. In this example, flx) > 0.5 for all
five drug concentrations that are under consideration,
and x = c3 results in the maximum response. However,
for the drug response in Figure 2C, we have

P{x is penalized } = P{ f(x) <t} < P{x is rewarded } = P{ f(x) 2}, Vx,

hence every concentration has a higher probability of
being rewarded than being penalized. This probabilisti-
cally drives the FSA either to x = ¢; or x = ¢s5, both of
which are suboptimal, and the optimal concentration
x = c3 will have a lower steady-state probability com-
pared to other concentrations. As in the previous exam-
ple (Figure 2B), the Gur Game algorithm will prefer

these suboptimal concentrations to the optimal
concentration.

These illustrative examples clearly show that the Gur
Game algorithm used in [9] may result in suboptimal
performance, if the drug response f(x) is not properly
normalized and/or the FSA and the directions for
rewarding (and penalizing) specific drug concentrations
are not properly designed. For this reason, the actual
performance of the Gur Game algorithm may consider-
ably vary depending on the underlying drug response.

Novel stochastic search algorithm

As we discussed in the previous section, (i) proper nor-
malization of the drug response f(x) and (ii) effective
design of the FSA is crucial for optimal performance of
the Gur Game algorithm. In practice, f(x) need to be
estimated from measurements in biological experiments
(e.g., through fluorescence microscopy), and normalizing
fix) such that it spans the entire dynamic range 0 < f{x)
< 1 may be practically difficult. Furthermore, since we
do not have prior knowledge of the drug response, it is
very challenging to properly define the behavior of the
FSA, namely, how to reward or penalize a given state, in
advance.

In order to address these problems, we propose the
following novel stochastic search algorithm. Let x = (x,
X2, oo s xN) and Xy = (X7, 45, -+, &y) be the current
drug combination and the previous drug combination,
respectively. We assume that x and X, differ only by
one element, such that x; = (i # n) and x; # «7(i = n) for
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some #. Suppose that the concentration of the nth drug can
take a value from the set C = {..,, ¢j_1, Co Crs15 -} (¢ < for i <j),
where the current concentration is x,, = ¢;. For convenience,
we define x, = (x{, x5, -, xl) and x, = (xf,x}, -+, x%)
such that we have «x;,=x/ =x/(i#n),x, =c,,, and
X} = Cpyp - We assume that the FSA can make transitions
from state x to X, and also from x to x,. In the proposed algo-
rithm, we first evaluate the function

8% X o) = S {1+ o max [ 09, f(xpee) ]

where 0 < o < 1 is a parameter that determines the
randomness of the search algorithm, which will be dis-
cussed later. It is not difficult to see that we always have
&(X, Xprev) = 0.5. The value of the function g(x, Xpyey) is
then compared to a uniformly distributed random num-
ber r, € [0,1], based on which we decide how to make
the next state transition.

First, let us consider the case when changing the con-
centration of the nth drug from x), =¢,_; to x, = ¢
results in an increase of the drug response fix,rey) < fx).
In this case, we may want to “reward” this positive
change by increasing the current drug concentration
further from x, = ¢, to the next level ci,;. Naturally, the
probability of rewarding such a positive change should
be higher than the probability of penalizing it. For this
reason, we increase the concentration to x, = ¢, if g(x,
Xprev) 2 I, and we decrease the concentration to x,, =
Cro1 if g(X, Xprey) <7y, In this case, we can view g(X, Xprev)
as the probability of rewarding the previous concentra-
tion change that improved the overall drug response.
This rewarding probability will be always higher
than the penalizing probability, since g(x, Xprey) 2 0.5.
Now, assume that decreasing the concentration
from x), =cj,; to x, = ¢, decreases the response f(Xprey)
> fix). In this case, we should “penalize” the decrease in
x,, or equivalently, reward the increase in x,. Therefore,
we again increase the concentration of the nth drug to
Xn = Cre1 if g(X, Xprev) 2 1, and reduce it to x,, = cx_y if
&(X, Xprey) <7, This is illustrated in Figure 1B.

