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Abstract

be used to infer the position of SVs.

simulation data set.

Background: Structural variations (SVs) change the structure of the genome and are therefore the causes of
various diseases. Next-generation sequencing allows us to obtain a multitude of sequence data, some of which can

Methods: We developed a new method and implementation named ClipCrop for detecting SVs with single-base
resolution using soft-clipping information. A soft-clipped sequence is an unmatched fragment in a partially
mapped read. To assess the performance of ClipCrop with other SV-detecting tools, we generated various patterns
of simulation data — SV lengths, read lengths, and the depth of coverage of short reads — with insertions, deletions,
tandem duplications, inversions and single nucleotide alterations in a human chromosome. For comparison, we
selected BreakDancer, CNVnator and Pindel, each of which adopts a different approach to detect SVs, e.g.
discordant pair approach, depth of coverage approach and split read approach, respectively.

Results: Our method outperformed BreakDancer and CNVnator in both discovering rate and call accuracy in any
type of SV. Pindel offered a similar performance as our method, but our method crucially outperformed for
detecting small duplications. From our experiments, ClipCrop infer reliable SVs for the data set with more than 50
bases read lengths and 20x depth of coverage, both of which are reasonable values in current NGS data set.

Conclusions: ClipCrop can detect SVs with higher discovering rate and call accuracy than any other tool in our

Background

Structural variations (SVs) are polymorphisms that
change the structure of the genome, e.g. deletions, inser-
tions, translocations, inversions and tandem duplications
[1]. They induce functional change in genes and regula-
tory regions, which can cause various diseases [2], e.g.
autism [3], Parkinson’s disease [4], schizophrenia [5]. Not
only inherited SVs, but also somatic SVs can be responsi-
ble for various diseases including cancer [6]. However,
until a few years ago, there were no efficient methods to
detect genome wide SVs in high resolution. One of the
microarray analyses, array-CGH, can only detect limited
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SVs, since this approach can neither detect small size
SVs nor clarify the single nucleotide level sequence of the
target sample. Recently, next-gen sequencing (NGS) has
drastically changed this situation. NGS enables us to
measure large number of short digested sequence reads
(short reads around 50 to 120 bases) with short time with
at once [7]. Additionally, alignments of sequenced reads
to the reference genome, which were impossible using
the microarray approach, are now applicable. Thus, we
can detect SVs with higher resolution.

Until now, three types of methods have been developed
to detect SVs from NGS data: discordant pair approach,
depth of coverage approach and split read approach [1].

The first approach, discordant pair, uses paired-end
reads of NGS data, and calls SVs when the distance of
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two paired-end reads is discordant [8]. When SVs occur,
paired-end reads generated from these locations cannot
be mapped to the reference in concordant distance.
BreakDancer [9], VariationHunter [10], MoDIL [11] and
ABI Tools [12] can be categorized into this method. This
idea has been developed in the early times when the
depth of coverage was low and the length of the read
sequences (read lengths) was short. Thus, this method is
appropriate for smaller datasets of short-read. However,
this method cannot detect SVs with shorter lengths, and
it has difficulties to know the exact position of SV events.

The second approach, depth of coverage, is used in
SegSeq [13], CNVnator [14] and ABITools [12]. It uses the
frequency of mapped short reads or bases to each position
on the reference genome. The main concept of this
method is similar to array-CGH. When deletions occur,
the number of mapped reads to regions in the reference
genome will decrease. In contrast, in the case of duplica-
tions, the number of mapped reads to regions in the refer-
ence genome will increase. Different from the first
approach, this does not require paired-end reads, while it
requires high coverage and still has difficulties detecting
shorter SV events.

