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Abstract

Background: Native structures of proteins are formed essentially due to the combining effects of local and distant
(in the sense of sequence) interactions among residues. These interaction information are, explicitly or implicitly,
encoded into the scoring function in protein structure prediction approaches—threading approaches usually
measure an alignment in the sense that how well a sequence adopts an existing structure; while the energy
functions in Ab Initio methods are designed to measure how likely a conformation is near-native. Encouraging
progress has been observed in structure refinement where knowledge-based or physics-based potentials are
designed to capture distant interactions. Thus, it is interesting to investigate whether distant interaction
information captured by the Ab Initio energy function can be used to improve threading, especially for the weakly/
distant homologous templates.

Results: In this paper, we investigate the possibility to improve alignment-generating through incorporating
distant interaction information into the alignment scoring function in a nontrivial approach. Specifically, the distant
interaction information is introduced through employing an Ab Initio energy function to evaluate the “partial”
decoy built from an alignment. Subsequently, a local search algorithm is utilized to optimize the scoring function.
Experimental results demonstrate that with distant interaction items, the quality of generated alignments are
improved on 68 out of 127 query-template pairs in Prosup benchmark. In addition, compared with state-to-art
threading methods, our method performs better on alignment accuracy comparison.

Conclusions: Incorporating Ab Initio energy functions into threading can greatly improve alignment accuracy.

Introduction
Protein structure determination is critical for under-
standing protein functions, and also highly relevant with
therapeutics and drugs design. Computational prediction
methods for protein structure play important roles due
to the speed of experimental determination methods
cannot catch up with that of generation of protein pri-
mary sequences by genome projects. Computational
protein structure prediction methods can be categorized
into free modeling (FM) and template-based modeling
(TBM). Specifically, for the protein without structural

analogs in the template database, the structural confor-
mation has to be built from the scratch; while for the
proteins having structural analogs, the key step is to
identify an accurate alignment between the query
sequence and a template with known structure.
Both Ab Initio and threading approaches employ scor-

ing functions to capture interactions among residues in
an explicit or implicit manner. In essence, protein fold-
ing is the combining effects of local interactions and dis-
tant interactions among residues. Specifically, local
interactions lead to local structural motifs, while non-
local interactions arrange local structural motif to form
native-like structures.
The Ab Initio approaches for free modeling attempt to

find a structural conformation with the lowest energy.
Typically, local interactions are described via short
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structural fragments while nonlocal interactions are cap-
tured via an energy function. Various energy functions
[1-5] have been proposed, and can be categorized into
two classes, i.e., knowledge-based and physics-based.
Compared with physics-based energy functions, knowl-
edge-based energy functions are more attractive since
they are easy to use and understand. In addition, dis-
tance-dependent potentials perform better than dis-
tance-independent ones [6].
A typical template-based modeling procedure consists

of a threading step to align the target protein onto a
template, and a refinement step to refine the template
structure to be more native-like. Numerous threading
methods have been proposed to calculate the optimal
alignments under different scoring functions. These
threading methods can be categorized into the following
classes based on the divergence of scoring functions:
1. The scoring function does not contain any non-

local interaction information explicitly. For example,
FASTA [7], BLAST [8], and PSI-BLAST [9] assume
independence among residues at different positions
while HMMer [10] and HHpred [11] apply Hidden Mar-
kov Model to introduce the transition information
between adjacent residues into scoring function. Since
only local information is taken into consideration in
their scoring functions, dynamic programming is a nat-
ural technique to obtain a global optimal solution.
2. The scoring function captures non-local interac-

tion information via contact preference. That is, if a
pair of residues in the query sequence are aligned to
the two ends of an interaction, then this pair will be
given a score according to a contact preference matrix.
PROSPECT [12] and RAPTOR [13] implemented this
kind of energy function and demonstrated the
improvements of prediction accuracy. However, the
following features of non-local interactions were not
taken into consideration explicitly: (i) it is more accu-
rate to describe pairwise interactions in distance-
dependent manner than distance-independent ways;
and (ii) besides distance, the orientation angles
involved in dipole–dipole interactions have also been
proved to be useful to discriminate native structures.
The purposes of the study is to investigate whether

threading results can be improved through incorporat-
ing Ab Initio energy function. Distant interactions are
usually described in a more accurate manner in
Ab Initio energy function. For example, dDFIRE [6]
employs distance-dependent pair-wise interaction rather
than distance-independent one. Encouraging progress
has been observed in structure refinement where Ab
Initio energy function is employed to refine template
structure to be more native-like. It is interesting
whether Ab Initio energy function improves alignment
generating.