Next, suppose that decreasing the concentration from
X, =Cpyq to x, = i increases the response fixprey) <f
(x). Since decreasing the concentration of the nth drug
results in an improved response, we should “reward”
this change by decreasing the concentration further to
%, = k1. Therefore, we compare g(X, Xprey) to the ran-
dom number r,, and we decrease the concentration
from ci to ¢y if g(X, Xprev) 2 7, and increase it from ci
to cx,1 otherwise. This rule also applies when increasing
the concentration from x), =¢;_; to x, = ¢ leads to a
decrease in the response flXprey) > fIX).

As we briefly mentioned before, the parameter « is
used to control the degree of randomness in
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determining how the current drug concentration
should be updated. If o = 0, we always have g(X, Xpyey)
= 0.5, regardless of how the drug response fix) changes
for different concentrations. Therefore, when o = 0,
the next concentration will be randomly determined
between c¢;_; and cg,; with equal probability. As
o increases from 0 to 1, we give more weight to the
observed drug response change in deciding how the cur-
rent concentration should be rewarded (or penalized).
We can be more confident about the desirability of the
predicted direction for updating the drug concentration,
if the observed drug response is closer to 1 (i.e., the the-
oretical maximum). This is reflected by the incorpora-
tion of the term max[f(x), f(Xprev)] in the evaluation of
&(X, Xprev). Unlike the original Gur Game algorithm, the
proposed algorithm makes an “informed guess” on how
the concentration of a given drug should be beneficially
updated, by analyzing the effect of the last concentra-
tion change.

Performance comparison: an illustrative example

To compare the performance between the proposed sto-
chastic optimization algorithm and the original Gur
Game algorithm [9], let us consider the two drug
response functions shown in Figure 3. Figure 3A (top)
shows the response f{x) to a single drug, where x € [0,1]
is the concentration of the given drug. The drug
response is in the range 0.5 < flx) < 1 for all x, and the
maximum response is achieved at x = 0.5. As we dis-
cussed previously (see Figure 2C), such a f{x) may be
problematic for the Gur Game algorithm, since the algo-
rithm will always try to “reward” the current drug
concentration as f{x) > 0.5, Vx. This will drive the con-
centration either to the lowest concentration (x = 0) or
the highest concentration (x = 1), although the maxi-
mum concentration is located at the center x = 0.5.
Unlike the Gur Game algorithm, the performance of the
proposed algorithm will not be affected, since it deter-
mines the proper way to reward (or penalize) the cur-
rent drug concentration by analyzing the change in drug
response that resulted from the last concentration
change. In order to demonstrate the performance differ-
ence between the two algorithms, we first designed a
finite state automaton with 11 states, whose structure is
similar to the one illustrated in Figure 2A. The entire
range of possible drug concentration x € [0,1] was
evenly divided into 11 distinct values, hence each state
in the FSA corresponds to one of the following drug
concentrations x € C = {c, ¢y, ..., €10}, where ¢, =1}—‘0.
Like the example shown in Figure 2A, the FSA of the
Gur Game algorithm was designed such that any con-
centration ¢ that is higher than the central concentra-
tion (i.e., ¢s in this case) is rewarded by increasing it
further, and any c; that is lower than the central
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Figure 3 An illustrative example. (A) Example of a drug response function f(x) > 0.5, whose maximum is located at x = 0.5 (top). The drug
response (center) and the drug concentration (bottom) after each iteration are shown. (B) Example of a drug response function f(x) < 0.5, whose
maximum values are located at x = 0 and x = 1 (top). The drug response (center) and the drug concentration (bottom) after each iteration are
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concentration is rewarded by decreasing it further. If the
current concentration ¢ is at the center, either direction
is selected with equal probability.

