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Abstract

Background: Recently, revealing the function of proteins with protein-protein interaction (PPI) networks is
regarded as one of important issues in bioinformatics. With the development of experimental methods such as the
yeast two-hybrid method, the data of protein interaction have been increasing extremely. Many databases dealing
with these data comprehensively have been constructed and applied to analyzing PPl networks. However, few
research on prediction interaction sites using both PPl networks and the 3D protein structures complementarily
has explored.

Results: We propose a method of predicting interaction sites in proteins with unknown function by using both of

PPI networks and protein structures. For a protein with unknown function as a target, several clusters are extracted
from the neighboring proteins based on their structural similarity. Then, interaction sites are predicted by extracting

similar sites from the group of a protein cluster and the target protein. Moreover, the proposed method can
improve the prediction accuracy by introducing repetitive prediction process.

Conclusions: The proposed method has been applied to small scale dataset, then the effectiveness of the method
has been confirmed. The challenge will now be to apply the method to large-scale datasets.

Background

The functional analysis of proteins is an important issue
for elucidating the mechanism of living bodies. Since
most of the functions of proteins are largely-related to
their 3D structures, research on estimating the function
of protein by revealing the relation between the 3D
structure and the function is one of the main stream of
the structural bioinformatics.

Most of proteins express their functions by interacting
with other proteins or ligands. In many cases, interac-
tion occurs at local portion of a protein, which is called
an interaction site. The structural and physical charac-
teristics on the interaction site often determine the
function of the protein, which means that clarifying the
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location of interaction site of the protein helps analyze
the function of proteins.

Various methods for predicting interaction sites (or
functionally significant sites) have been developed. Sacan
et al. developed a tool for detecting family-specific local
structural sites [1]. In their method, geometrically signifi-
cant structural centers of the protein are detected, then
features generated from the geometrical and biochemical
environment around these centers are used to distinguish
a family. Jones and Thornton proposed a method of pre-
dicting interaction sites by comparing the protein surface
patches in terms of six properties [2]. In other
approaches, interface residues in a protein are deduced
by use of neural networks which have been trained with
surface patches in protein structures and sequence pro-
files [3-6]. Support vector machines are also used in pre-
dicting interface residues [7-10]. Other methods involved
in predicting interaction sites have been proposed [11].
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Meanwhile, analyzing the function of proteins from
the aspect of protein-protein interaction has gotten a lot
of attention [12,13]. The development of experimental
methods for observing interactions, such as the yeast
two-hybrid, helps increase the data related to the pro-
tein-protein interaction, leading many databases [14-16],
and is anticipated for understanding various biological
phenomena [12,13,17]. Such data are mainly converted
into the protein-protein interaction networks (PPI net-
works), which are often used as the protein function
identification tools [18-21]. For example, six thousands
of yeast genes library are used in creating protein-
protein interaction map [18], several attempts analyzing
over thousands kinds of protein-protein interactions
have been addressed in full detail [19,20].

There is much research on identifying the function of
proteins with PPI networks. Vazquez et al. have pro-
posed the method predicting the function of protein
nodes which are functionally unknown in PPI networks,
and identifying the function of each node to optimize
the function of whole nodes in the networks [12]. Also,
they argue PPI networks are scalefree [22], which leads
to many methods by probabilistic approach to complex
networks. For example, Letovsky proposed a method for
calculating probability of functional label given to nodes
with propagation of the binomial model and Markov
random field [13]. Deng et al. presented a protein func-
tion prediction method by assigning functions to all the
unannotated proteins based on functions of the anno-
tated proteins and the protein interaction network using
Bayesian approaches [23].

In such PPI-based research, however, 3D protein
structures are little considered. Since it is obvious that
3D protein structures make a strong contribution to the
function of proteins, it must be significant to predict the
interaction sites from the viewpoint of both the PPI net-
works and the 3D protein structures.