In addition, when the global structural information is
incorporated, effective algorithms such as dynamic pro-
gramming do not work any more: if all pairwise interac-
tions are added into scoring function, the optimization
problem becomes NP-hard [14]. A variety of techniques,
such as integer linear programming [13] and divide and
conquer [15] have been proposed to solve this problem.
In this study, we propose an efficient, local search based
method to identify optimal alignments. Comparing with
existing methods [13,15], which are designed specifically
for scoring functions consisting of distant-independent
pairwise interaction alone as their global item, our
method is more general and can be used to optimize
any kind of scoring functions.

Scoring model
The scoring function to assess an alignment A consists
of local item L(A) and distant item G(A), i.e., score(A) =
ωLL(A) + G(A), where ωL denotes weight of local item.
Local item is the weighted sum of mutation score Sm,

secondary structure compatibility score Sss, solvent
accessibility score Ssa, gap penalty score Sg, and struc-
tural segment compatibility score SCLE [16], i.e., L(A) =
ωmSm(A) + ωssSss(A) + ωCLESCLE(A) + ωsaSsa(A) + ωgSg
(A), Sg(A) = ωgoGO + ωgeGE, where GO and GE are the
number of gap open and gap extending, respectively.
The weight of these items are to be determined via
training on SALIGN benchmark.
The global item G(A), which contains the nonlocal

interaction information implicitly, is captured by the
dDFIRE energy over a “partial” decoy corresponding to
the alignment A. An ideal way to measure non-local
interaction is to calculate dDFIRE energy over a full-
length decoy. However, it is usually time-consuming to
obtain full-length decoy through running structure-
generating tools such as MODELLER [17]. Thus, this
strategy is unacceptable since we usually need to sample
thousands of alignments. Here, we employ an alternative
method to build a partial “decoy” from the alignment.
Specifically, only the aligned residues are kept with their
coordinates simply copied from the corresponding resi-
dues in the template.
This section are organized as follows: We first verify

that dDFIRE energy function is constantly good-
performing when used to evaluate “partial” decoys. Sec-
ond, both local item and global item should be normal-
ized using match state size. Third, we prove that global
item of the our scoring function is effective to capture
distance interaction comparing with contact-preference
based scoring functions. Fourth, we show that optimal
local score can be used to determine “easy” pairs for
which local score item is sufficient while adding global
item may lead noise contrarily. Last, we train ωL on
SALIGN [18] benchmark dataset.
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Performance of dDFIRE on partial structure
Since we calculate dDFIRE energy on the “partial” decoy
instead of a full-length structure, thus it is necessary to
verify whether the “partial dDFIRE energy” still have the
power to distinguish native-like decoys. To verify this,
we performed experiments on three commonly-used
benchmark datasets: LKF [1], Gapless Threading [2] and
Rosetta [5]. The datasets contain 178, 200 and 232 pro-
teins, respectively; and for each protein, 100 decoys
were generated as control to the native structure. The
objective of this experiment is to verify whether the
“partial” native structure can be distinguished from the
“partial” decoys by dDFIRE.
For both native structures and decoys, the “partial”

conformations were simulated through randomly excis-
ing a set of residues. At various excising percentage, the
ratio of proteins for which the partial native structure
has the lowest dDFIRE energy relative to all partial
decoys are calculated, and denoted as accuracy in Fig. 1.

As demonstrated by Fig. 1, on LKF and Rosetta bench-
marks, dDFIRE performs constantly well even if over
40% residues are excised; and on Gapless Threading
benchmark, the performance decreases slightly.

Score normalization
We also investigate the relationship between the scores
with the match state size. Analysis suggests the linearity
between local(global) scores and match state size. Speci-
fically, the linear correlation coefficient between local
(global) scores and the match state size is –0.762
(–0.968) (See Fig. 2 and 3 for details). Thus, it is reason-
able to normalize both local and global score through
dividing by the match state size.