Figure 3A (center) shows how the drug response f(x)
changes after each iteration for the two algorithms,
where the blue solid line shows the drug response that
results from the drug concentration predicted by the pro-
posed algorithm. The concentration x predicted by the
proposed algorithm after each iteration is depicted in
Figure 3A (bottom), also in a blue solid line. The
response and the drug concentration that are obtained
using the Gur Game algorithm are respectively shown in
Figure 3A (center) and Figure 3A (bottom) in red dashed
lines. As we can observe in Figure 3A (bottom), the Gur
Game algorithm drives the drug concentration to one of
the extremes (x = 1 in this case), resulting in a low drug
response as shown in Figure 3A (center). In comparison,
we can see in Figure 3A (center) and Figure 3A (bottom)
that the enhanced stochastic search algorithm can effec-
tively find the optimal drug concentration x = 0.5 in just
a few iterations. Note that both algorithms began from
the same initial drug concentration x;,;; = 0.8, which was
randomly selected. Another interesting fact that we can
notice from Figure 3A (center) and Figure 3A (bottom) is
that the proposed algorithm maintains the drug concen-
tration around the optimal concentration x = 0.5, keeping
the resulting drug response close to its maximum value.
In fact, the steady state probability that the FSA will be at
the optimal state (i.e., optimal drug concentration) is sig-
nificantly higher when using the proposed algorithm
compared to using the Gur Game algorithm. Similarly,
the long-term average response obtained from the
enhanced algorithm will be higher than the average
response obtained from the Gur Game algorithm.

Figure 3B (top) shows another example drug response
f(x), which is always below 0.5 for all x € [0,1], and
whose maximum f{x) = 0.5 is located at x = 0 and x =
1. Based on our previous discussion (see Figure 2B), we
expect that the Gur Game will always try to penalize the
current drug concentration since flx) < 0.5. As a result,
the algorithm will drive and keep the concentration near
x = 0.5, resulting in a very low drug response. In fact,
this can be observed in Figure 3B (center) and Figure
3B (top). Unlike the Gur Game algorithm, the proposed
algorithm quickly finds the optimal concentration
located at x = 1, and it maintains the drug response
high by keeping the concentration near the optimal
value. These examples clearly demonstrate the limita-
tions of the Gur Game algorithm and also show that the
proposed algorithm can effectively overcome these pro-
blems. Due to the stochastic behavior of these algo-
rithms, the actual drug concentration predicted by the
respective algorithms, as well as the resulting drug
response, will be different in different experiments.
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However, Figures 3A and 3B are representative exam-
ples that show the typical behavior of the two
algorithms.

Predicting the optimal combination of multiple drugs

To evaluate the performance of the proposed stochastic
optimization algorithm, we carried out numerical simu-
lations based on the two-dimensional response functions
shown in Figure 4. The first response function f4(x,y)
shown in Figure 4A has been obtained using the func-
tion peaks() in Matlab. In this example, we divided the
interval [0, 1] into 21 evenly spaced values, hence x, y €
A
20
has been normalized so that max,,f4(x, y) = 1 and min,,
Jfax, y) = 0. The second function fz (x, y) shown in Fig-
ure 4B has been obtained by normalizing the second De
Jong function, which is defined as:

{co, €15« €20}, Where ¢, = . The function f,(x, )

flx, y) = IOO(x2 - y)2+ a- x)z,

for x, y € [-2, 2]. Again, the entire range was evenly
divided into 21 distinct values such that x, y € {co, c1, -.s

a0}, where ¢, =4 ( 2_kO -0.5 ) . The third response func-

tion fc(x, ) in Figure 4C shows the normalized percent
inhibition of the A549 human lung carcinoma cells [16]
for different combinations of chlorpromazine (CPZ) and
pentamidine (PTM), which was reported in [1]. In this
experiment, Borisy et al. [1] combined the antipsychotic
agent chlorpromazine and the antiprotozoal agent penta-
midine, and monitored the cell response to different drug
combinations. For chlorpromazine, 10 different concen-
trations x € {0, 1, 2, 4, 6, 8, 12, 16, 20, 22} (#M) had been
considered. Another set of 10 concentrations y € {0,0.25,
0.4,0.6, 0.8,1,1.5, 2,4, 6.8} (uM) had been considered for
pentamidine, in combination with chlorpromazine. The
drug response function f-(x, y) has been obtained by nor-
malizing the percent inhibition of A549 proliferation, so
that we have max, ,fc(x, y) = 1 and min, fc(x, y) = 0.
Finally, the response function fp(x, y) in Figure 4D shows
the normalized percent inhibition of the bacteria S. aur-
eus for different combinations of two antibiotic drugs,
sulfamethoxazole (SMX) and trimethoprim (TMP),
which was reported in [6]. For trimethoprim, 9 distinct
doses x € {0,0.08, 0.16, 0.32, 0.63, 1.25, 2.5, 5, 10} (uM)
had been tested, while a different set of 9 doses y € {0,
0.31, 0.62, 1.25, 2.5, 5,10, 20, 40} (M) had been
tested for sulfamethoxazole. As before, we obtained fp(x,
y) by normalizing the percent inhibition of S. aureus
proliferation.