We propose a method of predicting interaction sites of a
protein (target protein) whose structure has been solved
but whose interaction site is unknown using the informa-
tion of 3D structures and PPI networks. As it is known
that the function of a protein is often similar to the func-
tion of neighboring proteins on the PPI network, interac-
tion sites may be predicted by extracting pockets from the
surface of the target protein whose shape and physical
properties are similar to those of the neighboring proteins.
However, the functions of all of the neighboring
proteins are not always similar to the function of the target
protein. Hence, the neighboring proteins are classified into
several non-disjoint groups, each of which shares the com-
mon features based on structural similarity. The interac-
tion sites are predicted by extracting common pockets
that appear both in one of these groups and in the target
protein. In addition, information of the neighboring
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proteins whose interaction sites have been specified by
this method itself may be effectively utilized. That is, we
assume that the predicted interaction site of the target
protein is considered as a known interaction site, then the
prediction process is repeated for other target proteins.

Method

Outline

Figure 1, in which ‘T" in red is a target protein and ‘A’ —
‘T indicate its neighboring proteins that are extracted
from the PPI network, shows the outline of prediction
of interaction sites, where the neighboring proteins are
defined as proteins within a distance of two from the
target protein in the PPI network. Since the interaction
site often forms a concave structure, instead of the
whole of molecular surface of the protein, only pockets
are treated as candidates of the interaction sites. In
other words, interaction sites are predicted by extracting
a pocket whose shape and physical properties are com-
monly observed among ‘A’ — ‘' and ‘T". In practical
cases, however, all of neighboring proteins ‘A’ — °J do
not always have similar functions. For this reason, the
groups, called neighboring protein clusters, in which a
similar pocket is commonly observed, are extracted
from ‘A’ — ‘J. In our method, how to extract the cluster
which shares discriminative pocket being similar in
shape and physical properties is an important issue. If
structurally similar groups are simply extracted from the
neighboring proteins the cluster with similar structural
features would be extracted, but the cluster which
shares a “discriminative” pocket is not always obtained
because the similarity of pockets which are observed in
many proteins universally tend to be high. To cope with
this problem, we introduce a restriction that each clus-
ter must have at least one protein with known interac-
tion sites. Next, the score is given for each pocket of the
target protein which appears in all of extracted neigh-
boring protein clusters commonly, and the top-ranked
pockets are output as interaction sites.

Meanwhile, if the target protein ‘T" has no neighboring
protein with a known interaction site, it is impossible to
construct any neighboring proteins clusters. To handle
this difficulty, the prediction process is repeated by consid-
ering the predicted interaction sites as known interaction
sites. In addition, repetition of the prediction process
increases the neighboring proteins having the predicted
(i.e. known) interaction sites, reorganization of the clusters
using them will improve the prediction accuracy.

Molecular surface data and pocket

In the proposed method, molecular surface data avail-
able from eF-site database [24] are used. A number of
polygons represent the molecular surface, and every ver-
tex composing polygons has the information of structure
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Figure 1 Outline of the proposed method. ‘T in red is a target protein and ‘A’ — 'J' indicate its neighboring proteins that are extracted from
the PPI network, where the neighboring proteins are defined as proteins within a distance of two from the target protein in the PPl network.
Interaction sites are predicted by extracting a pocket whose shape and physical properties are commonly observed among ‘A" - /' and 'T..

(location, maximum curvature, and minimum curva-
ture), the property values (electrostatic potential and
hydrophobicity), and the connection information of ver-
tices. Interaction sites are widely known having concave
structures on surface because of binding stability, speci-
ficity, and reaction promotion. Much research on
searching and extracting pockets from the protein sur-
face as candidates of interaction sites has been con-
ducted [25,26].

In fact, the number of vertices of molecular surface of
some proteins is over 20,000, so it is impractical idea to
handle the whole molecular surface for comparing pro-
tein structures. Thus focusing on only pockets extracted
from the molecular surface has advantages. In our
method, the LIGSITE [27] algorithm is utilized to
extract pockets. About 30 pockets are extracted for each
protein.

