
RESEARCH Open Access

CLOSEST STRING WITH OUTLIERS
Christina Boucher*, Bin Ma*

From The Ninth Asia Pacific Bioinformatics Conference (APBC 2011)
Inchon, Korea. 11-14 January 2011

Abstract

Background: Given n strings s1, …, sn each of length ℓ and a nonnegative integer d, the CLOSEST STRING
problem asks to find a center string s such that none of the input strings has Hamming distance greater than d
from s. Finding a common pattern in many – but not necessarily all – input strings is an important task that plays
a role in many applications in bioinformatics.

Results: Although the closest string model is robust to the oversampling of strings in the input, it is severely
affected by the existence of outliers. We propose a refined model, the CLOSEST STRING WITH OUTLIERS (CSWO)
problem, to overcome this limitation. This new model asks for a center string s that is within Hamming distance d
to at least n – k of the n input strings, where k is a parameter describing the maximum number of outliers.
A CSWO solution not only provides the center string as a representative for the set of strings but also reveals the
outliers of the set.
We provide fixed parameter algorithms for CSWO when d and k are parameters, for both bounded and
unbounded alphabets. We also show that when the alphabet is unbounded the problem is W[1]-hard with respect
to n – k, ℓ, and d.

Conclusions: Our refined model abstractly models finding common patterns in several but not all input strings.
We initialize the study of the computability of this model and show that it is sensitive to different
parameterizations. Lastly, we conclude by suggesting several open problems which warrant further investigation.

Background
Finding similar regions in multiple DNA, RNA, or pro-
tein sequences plays an important role in many applica-
tions, including universal PCR primer design [1-4],
genetic probe design [2], antisense drug design [2,5],
finding transcription factor binding sites in genomic
data [6], determining an unbiased consensus of a protein
family [7], and motif-recognition [2,8,9]. The CLOSEST
STRING problem formalizes these tasks and can be
defined as follows: given a set of n strings S of length ℓ

over the alphabet Σ and parameter d, the aim is to
determine if there exists a string s that has Hamming
distance at most d from each string in S. The optimiza-
tion version of this problem tries to minimize the

parameter d. We refer to s as the center string and let d
(x, y) be the Hamming distance between strings x and y.
The CLOSEST STRING was first introduced and stu-

died in the context bioinformatics by Lanctot et al. [2].
Frances and Litman [10] showed the problem to be NP-
complete even in the special case when the alphabet is
binary, implying there is unlikely to be a polynomial-
time algorithm for this problem unless P = NP. Since its
introduction the investigation of efficient polynomial
time approximation algorithms and exact exponential
time algorithms for the CLOSEST STRING problem has
been thoroughly considered [2,11-16].
The CLOSEST STRING problem requires that the

Hamming distance constraint be satisfied for each of
the input strings and therefore, is robust to the over-
sampling of the input strings. For this reason it is fre-
quently used to model many of the aforementioned
applications. However, this property also causes a
severe problem: if the input includes a string that is

* Correspondence: cabouche@cs.uwaterloo.ca; binma@cs.uwaterloo.ca
David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON

Boucher and Ma BMC Bioinformatics 2011, 12(Suppl 1):S55
http://www.biomedcentral.com/1471-2105/12/S1/S55

© 2011 Boucher and Ma; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:cabouche@cs.uwaterloo.ca
mailto:binma@cs.uwaterloo.ca
http://creativecommons.org/licenses/by/2.0