Effect of global items
We further investigate the effect of global item. As control,
we performed comparison with the traditional way to
describe non-local interactions via contact preference

Figure 1 Performance of dDFIRE to distinguish “partial” native structure from “partial” decoys. X-axis is the ratio of remaining residues
after the excising process, and Y-axis denotes the ratio of proteins for which the “partial” native structure still have lower energy than “partial”
decoys.
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matrix [13,15], i.e, Sp = ∑i∑jδ(i, j)Pair(A(i), A(j)), and
Pair m n P CPm

T
n( , ) = where A(i) is the matched residue in

the sequence, δ(i, j) indicates whether ith and jth residue
in the template have contact, Pm is the profile vector at
the mth position and C is the contact preference matrix.
We first give some notations before presenting the

experiments to examine the effects of global items. For
each query-template pair, two typical alignments are
generated: the structural alignment AR generated via
running TMalign [19], and the optimal alignment
(denoted as AL) when only local item L(A) is taken into
consideration, i.e. AL = argminAL(A). For each alignment
A, its real quality is measured by TMscore [20], denoted
as TM(A). We also use L(A) and G(A) to denote the
local score and global score of A, and use C(A) to
denote the contact-preference-based score of A.
The 200 query-template pairs in SALIGN [18] data-

set are categorized into two classes according to the

quality of AL: (i) TM(AR) – TM(AL) < 0.1, 144 pairs in
total; and (ii) TM(AR) – TM(AL) ≥ 0.1, 56 pairs in
total. Intuitively, class 1 contains the pairs for which a
scoring function with local score item alone is suffi-
cient; and class 2 contains the pairs for which local
score alone failed. For pairs in class 2, we expect global
items can help to distinguish the reference alignment.
We verify this by comparing the global score of AL

and AR: only for pairs satisfying AL – AR > 0, it is
likely to distinguish the reference alignment. Fig. 4 and
5 suggest that for the pairs that local item alone can-
not separate AL from AR(L(AL) ≤ L(AR) because of AL

= argminAL(A)), global item of our scoring function
can effectively measure the quality of alignments. Spe-
cifically, we observed that G(AR) < G(AL) on 52 of 56
pairs. In contrast, the contact-preference-based score
does not help improve this situation, only on 20 of 56
pairs, C(AR) < C(AL).

Figure 2 Linear correlation between local score and match state size. Both local score and match state size are calculated from reference
alignment of query-template pairs in SALIGN [18] benchmark dataset.
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Determining pairs for which local score item alone is
sufficient
On 144 of 200 pairs of SALGIN benchmark, local score
alone is sufficient to find out a “good” alignment(TM
(AR) – TM(AL) < 0.1). In fact, in these cases, adding glo-
bal item may lead to false-negative [21]. We observed
that the normalization of local scores help recognizing
these “easy” pairs. This is reasonable since local score
contains most of the homologous information between
the sequence and the template.
Fig. 6 implies that TMscore value is strongly corre-

lated with local score (linear correlation coefficient is
-0.78). Besides, as the local score increases, AL becomes
worse, i.e., the cumulative average value of TM(AR) –
TM(AL) increases as the local score increasing (the blue
curve in Fig. 6). Accordingly, we choose a threshold of
local score, denoted as θ, to determine whether local
score item is sufficient: if L(AL) ≤ θ, then AL is treated
as a good alignment. In our method, θ = –87.

Weight training process
Parameter ωL is trained by classification. For each
query-template pair in SALIGN benchmark, one positive
alignment Ap and 10 negative alignments An are
selected (We also have tried other number of negative
alignments, similar result is obtained).
Here, we use the reference alignment as positive align-

ment, i.e. Ap = AR. Negative alignments are chosen from
the top 100 alignments returned by dynamic program-
ming. We first cluster these alignments to remove
redundancy, and then randomly select alignments satis-
fying TM(Ap) – TM(An) > 0.2.
ωL should divide An and Ap as much as possible.

Formally
ωL = arg max |H|
where

H = {(Ap, An) ÎP|ωLL(Ap) + G(Ap) < ωLL(An) + G(An)}
= {(Ap, An) ÎP|ωLL(Ap) – L(An)) < G(An) – G(Ap)}.