Representaion of pockets by histograms
It is known that proteins change their conformation in
interacting, so comparing pockets by rigid superimposing

of vertices which construct a pocket each other is inap-
propriate. So far, many methods for comparing surface
patches have been proposed [28,29]. In order to compare
molecular surfaces of the pockets from the viewpoint of
mainly physical properties and roughly geometrical fig-
ures, we introduce a method of representing a molecular
surface using histogram of structural and physical prop-
erties of the surface. Comparison of histogram is utilized
in the area of such as image processing and it can com-
pare pockets not definitely but roughly. As a pocket is
constructed from vertex set of polygons, the pocket can
be expressed with the four histograms, which are defined
using three parameters, the range of rank d, the maxi-
mum value max, and the minimum value min, from four
properties, namely, maximum curvature k,,,,, minimum
curvature r,,;,, electrostatic potential C, and hydrophobi-
city H, of each vertex shown as follows. Values of
the parameters max, min, and d are determined
experimentally.
+ Histogram of mean curvature:
M = (Kpax + Kpmin)!2
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max = 3.0, min = -3.0, d = 0.01

» Histogram of Gaussian curvature:

G= Rmax * Wmin

max = 3.0, min = -3.0, d = 0.01

« Histogram of electrostatic potential: C
max = 0.6, min = —0.6, d = 0.01

« Histogram of hydrophobicity: H

max = 5.0, min = -5.0,d = 0.1

Similarity among pockets

A pocket is expressed using four histograms of struc-
tural and physical properties. We define similarity
among pockets by comparing the four histograms.

Let pi,...,pn be N pockets and each pocket is
expressed with the histogram of mean curvature M(1 <
i < N), the histogram of Gaussian curvature G, the his-
togram of electrostatic potential C;, and the histogram

of hydrophobicity H;. We simply define S,i(p1, ..., Pn)s
the similarity among pockets p,...,pa» by

Sper(p1s oo PN) =J(My,...My) x J(Gy,...,Gn) x J(Cy,e.ss
CN) x J(Hy,....Hy) (1)

where J(A;,...,An) represents the similarity among the
histograms Ay,...,An, which is defined by

. N
n IMNIN E a

where a; (1 < i < N) represents frequency of k-th rank
of i-th histogram, and # represents the maximum value
of the rank. Equation (2) is based on the idea of Jaccard
coefficient to comparing histograms. That is to say, the
similarity among pockets S, is defined as the product
of the similarity of the four histograms expressing each
pocket.

Extraction of neighboring proteins cluster

In our method, we define a neighboring proteins cluster
as a subset of proteins sharing the pockets that are simi-
lar in shape and physical properties and are specific to
the cluster, which are extracted from the set of the
neighboring proteins. We introduce the similarity mea-
sure that shows how similar the pockets on each protein
in the subset are. If each protein in the subset has the
similar interaction site, they are likely to share common
pockets, then the similarity of the pockets in proteins in
the subset must be high. Therefore, the pockets of each
protein in the subset are exhaustively compared by
using the similarity among pockets given by equation
(1), then the highest similarity is put to be the subset
similarity. However, there is a possibility that this high-
est similarity is actually due to the non-specific pockets
which appear universally in the several proteins.
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To handle this matter, strong restriction is introduced,
in which any subset must contain one or more proteins
having a known interaction site. The following is an
algorithm of extracting neighboring protein clusters.

1. Let P be a set of neighboring proteins, and S(SP) be
a set of proteins in P whose interaction sites are known.
PS(P, n) is a power set of P whose cardinality is n(1 <n
< k), and ps is an element of PS(P, n), namely ps € PS
(P, n). Enumerate all of ps satisfying the following
constraint.

psnNS=zq¢ (3)

2. Let P,, ..., P, be proteins in ps, namely ps = {P,,...,
P, }. Calculate S,.(ps), the similarity among {P,,...,P, }
by the following definition

SetlpS) = mMax{Spiap' P’ € pht(P), 1< i < n} (@)

where pkt(P,) denotes a set of pockets in protein P,.
Ssed(ps) means the similarity of the combination of the
most similar pockets when exaustively comparing all the
pockets of each protein.