significantly different from the other input strings,
which we refer to as an “outlier”, then it will have the
effect of causing there not to exist a center string for
the complete set of input strings; d will have to be
increased dramatically to account for this string and
obtain a center string. This is a significant limitation
for applications such as the design of universal primers
where a small d is crucial for the effectiveness of the
primers. In this and many other applications, it would
be preferable to determine a “good” center string (i.e.
one that is reasonably close to each of the strings) for
a large portion of the input strings rather than trying
to find a center string for the complete set and in
doing so finding one that is far distance from many or
all of the strings. Hence, we aim to model the task of
finding a center string that is within distance d to
most – but not necessarily all – of the input strings,
where d is reasonably small. Another compelling con-
sequence of the modification of the model is that in
situations where a more satisfying solution can be
found by regarding a few strings as outliers, the initial
decision of including them requires reexamination.
We formally model this problem as follows:
CLOSEST STRING WITH OUTLIERS (CSWO)
INPUT: A set of n length-ℓ strings S = {s1,…, sn} over

a finite alphabet Σ and nonnegative integers k and d.
QUESTION: Find a center string s and a subset of S*

⊂ S, such that |S*| = n – k and d(s, t) ≤ d for t ÎS*.
For the rest of the paper we denote n – k as n*, and si

[p] to be the symbol at position p of string si.
There exists a simple reduction from the CLOSEST

STRING problem to CSWO that demonstrates it is NP-
complete even in the special case where the alphabet is
binary and k = 0, implying it is unlikely to be solved
exactly by a polynomial-time algorithm, unless P=NP.
One approach to investigating the computational
intractability of CSWO is to consider its parameterized
complexity, which aims to classify computationally hard
problems according to their inherent difficulty with
respect to multiple parameters of the input. If it is solva-
ble by an algorithm that is polynomial in the input size
and exponential in parameters that are typically small
then it can still be considered tractable in some practical
sense.
For unbounded alphabet size, we show that CSWO is

W[1]-hard for every combination of the parameters ℓ, d,
and n* and thus, is fixed parameter intractable when
parameterized by any subset of these parameters, unless
FPT = W[1]. We also show that when the alphabet is
unbounded, there exists a fixed parameter tractable
algorithm for CSWO with respect to the parameters d
and k. In the case of constant size alphabet, CSWO is
fixed parameter tractable for the parameter n but
intractable for the parameter k. The complexity of the

problem remains open when parameterized by d and
the alphabet is of constant size, and when parameterized
by n* and k.

Previous Results
It is worth noting that analogous parameterized com-
plexity studies have been performed for the CLOSEST
STRING problem and the CLOSEST SUBSTRING pro-
blem. Gramm et al. [13] demonstrated that the CLO-
SEST STRING problem is FPT when the number of
strings remains fixed. This FPT result is based on an
integer linear programming formulation with a constant
number of variables (assuming n is fixed), and the appli-
cation of the result of Lenstra [19] that proves integer
linear programming is polynomial-time solvable when
the number of variables remains fixed. They further
demonstrated that the problem is FPT when d is a para-
meter by giving a O(nℓ + nd(d + 1)d) time algorithm
[13]. Ma and Sun gave an O(n|Σ|O(d)) algorithm, which
is a polynomial-time algorithm when d = O(log n) and
Σ has constant size [16]. Chen et al. [20], Wang and
Zhu [21], and Zhao and Zhang [22] improved upon the
fixed parameter tractable result of Ma and Sun [16].
The CLOSEST SUBSTRING problem seems to be

inherently more intractable then the CLOSEST STRING
problem. Given n strings s1, s2,…, sn over alphabet Σ
and integers d and ℓ, the CLOSEST SUBSTRING pro-
blem aims to determine whether there is a string s of
length ℓ such that, for all i = 1,…, n, d(s, ′si) ≤ d where

′si is a length ℓ substring of si. Fellows et al. [11]
showed that CLOSEST SUBSTRING is W[1]-hard with
respect to the number of input strings n even for a bin-
ary alphabet. When Σ is unbounded the problem is W
[1]-hard with respect to the parameters ℓ, d and n[11].
Most recently, Marx [23] proved the problem is W[1]-
hard with combined parameters n and d even if the
alphabet is binary, which resolved an open problem sta-
ted in [11,12,24].