Figure 3 Linear correlation between global score and match state size.
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P = {(Ap, An)|Ap and An are from the same pair}, since
alignments of different query-template pair are not com-
parable. The classification result is showed in Fig. 7, ωL

= 0.0047.
After obtaining the parameter ωL and θ, our threading

algorithm can be described informally as follows: given
a query-template pair, dynamic programming algorithm
is employed to calculate AL. If L(AL) < θ, then AL is
considered as a good alignment and returned. Other-
wise, local search algorithm is then used to find a better
alignment under scoring function score(A) = ωLL(A) +
G(A). The initial alignments used in this step are cho-
sen from the dynamic programming table in the pre-
vious step.

Preliminary results on alignment generating
We test our threading method on Prosup benchmark
(containing 127 query-template pairs). Each query-tem-
plate pair shares low sequence identity but high

structure similarity. Denote the alignment generated by
our method as AO.
First, we compare TM(AO) with TM(AL) in order to

evaluate the effect of the new scoring function. The
result is showed in Fig. 8. It suggests that on 68 out of
127 pairs the new scoring function gains a better
TMscore compared with scoring function with local
item only. On 12 out of 127 pairs, TMscore improve-
ment is greater than 0.1 while no pair’s TMscore
decrease greater than 0.1.
Second, we compare the alignment accuracy with

other threading methods. For an alignment, its accurate
accuracy is defined as the ratio of number of correct
match-state over the number of match-state of the
reference alignment; the ratio is denoted as ±4-residues-
accuracy if a ±4 error allowed. Experimental results
(Table 1) indicate that our method performs better than
FASTA, Sequence and PSI-BLAST. If only the local
score item is considered, the alignment accuracy is

Figure 4 Effect of global score to distinguish AR from AL. All points lies to the right of x = 0, and 52 of 56 points appear above y = 0.
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comparable to RAPTOR. When the distant scoring item
is added, the alignment accuracy improves significantly:
8% better than RAPTOR on accurate comparison and
6.4% on ±4-residues comparison.

Methods
Threading Algorithm
The framework of our threading algorithm are described
as follows:
Algorithm 1(Threading Algorithm)
Input: query sequence, template, θ, ωL, a, k
Output: an alignment between query and template
step 1 set score(A) = L(A), calculate the optimal align-

ment AL under this scoring function by dynamic pro-
gramming algorithm, save the best 100 alignments from
the dynamic programming table
step 2 calculate L(AL) , if L(AL) < θ, then return AL

step 3 set score(A) = ωLL(A) + G(A), for each align-
ment Ai in the 100 candidates in step 1, run local search

algorithm(Algorithm 2 described in the following sub-
section) with parameter a, k and initial alignment Ai, it
returned AOi

step 4 return argmin ( ) ( )i L O OL G
i i= +1

100w A A

Local Search Algorithm
In this sub-section we describe the threading problem in
a concise way, propose a local search algorithm based
on a new neighborhood for general scoring function.
Under a certain assumption, we prove its approximation
guarantee for two specific scoring functions.
Problem Formulation
We first give some formal definitions.
Definition 1. Given a template T = {t1, t2, ..., tm}, ti <ti

+1 and a sequence S = {s0, s1, s2, ..., sn}, si < si+1, a valid
alignment is a non-decreasing mapping A from T to S.
Denote all valid alignments as F. Non-decreasing map-

ping is equivalent with traditional alignment definition
with gap. For all t satisfying A(t) = s, s > s0, we can

Figure 5 Effect of contact-preference-based score to distinguish AR from AL. Only 20 of 56 points appear above y = 0.
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define the smallest t actually matches with s while
others are gap on template. In order to allow gap on the
left end of the template, we add a extra amino acid s0 in
the left end of the sequence. All t ÎT aligned to s0 are
gap on the left end of the template. Mapping allows gap
on sequence naturally.
Now we define the neighborhood of an alignment.

Denote the k-neighbor of A as N(A, k), we have the fol-
lowing definition.
Definition 2. Suppose A′ Î F, then A′ Î N(A, k) if

and only if there exists a subset U of S, satisfying |U| ≤ k
and ∀t ÎTA′(t) Î{A(t)} ∪ U.
Intuitively, a member of k-neighbors of A differs with

A only on at most k positions at sequences.
Claim 1. N(A, k) ⊂ N(A, k + 1).
Claim 2. N(A, n + 1) = F.
Claim 3. |N(A, k)| = O(m2knk), ∀A Î F.
Claim 1 and claim 2 are obvious. The proof claim 3 is

put in the Appendix.