The third approach, ‘split read’, is the method to detect
SVs using unsuspected reads, which are not correctly
mapped to the reference genome or remain unmapped.
In general, split read approach is applicable only to
paired-end reads. While it needs sufficient read lengths
and depth of coverage, the method can detect SVs with
single-base resolution. Reads on an SV event contain a
‘breakpoint’, a boundary of a region affected by SV and
its flanking region which is the same as the reference
genome. An SV is called when the same breakpoint is
detected in unsuspected reads. The algorithm of detect-
ing breakpoints varies with tools. Pindel [15] and SLOPE
[16] use orphaned reads, unmapped reads whose mate
were succeeded in mapping to the reference genome, as
unsuspected reads. SLOPE attempts partial alignment
between the either end of each unmapped read and the
reference genome to obtain breakpoints. Pindel gets sub-
strings from two different regions around the mapped
mate read; one region is two fold of average insert size
from 3’ end of mapped mate read and the other region is
the sum of maximum deletion size and read lengths from
the appropriate position. It then checks whether the
unmapped read can be reconstructed by concatenating
two substrings from each region.

Major mapping tools, such as the Burrows-Wheeler
alignment tool, (e.g. BWA [17]) if they failed to map full
length short read to reference genome, still try to map
part of the short read. If the short read is mapped par-
tially, then the information of the partial mapping is
stored into a major mapping format SAM [18] as soft-
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clipping information. The number of soft-clipped reads is
comparable to that of orphaned reads which is adopted
in Pindel and SLOPE. Thus, our new method ClipCrop
employs soft-clipping information and advances the third
‘split read approach.” By using the boundary position
between mapped sequence and the soft-clipped sequence
in a clipped read, we can obtain putative breakpoints.
Ideally, among these putative breakpoints, true break-
point will be contained. We then remap soft-clipped
sequences around the detected putative breakpoints and
infer which type of event is really occurred at this region.
The detailed method is described in Section 2. Section 3
demonstrates the comparison of ClipCrop, Pindel,
SLOPE and BreakDander to various simulation data set.
Section 4 details the result in Section 3.

Methods

In the first process of ClipCrop, reads with soft-clipping
information are chosen for the next analysis. The soft-
clipping information is written as a CIGAR string in
SAM format. Here is a sample data of CIGAR string:
“31S69M” means 31 bases from the left end are clipped,
and the rest 69 bases are matched.

The SAM file must be generated from paired-end map-
ping tools, and the mapping tool must generate a SAM
file with soft-clipping information. In some mapping
tools (e.g. BLAST [19], BLAT [20]), mapped result infor-
mation file does not contain whole read sequence, but
only mapped part of the sequence. In such cases, a gener-
ated SAM file from them contains hard-clipping, partially
unmapped sequence that is not in the SEQ column in
SAM format. We can convert hard-clipping information
to soft-clipping information by using the original FASTQ
file to put information about the original sequence of
each read. As a result of partial alignment, there are
some reads where both ends are soft-clipped (e.g.
14S54M36S). We ignored such reads because they don’t
carry relevant information.

Second, breakpoints are obtained from the soft-clipping
information. The marginal point between a clipped
sequence and matched sequence is denoted as a break-
point. When the left side of the breakpoint is clipped, it
is denoted as an L-breakpoint, and R-breakpoint in the
opposite case (Figure 1(A)). After identifying breakpoints,
they are sorted and clustered within 5-base differences.

In the next process, soft-clipped fragments with lengths
larger than 10bases are collected and remapped to the
reference genome around the whole breakpoint. Before
mapping, the reference genome is cut around each break-
point with 1000-base elongation to both sides. This pro-
cess can reduce the probability of clipped sequences to be
mapped in the wrong position. In our current implemen-
tation, BWA is used for this remapping process. By
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Figure 1 Identification of deletion events. (A) Relation between two breakpoints in deletion events. Clipped sequences are inside the two
breakpoints, and they are remapped to outside the opposite breakpoint. (B) The way two breakpoints and clipped sequences are generated
from deletion events. Reads generated from deleted region in a donor's genome are soft-clipped, and remapped.

deleted region

X

¢ map to the reference

Reference

Reads

clipped

clipped
I

re-mapped around the other BP

checking the mapped pattern of clipped sequence, Clip-
Crop infer the SV type from deletion, inversion, tandem
duplication, insertion and translocation as follows.