Methods
We give insight into the computational tractability of
CSWO through studying the parameterized complexity
of the problem. Parameterized complexity aims to clas-
sify problems according to their inherent difficulty with
respect to multiple parameters of the input.

Parameterized Complexity
A problem j is said to be fixed parameter tractable with
respect to parameter k if there exists an algorithm that
solves j in f(k) · nO(1) time, where f is a function of k
that is independent of n [17]. Given a graph G = (V, E)
with vertex set V, edge set E, and positive integer k, the
Vertex Cover problem aims to discern where there is a
subset of vertices Vc ⊆ V with k or fewer vertices such

Boucher and Ma BMC Bioinformatics 2011, 12(Suppl 1):S55
http://www.biomedcentral.com/1471-2105/12/S1/S55

Page 2 of 7

that each edge in E has at least one its endpoints in Vc .
The vertex cover problem is NP-complete [18] but is
fixed parameter tractable since there exists algorithmic
solutions that have running time O(kn + 1.3k) [17]. The
corresponding complexity class is FPT.
Not all NP-complete problems are in FPT. For exam-

ple, consider the NP-complete CLIQUE problem: given
an undirected graph G = (V, E) and a positive integer t,
the aim is determine whether there is a subset of vertices
C ⊆ V of size at least t where each pair of vertices in C
are connected by an edge. The best known algorithms for
solving clique runs in time O(no(t)) and hence, there is no
known algorithm for solving t for which t is not in the
exponent of n in the running time [17].
In order to characterize those problems that do not

seem to admit a fixed parameter efficient algorithm,
Downey and Fellows [17] defined a fixed parameter
reduction. We will restrict interest to the W[1] class and
hence, the following definition will only apply to W[1]-
hardness. W[1]-hardness gives convincing evidence that
a parameterized problem with parameter k is unlikely to
have an algorithm that has running time of the form
f(k) · nO(1). Let L, L′ ⊆ Σ* × N be two parameterized lan-
guages, then L reduces to L′ if there are functions k ® k′
and k ® k″ from N to N and a function (x, k) ® x′
from Σ* × N to Σ* such that:
1. (x, k) ® x′ is computable in time k″|x|c, for some

constant c and
2. (x, k) ÎL if and only if (x′, k′) ÎL′.

Results and Discussion
In the following subsections, we study the parameterized
tractability of CSWO and show the problem is sensitive
to different parameterizations.

CSWO: Tractability Results
We first consider when Σ is a parameter. In computa-
tional biology applications the biological sequences of
interest are typically DNA or protein sequences, hence
the number of different symbols is a small constant (i.e.
4 or 20 in the case of DNA or protein sequences,
respectively). Restricting Σ only does not make CSWO
tractable since it is NP-hard even when the alphabet is
binary. However, if Σ and ℓ are both parameters then it
is fixed-parameter tractable; we can enumerate and
check all the |Σ|ℓ possible center strings. As a result the
problem is fixed parameter tractable with the combined
parameters Σ, ℓ, d and n*. We will prove in a later sec-
tion that it is imperative that Σ be a parameter in order
to obtain this tractability.
Next we show that CSWO is fixed parameter tractable

if d and k are parameters. The fixed parameter algo-
rithm that we present is similar to the algorithm pre-
sented by Gramm et al. [13], where it is proved that

CLOSEST STRING is fixed parameter tractable with
respect to the parameter d. In the algorithm by Gramm
et al. [13] at each recursive step a string s is selected
that has Hamming distance at least d + 1 away from the
current candidate center string x if one exists; otherwise
x is returned since it is a center string. Then for any
d + 1 positions where x and s disagree, there is at least
one position at which s is equal to the final solution.
The algorithm tries each of the d + 1 positions, changes
x to s at one of the d + 1 the position, reduces Δd by
one, and calls itself recursively. Hence, Δd is the current
degeneracy parameter at a particular recursive iteration
and x is the current candidate center string. Since the
recursion stops after at most d steps the size of the
search tree is bounded by O((d + 1)d).