Claim 1 and claim 2 show that with the increasing of
k, the number of neighbors of an alignment is growing
and eventually reaches the whole space. Claim 3 esti-
mates the size of |N(A, k)|. It shows that for a fixed k
the number of neighbors of a valid alignment is polyno-
mial about m and n.
Definition 3. For any A Î F, there is a real positive

number denoted as score (A) to evaluate A, the thread-
ing problem is minAÎF score (A).
score(A) is the general representation of scoring func-

tion. In this study, score(A) = ωLL(A) + G(A).
Algorithm
Based on the definition of neighborhood above, we give
the local search algorithm as follows:
Algorithm 2(Local Search)
Input a ≥ 0, k, initial alignment A0

Output an approximate local optimal solution of the
scoring function score(A)
step 1 i = 0, initialize A0 according to input

Figure 6 Linear correlation between TMscore and normalized local score. For each pair in SALIGN benchmark dataset, TMscore of
reference alignment(green points) and TMscore of AL are compared with local score of AL. Length of gray segment represents the difference of
TMscore. The average difference of TMscore(using right axis) along with local score increasing is showed as the blue line.

Shao et al. BMC Bioinformatics 2011, 12(Suppl 1):S54
http://www.biomedcentral.com/1471-2105/12/S1/S54

Page 8 of 13



step 2 calculate Ai+1 = argminAÎN(Ai,k)score(A)
step 3 if (1 + a)score(Ai+1) < score(Ai), i = i + 1, goto

step 2
step 4 output Ai

When a = 0, we can obtain an accurate local optimal
solution. When a = 0 and k = n + 1, we can obtain an
accurate global optimal solution.
Claim 4. Suppose a > 0, The time complexity of algo-

rithm 2 is O(m2knklog1+aM), whereM
score

score
= ∈

∈

sup
inf

A F

A F

A

A

( )
( )

Proof. Based on the algorithm, we have
(1 + a)iscore(Ai) <score(A0),
which implies that

i
score

score
M

i

< ≤+ +log
( )
( )

log .1
0

1 
A

A

According to claim 3, each iteration wastes at most O
(m2knk) time, so the claim is proved.
If a closing assumption is satisfied, we can prove two

approximation guarantee results when the scoring

function only consists of local item and pairwise contact
item. Details are listed in the Appendix section.

Discussion
In order to employ general energy function, the key step
is transforming alignment to decoy efficiently In this
paper, “partial“ decoy strategy is quick enough but not
accurate because only matched residues’ backbone and
Cb atoms are kept. Methods that effectively recover
other unmatched residues and even side chain atoms
according to alignments are imperative.
Though the energy function of Ab Initio can be used

by threading, the two methods have fundamental differ-
ence on the divergence of search space. Actually, the
search space of threading is much smaller than that of
Ab Initio methods because many useful prior knowledge
can greatly narrow its search space. For instance, we can
restrict that a core on template either totally aligned or
totally gaped. This prior has been verified and applied
by many threading methods. Consequently, the search
space can be reduced to O(Nm) where N is the number

Figure 7 Training ωL on SALIGN benchmark. X-axis is L(Ap) – L(An) while Y-axis is G(An) – G(Ap). The optimization problem requires a positive-
slope line with the most points above it.
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of cores and m the length of query sequence. On aver-
age, N ≤ 10, it is much smaller than 200m, which is the
search space of ROSETTA.
In this paper we have proposed a local search algo-

rithm to find out the optimal solution of general scoring
function. This algorithm is based on a neighborhood
definition, and this neighborhood can also be used by
other search strategies such as simulated annealing and
genetic algorithm.
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Table 1 Alignment Accuracy Comparison on Prosup
Benchmark

Methods Accurate(%) ±4-residues(%)

FASTA 31.4 -

Sequence 34.1 -

PSI-BLAST 35.6 -

RAPTOR 44.0 63.7

AL 43.1 63.0

AO 52.0 70.1

Result of FASTA and Sequence are from [22]; result of PSI-BLAST is from [23];
result of RAPTOR is obtained from the binary version running by us, this result
may not reflect the accuracy of the current version.
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Appendix
Proof of Claim 3