In deletion events, clipped sequences from an L-break-
point are mapped to the left side of an R-breakpoint and
vice versa (Figure 1). As we can see in Figure 1(B), reads
generated from nearby deleted region are soft-clipped
and remapped.

In inversion events, the same as deletion events,
clipped sequence from an L-breakpoint are mapped to
the left side of an R-breakpoint, but mapped reversely,
and vice versa (Figure 2). Figure 2B explains the reason
why the clipped sequences are mapped reversely.

In tandem duplication events, clipped sequences from
an L-breakpoint are mapped to the right side of an R-
breakpoint and vice versa (Figure 3). Unlike deletion
events, clipped sequences are made outside the two
breakpoints, and mapped inside the two. Soft-clipped

sequences are generated from the marginal point of two
duplicated sequences (Figure 3(B)).

In insertion and translocation, an L-breakpoint and an
R-breakpoint are in the same position (Figure 4). Reads
containing inserted / translocated sequence are clipped,
and remapped if it is a translocation event, and
unmapped if it is an insertion event.

After checking the type of SV from each soft-clipped
reads, these are clustered by its type and position allow-
ing 10 base difference at most. If two SV calls with the
same type are overlapped each other, then only one SV
with higher reliability score is finally selected. Reliability
score is defined with the following formula:

R=B, +Bg+C, +Cpr—BZ+B3 - JC2+C} (1)

, where B; and By are the number of clipped reads
supporting the L/R-Breakpoint of the SV event, C; and
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Figure 2 Identification of inversion events. (A) Relation between two breakpoints in inversion events. Clipped sequences are inside the two
breakpoints, and they are remapped to outside the opposite breakpoint reversely. (B) The way two breakpoints and clipped sequences are
generated from inversion events. Reads generated from inverted region in a donor's genome are soft-clipped, and remapped reversely.
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Figure 3 Identification of tandem duplication events. (A) Rela

sequences.

sequences are outside the two breakpoints, and they are remapped to inside the opposite breakpoint. (B) The way two breakpoints and clipped
sequences are generated from tandem duplication events. Soft-clipped sequences are generated from the marginal point of two duplicated
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tion between two breakpoints in tandem duplication events. Clipped

Cr are the number of clipped read remapped to the
L-Breakpoint of the SV event. In this formula, the
higher the clipped and the remapped reads, the higher
the score. Also, the score tend to be high when the
number of left and right reads are balanced.

Results

We prepared various simulation data to evaluate the per-
formance of CripCrop and other SV-detecting tools.
Table 1 shows the parameter set in these simulations. In
each simulation, we generated 200 SVs to the human
chromosome 22 (reference build 37). The type of each
SV was randomly chosen from insertion, inversion,

deletion and tandem duplication (all types of SVs other
than translocation). The length of each SV event followed
the normal distribution determined in each data. We also
set single nucleotide alteration frequency as one per
10,000 bases. After creating slightly modified chromo-
some 22 sequence in FASTA format, we generated
paired-end short reads with FASTQ format. The depth of
coverage was set to 5, 10, 15, 20 or 40 and read lengths
was set to 50, 75, 100 or 108 bases. The distribution of
the insert length (distance between outer positions of
read pairs) was set to N(400, 50). In order to compare the
performance of our method with other three methods -
discordant-pair method, depth of coverage method and
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Figure 4 Identification of insertion/translocation events. (A) Re
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Table 1 Parameters used in simulation data
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Total SVs
Reference genome
Distribution of SV length

The rate of single nucleotide alterations
The number of tandem repeat

Mean depth of coverage

Read lengths

Distribution of template lengths

200
Human chromosome 22 (Build 37 ref)

N(50, 5), N(80, 8), N(100, 10), N(120, 12),
N(150, 15), N(170, 17), N(200, 20), N(400, 40)
N(600, 60), N(800, 80), N(1000, 100)
N(2000, 200), N(4000, 400)

1/10000

N(40, 20) (>1)
5,10, 15, 20, 40
50, 75, 100, 108
N(400, 50)

We generated various data each of which has different distribution of SV length, mean depth of coverage or read lengths. Values with bold type are the default
(for example, if mean depth of coverage is set to five, then the distribution of SV length and read lengths is set to N(1000, 100) and 108.)

split read method -, we chose the following tools as the
representative of each method; BreakDancer, CNVnator
and Pindel, respectively. We removed the results of Clip-
Crop with its reliablity score zero.