3. Extract the elements ranked in the top Z of PS(P, n)
as clusters C as follows.

C = {x € PS(P, n)|Rank(x, PS(P, n)) <Z} (5)

where the function Rank(x, PS(P, n)) gives the ranking
of x in PS(P, n) in terms of the similarity, which is for-
mally defined as

Rank(x, PS(P, n)) = |{y € PS(P, n)|x # ¥y, Seer(x) <Sses
)| (6)

Figure 2 illustrates an example of extracting the neigh-
boring protein clusters for k = 4 and Z = 1. In this
example, a set of the neighboring proteins P is con-
structed from six proteins, and two of them are proteins
having a known interaction site. k = 4 gives ps, the pos-
sible subset of the neighboring proteins set, whose size
is 2, 3, or 4. First, ps which satisfies the constraint (3) is
enumerated. Next, the enumerated ps is ranked in
accordance with the value of the similarity. The con-
straint Z = 1 leads to extract ps with the highest similar-
ity value as the clusters.

Scoring of pockets
If a pocket in the target protein is similar to the pockets
that appear commonly in the high ranked neighboring
protein cluster, it may be a candidate of the interaction
site. To evaluate each candidate, we introduce the vot-
ing-based scoring scheme. In this scheme, a set of pock-
ets consisting of one pocket from the target protein and
the similar pockets from the neighboring protein cluster
is evaluated from the viewpoint of similarity, and the
pocket (from the target) that wins the highest similarity
value is voted. Formally, for a target protein Py and the
proteins Py,...,P, in the neighboring protein cluster, the
pockets to be voted are enumerated as follows.
pE pkt(PT) s.t.
Spialp' 0", )

Sset({Plru’Pm PT});
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Figure 2 Extraction of the neighboring proteins cluster. A set of the neighboring proteins P is constructed from six proteins, and two of
them are proteins having a known interaction site. The possible subsets of the neighboring proteins are enumerated, then they are ranked in
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Complement and feedback by repetition
If the target protein has no neighboring proteins with
the known interaction site, any cluster cannot be con-
structed because there is no ps satisfying the constraint
(3). On the other hand, if the pockets of predicted pro-
tein are regarded as interaction sites we can get more
proteins with known interaction sites on the PPI net-
works. That is, we can construct clusters using newly
known (namely predicted) interaction sites, which
enable repetitive prediction as shown in Figure 3. This
repetitive process plays a complementary role for the
protein which contains no interaction site in its neigh-
boring proteins. Figure 3 shows that there are few pro-
teins that have known interaction sites in a single cycle
prediction, but the repetitive prediction increases the
proteins having known interaction site.

Even if we deal in the target proteins whose neighbor-
ing proteins contain known interaction site, there is a

possibility that the actual interaction site of the target
protein may not be similar to any interaction sites of
the neighboring proteins. The repetitive prediction plays
a role of feedback for this problem. As the number of
proteins whose neighboring proteins contain known
interaction sites increases, the clusters of the neighbor-
ing proteins can be reconstructed. This feedback has the
possibility to choose different pockets as interaction
sites from the previous prediction process, and may get
better result.

Results and discussion

To verify the effectiveness of the proposed method, we
conducted experiments for prediction of interaction
sites where we assumed that some of the known interac-
tion sites are unknown. Figure 4 shows the PPI network
used in these experiments. In Figure 4, n proteins are
selected as target proteins, which mean that interaction
sites are assumed to be unknown, from ten proteins
whose interaction sites are actually known. Therefore,
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Figure 3 Repetitive process of prediction. There are few proteins that have known interaction sites in a single cycle prediction, but the
repetitive prediction increases the proteins having known interaction site.