For each of the four response functions shown in Fig-
ure 4, we tested the performance of the proposed algo-
rithm as follows. First, we randomly selected the initial
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values of x and ¥ (i.e., initial drug concentrations). Next,
starting from the selected initial values, we used the
proposed algorithm to search for the optimal drug com-
bination (x, y) that maximizes the drug response. The
parameter «, which is used for controlling the random-
ness of the search, was set to o = 1. In every experi-
ment, we continued the search for 4N,N, iterations,
where N, is the number of distinct concentrations for x
and N, is the number of distinct concentrations for y.
To obtain a reliable performance estimate, this experi-
ment was repeated 10,000 times. Based on the 10,000
independent experiments, we estimated the success rate
S, which is defined as the relative number of experi-
ments, in which the algorithm was able to find an effec-
tive optimal drug combination (x, y) within N,N, (i.e.,
total number of distinct drug combinations) iterations.
We consider a combination (x, y) to be effective if flx, y)

> A for a given A € [0,1], or if the combination (x, y) is
among the top P% combinations that result in the high-
est drug response. In addition to the success rate, we
also estimated the average number iterations that were
needed to find an effective drug combination, in case
the experiment was successful. We also performed simi-
lar experiments using the Gur Game algorithm, to com-
pare the performance of the two algorithms. Since the
Gur Game algorithm does not make use of the drug
response change that results from the concentration
change of a specific drug, the two drug concentrations x
and y can be either updated simultaneously or sequen-
tially (one after the other). Sequentially updating
the two drugs corresponds to using the FSA shown in
Figure 5A, while updating them simultaneously corre-
sponds to using the FSA illustrated in Figure 5B. As
before, the Gur Game algorithm was designed such that
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simultaneously updating the two drugs.

Figure 5 Updating the drug concentrations. (A) Finite state automaton for sequentially updating the two drugs. Each node corresponds to a
specific drug combination. States that have the same concentration for drug 1 are aligned in the same column. Similarly, states with the same
concentration for drug 2 are aligned in the same row. The arrows show the allowed transitions between sates. (B) Finite state automaton for
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it determines the direction of reward by comparing the
current drug concentration to the central concentration.
We evaluated the performance of the Gur Game algo-
rithm based on the simultaneous update approach as
well as the sequential update approach.

Table 1 summarizes the simulation results. First of all,
we can clearly see that the proposed algorithm has a
considerably higher success rate compared to the Gur
Game algorithm. For the first response function f4(x, y),
the success rate of the proposed algorithm was 0.95 for
A = 0.95, which is more than 10% higher compared to
those of the Gur Game algorithm based on the two dif-
ferent update approaches. Furthermore, the average
number of iterations that is needed by the proposed
algorithm for finding an effective drug combination was
only 56.6, which is much smaller than the total number
of possible drug combinations NN, = 441. In compari-
son, the Gur Game algorithm needed 82.1 iterations,

when using the simultaneous update approach, and
111.7 iterations, when using the sequential update
approach. The success rate for reaching the top 5% drug
combinations was high for both algorithms, although
the proposed algorithm had a higher success rate and
required a smaller number of iterations compared to the
Gur Game algorithm. The two stochastic optimization
algorithms show a striking performance difference for
the second drug response function fz(x, y). As we can
see from Table 1, the enhanced algorithm showed 100%
success rate, while the Gur Game algorithm was able to
find an effective combination only 9% of the time for
A = 0.95, and only 12% of the time for P = 5%. The
number of iterations that was needed by the proposed
algorithm to find an effective combination was only 56.7
for A = 0.95 (and only 49.5 for P = 5%), which is again
significantly smaller than the total number of combina-
tions NyN, = 441. For this drug response, the Gur