CSWO Algorithm
Input: A CSWO instance with a set of S n strings of
length ℓ, parameters Δd, d and k, and a candidate string x.
Output: A string s* if there exists a set S of at least n*

strings where each string in S has distance at most d
from s*, and “Not found” otherwise.
1. If Δd < 0 or k < 0 then return “Not found”.
2. Choose i Î{1,…, n} such that d(x, si) > d. If no such

i exists return x.
3. sret = CSWO Algorithm (S\ {si}, Δd, k – 1, x).
4. If sret = “not found ” then:
(a) P = {p | × [p] ≠ si[p]};
(b) Choose any P′ from P with |P′| = d + 1.
(c) For each position p ÎP′:
• Let x be equal to si at position p.
• sret = CSWO Algorithm (S, Δd – 1, k, x).
• If sret ≠ “not found”, then return sret.
5. Return “not found”.
Our algorithm begins with s1 as the candidate center

string. If s1 is a center string with respect to S then we
are done; otherwise there exists a string si that has dis-
tance at least d + 1 from s1. We “guess” whether si
belongs in the set of outliers. If it is an outlier then we
remove it from S and recurse on the smaller set with
k – 1. If it is not an outlier then we use si to move the
candidate string x closer to toward si, which can be
done by applying the methodology of Gramm et al. [13].
We use the term “guess” as an euphemism in this brief
description of the our algorithm but rather we try both
possibilities as can be seen in the CSWO Algorithm.
This will increase the size of the search tree.
Proposition 1 The CSWO Algorithm solves the CSWO

problem in time O(nℓ + nd · dd · 2k+d).
Proof. Running time. Each recursion of the algorithm

reduces either k or d by 1. Thus, there are at most k + d
guesses of whether a particular string belongs in the set
of outliers. Thus, the search tree size is increased by a
multiplicative factor of at most 2k+d and the search tree

Boucher and Ma BMC Bioinformatics 2011, 12(Suppl 1):S55
http://www.biomedcentral.com/1471-2105/12/S1/S55

Page 3 of 7

size is bounded above by O(2k+d · (d + 1)d). The analysis
of Gramm et al. [13] demonstrated that each recursive
step takes time O(nd) and the preprocessing time takes
O(nℓ) and therefore, we obtain an overall running time
of O(nℓ + nd · dd · 2k+d).
Correctness We show the correctness of the algo-

rithm by showing the correctness of the first recursive
step and then the correctness of the algorithm follows
by inductively applying the following argument. Clearly,
if S does not contain a subset S* of n* strings, such that
there exists a center string s* for S* then “not found”
will be returned and therefore, we assume otherwise.
If s1 is a center string for S then the algorithm imme-

diately halts so we assume there exists a string si in S
that does not have s1 as a center string. CSWO Algo-
rithm creates two subcases: one where si is in the set of
outliers, and another where si is not. Suppose si is in the
set of outliers then the first case will successfully remove
si from the set and recurse on S\{si}. Otherwise, if si is
not in the set of outliers then eventually the second case
will reached. We refer to the set of positions as correct
if {p | s1[p] ≠ s*[p] = s[p]}. It follows from Gramm et al.
[13] that one of the d + 1 chosen positions p will be a
correct one. Thus, we have shown that either one of the
subcases will lead to a smaller subcase containing the
solution for S.
The previous result demonstrates the fixed parameter