Proof There is
n

k
O nk⎛

⎝
⎜

⎞

⎠
⎟ = ( ) cases to choose a sub-set U of S while |U|

= k. Denote the neighbors of an alignment under a certain U as NU(A). So,

we only need to prove |NU(A)| = O(m2k).
We can assume that all positions in U are not aligned, that is, there exists no
t Î T such that A(t) = ui. If not, say, ui is aligned, we can extend S to

′ = = ′ +S s s s u u s sj i i j n{ , , , , , , }0 1 1  and change

U U u u u u ui i i k to ′ = ′− +{ , , , , , , }1 1 1  Obviously, |NU(A)| ≤ |NU′

(A)|.
Consider the sub-problem when Ti = {t1, t2, ..., ti}, Uj = {u1, u2, ..., uj}, 1 ≤ i ≤
m and 1 ≤ j ≤ k. For this sub-problem, we define A(i, j) = {g Î NUj

(A)|g(ti) =
uj}, and B(i, j) = {A′ Î NUj

(A)|A′(ti) = A(ti)}. Then |NU(A)| = |A(m, k)| + |B(m, j)|.
Now we give out the iterative formula. Let ai = inf{j|A(tj) ≥ ui}. then ai ≤ ai+1.
Without losing generality, in the following prove, we assume that ai ≤ ai+1.
Define δ(x) = 1 when x ≥ 0 and δ(x) = 0 when x < 0, we have

| ( , ) | | ( , ) | ( ) | ( , ) |

| ( , ) | ( )

A i j A i l a i B i j

B i j i a

j

l

j

l

= − + − −

= −

=
∑ 1 1

1



 || ( , ) | | ( , ) |A i l B i j
l

j

− + −
=
∑ 1 1

1

we employ mathematics induction to prove:
|A(i, j)| ≤ ij if 1 ≤ i ≤ a1
|A(i, j)| ≤ ii+j if a1 <i <ai+1, 1 ≤ l <j
|A(i, j)| ≤ i2j–1 if i > aj
|B(i, j)| ≤ 1 if 1 ≤ i <a1
|B(i, j)| ≤ i2l–1 if i = al, 1 ≤ l ≤ j
|B(i, j)| ≤ i2l if al <i <ai+i, 1 ≤ l <j
|B(i, j)| ≤ i2j if i > aj.
Firstly, |B(1, j)| = |A(1, j)| = 1. When 1 <i <a1,

| ( , )| | ( , )|

| ( , ) | | ( , ) | | ( , ) |

B i j B i

A i j A i l B i j
l

j

= − =

= − + −
=
∑

1 1 1

1 1
1

           

          

≤ − + ≤ − −
− −

= −

+

=
∑( )

( )
( )

( )

i
i

i

i

l
j

l

j

j

1 1
1 1

1 1

1

1

1

++ −
−

≤
1 1
2i

i j

When i = a1,

| ( , )| | ( , ) | | ( , )|

| ( , ) | | ( , ) | | (

B i j A i B i j i

A i j A i l B i

= − + − =

= − + −

1 1 1

1 1,, )|j i j

l

j

≤
=
∑

1
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When al <i <al+1 ≤ aj,

| ( , )| | ( , ) | | ( , ) |
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Similar deduction can be used in the case of i > aj. So the claim is proved.
Approximation Guarantee of Local Search Algorithm
In this sub-section, we prove two approximation results under a certain
assumption. The neighbor we used here is 1-neighbor. From claim 1 we
know that for k-neighbor, k > 1, we can obtain a better result.
The algorithm’s approximation guarantee is closely linked to the specific
form of score(A). First we only consider score(A) consists of local items: score
(A) = ∑tÎTm(t, A(t)). For convenience’s sake, we define the following marks.

T t T t s

T t t T T T

m T m t t

i i( ) { | ( ) }

( ) { ( ) | },

( , ) ( , ( ))

A A

A A

A A

= ∈ =
′ = ∈ ′ ′ ⊂

′ = ,, ′ ⊂
∈ ′
∑ T T
t T

Due to the technical reasons, we have to do a assumption. In the process of
prove, we only need that local optimal solution and distant optimal solution
satisfy the assumption, unfortunately, this does not always hold too.
Assumption 1.Given 2 alignments A and g, define

A
A

i
i

i
t

t if t T g

s otherwise
i n( )

( ), ( )

,
, , , ,=

∉⎧
⎨
⎩

= 0 1 2

ifAiÎ F, i = 0, 1, 2, ..., n, we sayAand g satisfies closing assumption.
If the above assumption is satisfied, we have the following theorem.