We defined discovery rate and true call rate to compare
their performance to detect true SVs (Figure 5). Let real
SVs be Sz = {r; = [x1, y1], ..., ra} and called SVs be S¢ =
{c1, ..., car}, where [xy, 31] is the start and end positions of
the ith SV. If the type of SV r; is insertion, then the
inserted point p; to the reference genome is only given.
In this case, we set the range of a real SV r; = [p; — 100,
p; + 100]. The range of a called SV ¢; is defined in the
same way. Discovery rate D(Sg, Sc) and true call rate T
(Sr» Sc) are determined by the following formulas:

N

A

real SVs 93%

B

called SVs 93%

called Svs — R — N ———

discovery rate = (0.93 + 046 + 1)/ 3 = 0.797

real svs TS N —

true call rate = (0.93 + | + 0.57) / 3 = 0.833

Figure 5 Discovery rate and true call rate. (A) Discovery rate is the mean of each ratio of overlapped region in the real SV between the real
SV and the called SV determined by formula (2). In this case, the discovery rate is calculated as 0.797. When discovery rate is high, the number
of true positive will increase. Thus, this discovery rate can be regarded as the similar concept to sensitivity. (B) True call ratio is the mean of each
ratio of overlapped region in the called SV between the real SV and the called SV determined by formula (3). The true call rate is calculated as
0.833. When true call ratio is high, false positive will decrease. Thus, this true call ratio can be regarded as the similar concept to specificity.

D(SRrSc):%;F(TirSC) 2)
1 M
T(S,Sc) = M;F(ci,sze) )
, where the function F is
F(s=[x,y],S={sl=[x1,y1],...,s,<})=w. (4)
46% 100%

100% 57%
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As tools with high sensitivity can detect with high dis-
covery rate, it can be regarded as the similar concept to
sensitivity. In the same way, true call rate can be
regarded as the similar concept to specificity.

Figure 6 summarizes discovery rates and true call rates
in each type of SVs for four tools. Integer values in the
plots, e.g. 50, 80, 100, 120, 150, 170, 200, 400, 800, 1000,
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2000 and 4000, represent the mean length of SVs. Because
CNVnator cannot detect inversions and insertions, and
BreakDancer cannot detect tandem duplication, we didn’t
plot these data. In all types of SVs, ClipCrop and Pindel
resulted in higher discovery rate and true call rate to the
other tools. ClipCrop was better than Pindel especially to
detect short tandem duplications and insertions.
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Figure 6 Results 1 : discovery rate and true call rate of each method. Discovery rates and true call rates of each data with four methods in
various SVs. Numbers in graphs stand for the mean length of SVs. CNVnator only calls deletions and tandem duplications, and BreakDancer
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Figure 7 and Figure 8 respectively shows how the read
lengths and the depth of coverage effects to the discov-
ery rate and true call rate in ClipCrop. The plotted
values in Figure 7, e.g. D5, D10, D15, D20 and D40,
represents the depth of coverage. The plotted values in
Figure 8, e.g. R50, R75, R100 and R108, denotes the
read lengths. From these results, for ClipCrop the suffi-
cient depth to detect SVs was turn out to be more than
20, and the sufficient read lengths was turn out to be
more than 50.