tractability with respect to d and k. We note that a simi-
lar modification of the O(n|Σ|O(d)) algorithm of Ma and
Sun [16] also gives a fixed parameter algorithm with
respect to the parameters Σ, d and k. In the modified
algorithm, for any string s with distance greater than d
to the current candidate center string x, we again try
the subcases where s is an outlier, and is not an outlier.
In the former case, we remove s from the set of input
strings S and recurse on S and k – 1, and in the latter
case, we use the same technique as in the algorithm of
Ma and Sun [16] to reduce the distance between x and
the final solution. This modification that accounts for
the outliers results an extra multiplicative factor of O(2k
+logd) to the running time of the original algorithm.
Although this algorithm improves upon the running
time of the previous result, it requires that Σ is also a
parameter. Further, we note that some of the recent
improvements [20-22] to the algorithm of Ma and Sun
can be modified in a similar manner to obtain fixed
parameter algorithms for CSWO with respect to para-
meters Σ, d and k.
Proposition 2 CSWO is fixed parameter tractable for

parameters Σ and n.
Proof. Gramm et al. [13] gave a linear fixed parameter

tractable algorithm for CLOSEST STRING with respect
to the number of strings and Σ, which we refer to this

algorithm as ILP-procedure(S), where S is the set of
input strings. Our algorithm enumerates all size-n* sub-
sets of S, and call ILP-procedure on each subset.

CSWO: Intractability Results
We derive the W[1]-hardness result by a series of inter-
mediate steps, aiming at a reduction from Clique to
CSWO, showing that CSWO is W[1]-hard for the com-
bination of ℓ, d, and n*, and when the alphabet is
unbounded.
Reduction from CLIQUE
As previously described, we let the CLIQUE instance be
given by an undirected graph G = (V, E) with a set V =
{v1,v2,…,vn} of n vertices, a set E of m edges, and a posi-
tive integer t denoting the size of the desired clique. We

describe how to generate a set S of
t

E
2

⎛

⎝
⎜

⎞

⎠
⎟ strings such

that G has a clique of size t if and only if there is a sub-

set of S of size
t

2

⎛

⎝
⎜

⎞

⎠
⎟ , denoted as S*, where there exists a

string x such that d(si,x) ≤ d for all si Î S*. We let ℓ = t
and d = t – 2. We assume that t > 2 since t ≤ 1 pro-
duces trivial cases.
We begin by describing the alphabet. We assume |Σ|

can be infinite and we let Σ be equal to the union of the
following sets of symbols:
1. {vi| for all i = 1,…, |V|}. Hence, there exists one

symbol representing each vertex in G.
2. {ci,j,m|i = 1,…,t; j = 1,…,t; m = 1,…, |E|}. There exists

an unique symbol for each
t

E
2

⎛

⎝
⎜

⎞

⎠
⎟ ⋅ strings produced

for our reduction.
Hence, we have a total of V

t
E+

⎛

⎝
⎜

⎞

⎠
⎟ ⋅

2
number of

symbols.
Next, we generate a set of

t
E

2

⎛

⎝
⎜

⎞

⎠
⎟ strings S = {s1,1,1,

…, s1,1,|E|, s1,2,1,…, s1,2,|E|,… ,st–1,t,|E|}. Every string has

length t and will encode one edge of the input graph.

There will be
t

2

⎛

⎝
⎜

⎞

⎠
⎟ corresponding for each edge, how-

ever, encode the edges in different positions. For string
si,j,m we encode edge em = (vr, vs), where 1 ≤ r < s ≤ |V|,
but letting position i equal to vr and position j equal to
vs and the remaining positions equal to ci,j,m. Hence, a
string is given by

si,j,m := [ci,j,m]
i–1 vr[ci,j,m]

j–i–1 vs[ci,j,m]
m–j.

To clarify our reduction, we give an example. Let G =
(V, E) be an undirected graph with V = v1, v2, v3, v4 and
edges E = {(v1, v2), (v1, v3), (v1, v4), (v2, v3)} and let our
CLIQUE instance have G and t = 3. Figure 1 illustrates

Boucher and Ma BMC Bioinformatics 2011, 12(Suppl 1):S55
http://www.biomedcentral.com/1471-2105/12/S1/S55

Page 4 of 7

the reduction. Using G, we exhibit the above construc-

tion of
t

E
2

12
⎛

⎝
⎜

⎞

⎠
⎟ ⋅ = strings, which we denote as S.