O Unknown protein
® Known protein

the interaction sites of #n proteins are predicted at one
cycle of the experiment. Furthermore, the n target pro-
teins are combinatorially selected from the ten proteins
(the number of combinations is 10C,). We evaluate the
results based on whether the pockets of the target pro-
teins with the top-one score or the top-five score are
true interaction sites. Figure 5 and 6 show the experi-
mental results, in which the success rate in the case of
top-one is about a half and in the case of top-five is
about six or seven out of ten.

In addition, the result shows that the success rate in
the repetitive predictions are usually higher than the
case of predicting without repetition. This means the
complement and the feedback by repetition work well.
As for the effectiveness of the repetition process, Figure
6 shows the success rate gets better as the repetition
count increases, and is converged at two times repeti-
tion regardless of the number of the target proteins.
Figure 5 indicates that when the number of the target
protein is large (i.e. n > 5), the appropriate repetitive

process contributes to rising the success rate, but
repeating too much leads the decline of the success rate.
It is considered that the first repetitive prediction
improves the success rate by the effect of the comple-
ment. The feedback after the second repetitive predic-
tion for a few of target proteins has a fine effect on
success rate because of many neighboring proteins
whose interaction sites have been known actually. In the
case of a lot of target proteins are considered, however,
the repetitive process may work worse because of the
side effect of the feedback which are brought by the
neighboring proteins having not actual but assumed
interaction sites.

Figure 7 shows the success rates of prediction for each
protein with n = 5 fixed. This figure means the success
rate varies considerably depending on the protein. The
success rate for proteins TEF1 and GLK1 is 0, so the
interaction site cannot be specified at all. Figure 8 illus-
trates the molecular surfaces of TEF1 and GLK1. The
molecular surfaces of these proteins have a lot of local
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Figure 4 Protein-protein interaction networks. The red nodes are proteins having both structural and functional information, one of which is
regarded as a prediction target by masking its functional information.
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Figure 5 The number of target proteins and the success rates(top). The result shows that the success rate in the repetitive predictions are
usually higher than the case of predicting without repetition.
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Figure 6 The number of target proteins and the success rates(top five). The success rate gets better as the repetition count increases, and
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Figure 8 Molecular surfaces of proteins (TEF1 and GLK1). The molecular surfaces of proteins TEF1 and GLK1 have a lot of local structures
whose properties are similar to the true interaction sites, which might cause the prediction failure.

Interaction site

structures whose properties are similar to the true inter-
action sites, which might cause the prediction failure.
Our method assumes that the interaction sites have com-
mon structural features and share distinctive properties.
This suggests that it is difficult to predict the interaction
sites which have universal structures among proteins.

Finally we conducted comparative experiment, in
which only structural information (i.e. without PPI net-
works) was utilized. In the basic situation, in which the
number of target proteins is limited to one and no repe-
titive process is done, the success rate is 0.4, which is
lower than the result by the proposed method (0.5).
This result is under the limited situation only, but
shows the effectiveness of the complementary use of the
PPI network along with the protein structural informa-
tion. We will perform comparative analysis for various
experimental setting.

Conclusions

We proposed a method of predicting interaction sites by
comparing the pockets of proteins whose interaction
sites are unknown to pockets of the neighboring pro-
teins in the PPI networks. The challenge will be to

apply this method to large-scale protein-protein interac-
tion networks. In this paper, experimental results for the
PPI networks consisting of only a few dozen of proteins
have been presented. The nodes of actual PPI networks
are, however, so massive that there is a need for experi-
ments in larger networks. Now, therefore, it is desirable
to apply the proposed method by dividing large-scale
PPI networks into subgraphs comprising a few dozen of
nodes. Currently, we put the strong restriction on our
method, that is, we assume that the structural informa-
tion of all prediction target proteins or neighboring pro-
teins has been known. However, the method should be
modified so that not only proteins with structural infor-
mation but proteins having no structural information
can be treated for practicality improvement. In addition,
comparing accuracy of the proposed method to that of
existing methods is a crucial remaining work in the near
future.
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