Discussion

In all types of SVs, ClipCrop and Pindel could detect
most of SVs with high accuracy (Figure 6). It is because
these two tools uses split read approach. This approach
can detect SVs of any size with single-base resolution.
BreakDancer, which employs discordant-pair approach,
cannot detect short SVs, and its accuracy cannot be sin-
gle-base resolution. CNVnator, adopting depth of cover-
age approach, firstly splits reference genome with a
certain window size, so it cannot detect SVs with shorter
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length than the window size. As we set the window size
to 100 bases in our analyses, CNVnator couldn’t detect
SVs with length <100 bases. The resolution in CNVnator
is also limited to the window size. As well as ClipCrop,
Pindel also marked high discovery rate and true call rate,
but it couldn’t detect short duplications ( <170 bases).
This is because of the following reason. Pindel tries to
reconstruct split reads by concatenating two subse-
quences generated from two regions near the position of
mapped mate. In short duplications, reads from dupli-
cated region would contain more than two breakpoints,
which means it requires more than three subsequences
to reconstruct. Thus, Pindel cannot generate these reads
and fails to detect short duplications. ClipCrop, on the
other hand, uses only soft-clipped sequences. Some of
the short soft-clipped sequences don’t contain any break-
points, and they can remap and support tandem duplica-
tion calls. ClipCrop also excelled over Pindel in true call
rate of insertions. As formula of reliability score (1)
shows, ClipCrop sets zero to SVs called from only one-
side clipping and only one breakpoint, i.e. (B, Bg, Ci,

\
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Figure 7 Discovery rate / true call rate with different depth. Discovery rates and true call rates of ClipCrop with different depth of coverages
(5, 10, 15, 20, 40). Numbers in graphs stand for the mean depth of the data.
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Figure 8 Discovery rate / true call rate with different lengths of the read sequences. Discovery rates and true call rates of ClipCrop with
different lengths of the read sequences (50, 75, 100, 108). Numbers in graphs stand for the lengths of the data.

Cr) = (n, 0, m, 0) or (B;, Bg, C;, Cr) = (0, n, 0, m). Thus,
by removing SVs with score zero, we can obtain reliable
SVs with both-side supported, which is thought to con-
tribute its higher accuracy.

The results in Figure 7 shows that ClipCrop could
detect tandem duplications with high discovery rate and
true call rate even the depth of coverage is 5. This is
because the depth of tandem duplicated regions is much
higher than surroundings, and there are sufficient num-
bers of reads which support tandem duplications. Also,
as inversions can be supported by twice as many reads as
deletion and insertion (reads mapped to inverted region
with soft-clipping also supports breakpoints), discovery
rate and true call rate were higher than those of deletion
and insertion. The discovery rate and true call rate were
saturated at depth 20, therefore the sufficient depth for
ClipCrop is turned out to be 20, which is not so high in
current NGS data.

From the results in Figure 8, the sufficient read
lengths for ClipCrop is more than 50 bases. Thus, Clip-
Crop can be applied to most of current NGS data.

There is another recently published SV-detecting tool
called CREST [21], which also uses soft-clipping informa-
tion. Unlike ClipCrop, CREST cannot detect tandem
duplications. CREST assembles soft-clipped sequences,
and remaps the assembled sequence. Thus, assembled
reads from the region of tandem duplications cannot be
mapped to the original reference genome.

Currently, as ClipCrop is focusing only on soft-clipping
information, it doesn’t calculate the length of insertion.
However, as ClipCrop calls the position of insertion with
high accuracy (Figure 6), we will easily be able to obtain
these information by combination of other methods. In
future, we will combine other methods and run with real
data.

Conclusions

ClipCrop is a tool for detcting SVs with soft-clipiing
information. Soft-clipped sequences are partially
unmatched fragments in a mapped read. ClipCrop
remaps these sequence and infers which type of SV
events exists from the mapping pattern. ClipCrop can
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detect SVs with higher discovering rate and call accu-
racy than any other tool in simulation data set, espe-
cially in short size duplications and insertions. In
addition, as ClipCrop does not require a large depth of
coverage or long read lengths, it can handle most of
current NGS data. Currently, the implementation of
ClipCrop is only available in our environment, and we
are in the process of deploying. We provide current
implementation if you contact us.
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