We claim that there exists a clique of size 3 if and only
if there exists a string s* of length ℓ = t = 3 and subset
S* of S of size 3 where d(s,si) ≤ d for all si ÎS*. In this
example the center string s is equal to v1v2v3 and
each string in the set {v1v2c121, v1c132v3, c234v2v3} is such
that each string in S* has Hamming distance at most 1
from s.
Correctness of the Reduction
The following two lemmas establish the correctness of
the reduction.
Lemma 1 For a graph with a t-clique, the construc-

tion in Subsection produces a CSWO instance with a
set S* and a string s of length such that for every si Î S*
d(si, s) ≤ d.
Proof Let the input graph have a clique of size t. Let

va1, va2, …, vat be the vertices in the clique C of size t
and without loss of generality, assume a1< a2<…< at .

Then we claim that the there exists a subset of
t

2

⎛

⎝
⎜

⎞

⎠
⎟

vertices that have distance at most t – 2 from the string
s = va1va2 …vat. Consider the first edge of the clique
(va1, va2) of the clique then it follows that the string s11r
= va1va2 [c11r]

t–2, where edge r has endpoints va1va2, is
contained in the set of strings {s111, s112,…, s11|E|}.
Clearly, H(s11r,s) = t – 2. For each edge in C we have we
have a string in S that has distance at most t – 2 from s
and our lemma follows from this construction.
For the reverse direction, we need to prove that the

existence a subset S* of
t

2

⎛

⎝
⎜

⎞

⎠
⎟ and a string s where d(s,

si) ≤ t – 2 for all si ÎS* implies the existence of a clique
in G with t vertices.
Lemma 2 The t symbols of the center string correspond

to the t vertices of clique in the input graph
Proof. Let S* be the subset of S of size n∗ =

⎛

⎝
⎜

⎞

⎠
⎟ =

3

2
3

such that s has distance t – 2 from each string in S*.
Since ℓ = t, n* = t, d = t – 2 and for each symbol ci,j,m
there exists only a single string i = 1, …,t, j = 1, …,t and
m = 1,…, |E| it follows from the Pigeonhole principle
that the center string s only contains symbols from {vi|
for all i = 1,…,|V|}. Without loss of generality assume s

Figure 1 An illustration of the reduction from CLIQUE to CSWO Example of the reduction from a CLIQUE instance G with t = 3 to an

instance of CSWO with 12 strings with ℓ = t = 3, d = t – 2 = 1, and
t

2

⎛

⎝
⎜

⎞

⎠
⎟ . In bold we have the set of strings S* = {s121, s132, s234} that

corresponds to the clique containing the vertices {v1,v2,v3}. We note that S* is the only set such that |S*| = 3, which have Hamming distance at
most d from s*.

Boucher and Ma BMC Bioinformatics 2011, 12(Suppl 1):S55
http://www.biomedcentral.com/1471-2105/12/S1/S55

Page 5 of 7

is equal to va1va2 …vat for av1, av2,…,avt Î {1,…, |V|}.
Consider any pair ai, aj for 1 ≤ i < j ≤ t and consider
the set of strings Si,j = {si,j,1, si,j,2,…, si,j,|E|}. Recall that Si,j
contains a string corresponding to each edge e = (r, s)
in E which has vr at the ith position and vs at the jth
position and ci,j,m at all remaining positions. Therefore,
we can only find a string in Si,j that has distance at most
t – 2 from s if vaí

is at the ith position and vaj is at the
jth position; and such a string exists if and only if there
is an edge in G connecting vaí to vaj. Hence, the center
string s implies there exists an edge between any pair of
vertices in G in the set {va1va2 … vat} and by definition
the vertices form a clique.
Our main theorem follows directly from Lemma 1 and

