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Abstract

Background: Side effects are unwanted responses to drug treatment and are important resources for human
phenotype information. The recent development of a database on side effects, the side effect resource (SIDER), is a
first step in documenting the relationship between drugs and their side effects. It is, however, insufficient to simply
find the association of drugs with biological processes; that relationship is crucial because drugs that influence
biological processes can have an impact on phenotype. Therefore, knowing which processes respond to drugs that
influence the phenotype will enable more effective and systematic study of the effect of drugs on phenotype. To
the best of our knowledge, the relationship between biological processes and side effects of drugs has not yet
been systematically researched.

Methods: We propose 3 steps for systematically searching relationships between drugs and biological processes:
enrichment scores (ES) calculations, t-score calculation, and threshold-based filtering. Subsequently, the side effect-
related biological processes are found by merging the drug-biological process network and the drug-side effect
network. Evaluation is conducted in 2 ways: first, by discerning the number of biological processes discovered by
our method that co-occur with Gene Ontology (GO) terms in relation to effects extracted from PubMed records
using a text-mining technique and second, determining whether there is improvement in performance by limiting
response processes by drugs sharing the same side effect to frequent ones alone.

Results: The multi-level network (the process-drug-side effect network) was built by merging the drug-biological
process network and the drug-side effect network. We generated a network of 74 drugs-168 side effects-2209
biological process relation resources. The preliminary results showed that the process-drug-side effect network was
able to find meaningful relationships between biological processes and side effects in an efficient manner.

Conclusions: We propose a novel process-drug-side effect network for discovering the relationship between
biological processes and side effects. By exploring the relationship between drugs and phenotypes through a
multi-level network, the mechanisms underlying the effect of specific drugs on the human body may be
understood.
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Background
Side effects are unwanted responses to drug treatment,
and they are important resources of human phenotype
information. Drugs bind to target proteins and affect bio-
logical processes, and the processes cause phenotype
effect. However, drugs may also bind to off-target proteins,
which affects other biological processes and causes adverse
reactions (Figure 1). Side effects occur mainly when drugs
bind to unintended off-targets. These side effects vary
from simple symptoms, such as headache, to critical symp-
toms, such as carcinoma. Most side effects are harmful to
humans, but side effects can also be utilized to find new
uses for known drugs, such as Viagra. Therefore, it is
highly desirable to automatically discover new targets for
known drugs and to understand the mechanisms that
cause side effects for target-specific treatments.
In their paper published in Science, Campellos et al

reported finding new targets based on drugs with similar
side effects [1]. They used an ABC network model built
with (A) drugs developed for new targets, (B) targets,
and (C) side effects. Similarly, Keiser used chemical
similarity to find new targets for a known drug [2].
Keiser’s approach enabled the discovery of off-targets of
a known drug but did not consider the relationship
between a drug and its biological process.
Like Keiser’s and Campellos’s studies, most previous

research was focused mostly on finding off-target pro-
teins causing the side effects. In addition, the biological
processes that are affected by the drug target need to be
considered because they cause phenotypical responses in
the human biological system. A drug that influences
biological processes can also have an impact on pheno-
type. Therefore, if the biological process that responds
to a drug influencing the phenotype is known then
drugs pertinent to the phenotype can be studied more
effectively and systematically. To date, the relationships
between biological processes and side effects have not
been systematically researched.
Two databases are available for studying relationships

between side effects and biological processes: the connec-
tivity map and side effects resource (SIDER). The con-
nectivity map is developed to generate and analyze a
drug-gene-disease network from large-scale experimental

gene expression responses to drugs [3]. SIDER is a
recently developed database on side effects to document
the relationship between drugs and side effects [4]. The
connectivity map provides drug-responsive gene expres-
sion information, and SIDER provides drug-side effect
relationships.
By utilizing the connectivity map and SIDER, we

aimed to automatically discover the relationship between
biological processes and side effects by building a multi-
level network of drug-biological processes influenced by
the association of targets with side effects.
Figure 2 is an example of our approach. If drug 1, 2,

or 3 induces the same side effect, their common
response (biological process2) is potentially related to
their side effect. To examine these relationships, SIDER
was used to construct the drug-side effect network
(Fig. 2A). SIDER provides information on the frequency
of connections between drugs and side effects. The
drug-side effect relationships are filtered based on the
frequency of relevant information to construct a reliable
drug-side effect network. The drug responsive biological
process network was also constructed using drug
responsive gene expression profiles (Fig. 2B).
Gene ontology (GO) terms were used for biological