Theorem 1.If score(A) = ∑tÎT m(t, A(t)), ∀A Î F, A** is the distant optimal
solution, A* is the approximate local optimal solution obtained from algorithm
2 with factor a and k = 1, A* andA** satisfies closing assumption, n is the
length of given sequence, an < 1. then

score
n
score( ) ( ).A A* **≤ +

−
1
1




Proof Define

A
A A

i
i

i
t

t t T

s
i n( )

( ), ( )

,
, , , ,=

∉⎧
⎨
⎩

=
* if **

otherwise
0 1 2

A* and Ai differs only in Ti (in this proof, we abbreviate Ti(A**) as Ti), so
score(A*) – score(Ai) = m(Ti, A*) – m(Ti, A**)
From the assumption, we know that Ai Î F, even more, Ai Î Ni(A*) ⊂ N(A*)
which means score(A*) ≤ (1 + a)score(Ai). Notice that U i

n
iT T= =0

and Ti
∩ Tj = Ø, i = j. We have,

   *

*

( ( ) ( ) ( ))

( , ) ( ) (

score score score

m T m T

i

i

n

i

i

A A A

A

− −

= − +

=
∑ 



0

1 ii

i

n

im T T

n score score

, )

( , ))

[ ] ( ) ( ) (

A

A

A A

**

  *

* *

(

− −
= − − +

=
∑

0

1 1


  **) ≤ 0

which implicates the conclusion.
Corollary 1.If score(A) = ∑tÎTm(t, A(t)), ∀A Î F, A* is the accurate local
optimal solution, then score(A*) = score(A**).
Proof This is the special case of theorem 1 when a = 0.
If pair contact is taken into scoring function: score(A) = ∑tÎTm(t, A(t)) +
∑uÎT∑vÎTp(u, A(u), v, A(v)) we have following theorem.
Theorem 2.If score(A) = ∑tÎTm(t, A(t)) + ∑uÎT∑vÎTp(u, A(u), v, A(v)), then

score
r

n
score( )

( )
( ),A A* **≤ +

−
2 1
1




where

r
p t s t s

p t s t st t T s s s S
=

′
≥

∈ ′ ∈
sup

( , , , )
( , , , )

.
, , , ,1 2 1 2 2

1 1 2 2

1 1 2 2

1

Proof. Define

p T T p t t t t
t Tt T

( , , , ) ( , ( ), , ( ))′ ′ ′′ ′′ = ′ ′ ′ ′′ ′′ ′′
′′∈ ′′′∈ ′
∑∑A A A A

then
score(A*) – score(Ai)
= m(Ti, A*) + p(Ti, A*, Ti, A*) + p(Ti, A*, T – Ti, A*) + p(T – Ti, A*, Ti, A*) – m(Ti,
A**) – p(Ti, A**, Ti, A**) – p(Ti, A**, T – Ti, A*) – p(T – Ti, A*, Ti, A**)
= m(Ti, A*) + p(Ti, A*, Ti, A*) + 2p(Ti, A*, T – Ti, A*) – m(Ti, A**) – p(Ti, A**, Ti,
A**) – 2p(Ti, A**, T – Ti, A*).
score(A*) – score(Ai) – a score(Ai)
= m(Ti, A*) + p(Ti, A*, Ti, A*) + 2p(Ti, A*, T – Ti, A*) – (1 + a)[m(Ti, A**) + p(Ti,
A**, Ti, A**) + 2p(Ti, A**, T – Ti, A*)] – a[m(T – Ti, A*) + p(T – Ti, A*, T – Ti,
A*)] ≤ 0
Move positive items to the left side and negative items to the right side,
and sum up with i = 0, 1, 2, ..., n, we have, the left side
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the right side
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+ − + − − )
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[ ( , *) ( , *, , *)]
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i i iA A A

A2 1 ** ( *)score A

By adjusting the inequality of L ≤ R, we can obtain the conclusion.
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