Lemma 2. We note that the hardness for the combina-
tion of all three parameters also implies the hardness for
each subset of the three.
Theorem 1 CSWO with unbounded alphabet is W[1]-

hard with respect to the parameters ℓ, d, and n*.
Since there exists a trivial reduction from the CLO-

SEST STRING problem to CSWO (i.e. simply set k = 0
in CSWO), there cannot exist a fixed parameter tract-
able algorithm for CSWO with k as a parameter, unless
P = NP; such an algorithm would contradict the NP-
hardness of CLOSEST STRING.
Fact 1 CSWO is W[1]-hard with respect to the para-

meter k and when |Σ| ≤ 2, unless P = NP.

Conclusions
We introduced the CSWO problem, and proved with
unbounded alphabet size and parameterized by ℓ, d and
n* it is W[1]-hard. We also gave fixed parameter algo-
rithms for the problem when parameterized by d and k,
and with unbounded alphabet size. In the case of a
fixed alphabet size, we showed CSWO is fixed para-
meter tractable when parameterized by n = n* + k.
Table 1 summarizes these tractability and intractability
results.
Currently, the fixed parameter tractability of the

CSWO problem when parameterized by d, n* and Σ, and
by n* and k, remains open (see Table 1). In addition, the

existence of efficient, non-trivial approximation algo-
rithms for this problem warrants further investigation.

Acknowledgement
CB is supported by NSERC Grant OGP0046506, NSERC Grant OGP0048487,
Canada Research Chair program, MITACS, and Premier’s Discovery Award.
BM is supported by NSERC (RGPIN 238748-2006), China 863 National High-
tech R&D Program (2008AA02Z313), and a startup grant at University of
Waterloo. We are also grateful to the referees for their many helpful
comments.
This article has been published as part of BMC Bioinformatics Volume 12
Supplement 1, 2011: Selected articles from the Ninth Asia Pacific
Bioinformatics Conference (APBC 2011). The full contents of the supplement
are available online at http://www.biomedcentral.com/1471-2105/12?
issue=S1.

Authors’ contributions
Concept, FPT analysis: BM. W[1]-hardness analysis: CB. Manuscript
preparation: BM and CB.

Competing interests
The authors declare that they have no competing interests.

Published: 15 February 2011

References
1. Dopazo J, Rodríguez A, Sáiz J, Sobrino F: Design of primers for PCR

amplification of highly variable genomes. Computer Applications in the
Biosciences 1993, 9:123-125.

2. Lanctot J, Li M, Ma B, Wang S, Zhang L: Distinguishing string selection
problems. Information and Computation 2003, 41-55.

3. Lucas K, Busch M, Össinger S: Thompson J: An improved microcomputer
program for finding gene-and gene family-specific oligonucleotides
suitable as primers for polymerase chain reactions or as probes.
Computer Applications in the Biosciences 1991, 7:525-529.

4. Proutski V, Holme E: Primer master: A new program for the design and
analyiss of PCR primers. Computer Applications in the Biosciences 1996,
12:253-255.

5. Deng X, Li G, Li Z, Ma B, Wang L: Genetic design of drugs without side-
effects. SIAM Journal on Computing 2003, 32(4):1073-1090.

6. Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov AV,
Frith MC, Fu Y, Kent WJ, et al.: Assessing computational tools for the discovery
of transcription factor binding sites. Nature Biotechnology 2005, 23:137-144.

7. Ben-Dor A, Lancia G, Perone J, Ravi R: Banishing bias from consensus
strings. Proc. of 8th CPM 1997, 247-261.

8. Pavesi G, Mauri G, Pesole G: An algorithm for finding signals of unknown
length in DNA sequences. Bioinformatics 2001, 17:S207-S214.