Table 1 Performance of the proposed stochastic optimization algorithm

Gur Game algorithm (simultaneous)

Gur Game algorithm (sequential) Proposed algorithm

success rate # of iterations

success rate # of iterations success rate  # of iterations

PEAKS A =095 0.84 82.1 0.82 111.7 0.95 56.6
P=5% 0.96 296 097 379 1.00 206
DE JONG (2ND) A =09 0.09 43.1 0.09 399 1.00 56.7
P =5% 0.12 286 0.12 30.1 1.00 495
CANCER A =095 063 16.3 0.62 18.8 0.94 13.1
P =10% 0.68 15.1 0.64 18.2 0.95 126
BACTERIAL A =095 091 4.0 0.90 50 0.99 4.6
P =10% 0.71 7.2 0.73 9.6 0.75 76
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Game algorithm needed less number of iterations for
finding an effective drug combination, if the search was
successful. But it has to be noted that the Gur Game
algorithm was not able to find an effective combination
most of the time.

For the response function fc(x, ) in Figure 4C, which
shows the normalized human lung carcinoma percent
inhibition for different combinations of pentamidine and
chlorpromazine, the proposed algorithm yielded a suc-
cess rate of 0.94 for A = 0.95 and 0.95 for P = 10%. In
both cases, the success rate was around 30% higher
compared to that of the Gur Game algorithm, as we can
see in Table 1. The proposed optimization algorithm
needed only 13.1 iterations for finding an effective
drug combination for 4 = 0.95 and 12.6 iterations for
P = 10%. These numbers are significantly smaller than
the total number of drug combinations (N,N,, = 100),
and also smaller than the number of iterations needed
by the Gur Game algorithm.

Finally, the proposed algorithm also yielded a higher
success rate than the Gur Game algorithm for the nor-
malized bacterial response fp(x, y) shown n Figure 4D.
On average, both algorithms required only about 4~10
iterations for finding an effective drug combination,
which is much smaller compared to the total number of
possible combinations (NN, = 81). One thing we can
notice is that the proposed algorithm had a success rate
of 0.75 for P = 10%, which is lower than its success rate
in other experiments. This is mainly because the drug
response function fp(x, y) has a large number of drug
combinations (x, y) that yield high drug response. In
fact, the top 10% drug combinations yield a very high
drug response of fp(x, ¥) = 0.99, and finding such com-
binations is especially challenging due to the plateau-
like shape of the response fp(x, ).

Conclusions

In this paper, we proposed a novel stochastic optimiza-
tion algorithm that can efficiently find optimal drug com-
binations. The proposed algorithm extends the Gur
Game algorithm [9] by incorporating additional informa-
tion about how the concentration change of a specific
drug affects the overall drug response. By comparing the
drug responses to two different drug combinations,
which differ only in the concentration of a single drug,
the new algorithm determines how to update the current
concentration of the given drug to improve the response.
In this way, the algorithm can adapt itself to the underly-
ing drug response function, which is not known in
advance. As a result, although the new algorithm still
does not require any prior knowledge on how the the
biological system of interest (e.g., cancer cell) responds to
different drug combinations, it consistently outperforms
the Gur Game algorithm for various types drug response
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functions. Simulation results show that the novel optimi-
zation algorithm can find effective drug combinations
more reliably and also more efficiently, compared to the
Gur Game algorithm. Unlike the Gur Game algorithm,
the new algorithm is not very sensitive to different (and
possibly suboptimal) normalizations of the drug
response. Furthermore, the stochasticity of the algorithm
is useful in handling any uncertainty (or variability) that
may be present in the drug response function. Since such
variability is typical when we have to evaluate the drug
response function f{x) from biological measurements,
this stochastic property is practically important when
using the algorithm in conjunction with biological
experiments, as in [9]. Although we have mainly applied
the proposed algorithm for optimizing two drugs, it can
be directly used for optimizing the concentrations of
multiple drugs in a straightforward manner.
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