9. Pevzner P, Sze S: Combinatorial approaches to finding subtle signals in
DNA strings. Proc. of 8th ISMB 2000, 269-278.

10. Frances M, Litman A: On covering problems of codes. Theoretical
Computer Science 1997, 30(2):113-119.

11. Fellows M, Gramm J, Neidermeier R: On the Parameterized Intractability
of Closest Substring and Related Problems. Proc. of 19th STACS 2002,
262-273.

12. Fellows M, Gramm J, Niedermeier R: On The Parameterized Intractability
Of Motif Search Problems. Combinatorica 2006, 26:141-167.

13. Gramm J, Niedermeier R, Rossmanith P: Fixed-parameter algorithms for
closest string and related problems. Algorithmica 2003, 37:25-42.

14. Li M, Ma B, Wang L: Finding similar regions in many strings. Journal of
Computer and System Sciences 2002, 65:73-96.

15. Ma B: A polynomial time approximation scheme for the closest
substring problem. Proc. of 11th CPM 2000, 99-107.

16. Ma B, Sun X: More efficient algorithms for closest string and substring
problems. Proc. of 12th ACM RECOMB 2008, 396-409.

17. Downey R, Fellows M: Parameterized Complexity. Springer; 1999.
18. Garey M, Johnson D: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman; 1979.

Table 1 Parameterized tractability of CSWO

Parameter(s) |Σ| is a parameter |Σ| is unbounded

ℓ, d, n* FPT (trivial) W[1]-hard (*)

ℓ FPT (trivial) W[1]-hard (*)

d, n* Open W[1]-hard (*)

d, k FPT (*) FPT (*)

n*, k FPT Open

k W[1]-hard (trivial) W[1]-hard (trivial)

An overview of the fixed parameter tractability and intractability of the CSWO.
Asterisk denotes the new results found in this paper.

Boucher and Ma BMC Bioinformatics 2011, 12(Suppl 1):S55
http://www.biomedcentral.com/1471-2105/12/S1/S55

Page 6 of 7

http://www.biomedcentral.com/1471-2105/12?issue=S1
http://www.biomedcentral.com/1471-2105/12?issue=S1
http://www.ncbi.nlm.nih.gov/pubmed/8386978?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8386978?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1720999?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1720999?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1720999?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8872397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8872397?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15637633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15637633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11473011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11473011?dopt=Abstract

19. Lenstra W: Integer programming with a fixed number of variables.
Mathematics of Operations Research 1983, 8:538-548.

20. Chen ZZ, Ma B, Wang L: A Three-String Approach to the Closest String
problem. Proc. of 16th COCOON (to appear) 2010.

21. Wang L, Zhu B: Efficient algorithms for the closest string and
distinguishing string selection problems. Proc. of 3rd FAW 2009, 261--270.

22. Zhao R, Zhang N: A more efficient closest string algorithm. Prof. of 2nd
BICoB (to appear) 2010.

23. Marx D: Closest Substring Problems with Small Distances. SIAM Journal on
Computing 2008, 38:1382-1410.

24. Gramm J, Guo J, Niedermeier R: On Exact and Approximation Algorithms
for Distinguishing Substring Selection. Proc. of 14th FCT 2003, 261-272.

doi:10.1186/1471-2105-12-S1-S55
Cite this article as: Boucher and Ma: CLOSEST STRING WITH OUTLIERS.
BMC Bioinformatics 2011 12(Suppl 1):S55.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Boucher and Ma BMC Bioinformatics 2011, 12(Suppl 1):S55
http://www.biomedcentral.com/1471-2105/12/S1/S55

Page 7 of 7

	Abstract
	Background
	Results
	Conclusions

	Background
	Previous Results

	Methods
	Parameterized Complexity

	Results and Discussion
	CSWO: Tractability Results
	CSWO Algorithm
	CSWO: Intractability Results
	Reduction from CLIQUE
	Correctness of the Reduction

	Conclusions
	Acknowledgement
	Authors' contributions
	Competing interests
	References