processes, and gene set enrichment scores (ES) were
used to find which processes were upregulated or down-
regulated by the drugs. Subsequently, an ABC network
model was built (A, processes; B, drugs; and C, side
effects) to find relationships between side effects and
biological processes (Fig. 2). The results show that many
processes found in the drug-process network were
meaningful and were confirmed by previous studies. In
addition, a novel network consisting of 168 effects and
2,209 biological processes was constructed, and these
relationships based on the ABC model were also con-
firmed to be significant by support from the literature.
Finally, evaluations were conducted in 2 ways: first, by

Figure 1 Flow of drug treatments and adverse reaction.

Figure 2 Concept of discovering side effect-related biological
processes. A: Drug-Side effect network; B: Drug-Biological processes
network.
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quantifying how many biological processes were found
by our method and were concurrently found in GO
terms with effects extracted from the PubMed records
using a text-mining technique and second, whether
there was an improvement in performance by limiting
response processes by drugs sharing the same side effect
to frequent ones alone. The experimental results showed
that our process-drug-side effect network was able to
reveal meaningful relationships between biological pro-
cesses and side effects in an efficient manner.
In addition to comprehensive evaluation, our method

contributes to systematically finding relationships
between drugs and biological processes using ES scores
calculations, t-score calculation, and threshold-based fil-
tering. Second, side effect-related biological processes
are revealed by merging the drug-biological process net-
work and the drug-side effect network. Finally, data on
74 drugs, 168 effects, and 2209 biological process rela-
tion resources were generated.

Datasets and methods
To discover the relationships between side effects and
biological processes, 2 networks were constructed: the
drug-biological process network and the drug-side effect
network. Side effect and biological process relationships
were automatically revealed by connecting the 2 networks.

Drug-biological process network construction
Figure 3 illustrates an overview of the approach to con-
structing the drug-process network. To find a drug-
responsive biological process, gene rank information
from the connectivity map and gene set information
available in GO were used. The ES for each GO term
was calculated to find significant terms. Subsequently,
the t-score was calculated to measure the significance of
each process of the drug in question. Finally, a threshold
T was applied to remove insignificant data between
drugs and biological processes.
Connectivity map
A connectivity map was used to construct a drug-respon-
sive process database. The connectivity map is a collec-
tion of genome-wide transcriptional expression data
from cultured human cells treated with bioactive small
molecules [3]. The connectivity map contains 6,100
expression profiles representing 1,309 compounds. The
connectivity map provided rank information of probes
for each sample. There were 22,283 probes and 6,100
samples in the rank matrix. Probe sets in ranked matrix
were ranked in descending order of the ratio of the corre-
sponding treatment-to-control values. Therefore, “top
rank” means probes that are more highly upregulated
than the control; “bottom rank” means probes that are
more highly downregulated than the control. Top rank

Figure 3 Schematic diagram for inferring relationships between biological processes (GO) and drugs.
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genes are positively affected by drugs, and bottom rank
genes are negatively affected by drugs.
Gene Ontology
GO was used as a resource for biological processes. The
GO project provided term definitions representing gene
product properties in 3 categories [5]: cellular compo-
nent, molecular function, and biological processes
Gene Set Enrichment Analysis
Gene Set Enrichment Analysis (GSEA) was used to show
the relationship of processes to drugs. GSEA is a gene
expression profile analysis technique used for finding the
significance of a function, pathway, or GO category [6].
In this approach, gene sets S i = {1,…,n} are defined by

GO terms and ranking information of each gene L j =
{1,…,k} from the connectivity map. The ESs of each
gene set were calculated in 6,100 samples. ESs of upre-
gulated processes were calculated based on the ranked
list; ESs of downregulated processes were calculated
using the reversed ranked list.
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Cij is defined as a summing factor of a gene gj that is
drawn from L. N is the number of total genes in L, and
Ns is the number of genes in the gene set Si.
Then the running sum Sumij for each sample against

gene j is calculated using the following equation:

Sum
C for j 1

S +C for j 2,..,kij
ij

i,j-1 ij
=

=
=

⎧
⎨
⎪

⎩⎪

The ES for gene set i was calculated as follows:
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ES is the maximum deviation from zero of Sumij. For
a randomly distributed gene set, Si, ESi will be relatively
small, but if it is concentrated at the top or the bottom

of the list, or otherwise non-randomly distributed, then
ESi will be correspondingly high.
Process significance calculation
A t-score was used to show the significance of each pro-
cess. To get a normalized t-score robust to outliers, the
ESs were standardized with the median-MAD normali-
zation method for each process [7]. ESij was used to
denote an ES of process i = {1,2,…p} from sample j =
{1,2,…,n}.
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ES MED
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ij i
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Both MEDi and MADi were used to represent the
median, and the median absolute deviation of enrich-
ment scores for biological process i. The scale factor of
1.4826 in the above equation was used to make MADi

an estimator of s.

Drug-side effect network construction
Side effect resource (SIDER)
SIDER was developed to discover the relationships
between side effects and drugs, and SIDER connects 888
drugs to 1,450 types of side effects [4]. It contains fre-
quency of occurrence information between drugs and
side effects for one-third of the drug-side effect pairs.
(Table 1)
Drug-side effect network construction
Drug-side effect relationships available in SIDER are
incomplete because side effects do not occur in gene
expression data every time. Therefore, drug-side effect
relationships appearing in SIDER needed to be filtered to
find highly occurring relationships of gene expression
data. Among the 120,598 common drug-side effect rela-
tionships in SIDER, however, only 15,672 relations have a
frequency higher than 5%. Most relations had no infor-
mation about frequency. Twenty percent was set as a
threshold of frequency to find drug-side effect relation-
ships (Additional file 1). Finally, 6,197 filtered relations
were used to construct the drug-side effect network.

Biological process-side effect network construction
Lastly, the biological process-side effect network was
built. Figure 4 shows the method used for finding

Table 1 Examples of SIDER information

STITCHID UMLS concept ID Effect name Description of frequency Frequency score

-1003 C0000737 Nausea 26% 0.26

-104741 C0010200 Cough Postmarketing 0.001

-104865 C0015230 Rash Rare 0.001

-115237 C0013604 Edema Infrequent 0.01

A search tool for Interactions of chemicals (STITCH) ID is represented as a compound ID in STITCH databases. A unified medical language system (UMLS) concept
ID implies a description of frequency that consists of 4 types: postmarketing, rare, infrequent, and frequent. For frequent cases, a percentage is used instead of
the word “frequent.”
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relationships between side effects and biological pro-
cesses. The hypothesis used was that frequent responses
to drugs causing the same side effect have higher prob-
abilities of correlation with a side effect than less fre-
quent responses.
Connecting drug-process and drug-side effect networks
To find relationships between biological processes and
side effects, drug information was used as a bridge
between the 2 networks, the drug-biological process net-
work and the drug-side effect network. This can be
represented as an ABC model consisting of A, biological
processes; B, drugs; and C, side-effects. To merge the 2
networks, the drug names needed to be normalized
because the connectivity map and SIDER use different
drug identification. DrugBank was used to obtain nor-
malized drug information for 1,494 FDA-approved
drugs. The file “drugcards.zip” was downloaded from
the DrugBank [8]. Three fields, i.e., drug ID, synonym,
and brand names, were used to normalize drug names
between the AB network and the BC network. Because
of the small number of side effects with frequency infor-

mation, only 74 drugs were included in both the AB
and BC networks. Finally, using the 74 drugs with 168
effects and 2,209 processes network, data on 63,878
relationships were generated.
To illustrate the construction of the side effect-biolo-

gical process network, the example of tamoxifen was
used. Tamoxifen is one of drugs present in both the
drug-process network and the drug-side effect network,
and it is used as a mediator to connect the 2 networks
(Figure 5).
Discovering side effect-related processes from the drug-
process-side effect network
Co-occurrence-based scoring was used to determine
how many drugs shared the same side effect in each
process. A biological process that has a high co-occur-
rence score implies that the process is closely related to
the targeted side effect; therefore, side effect data are
only used when at least 2 drugs are related.
Scoreij was used to denote the co-occurrence score of

a process i = {1,2,…n} in a side effect j = {1,2,…,n}. For
each side effect i = {1,2,..n}, CDij is used to represent the

Figure 4 Schematic diagram for discovering side effect-biological process relationships. Nausea, which is the sensation of unease and
discomfort in the stomach with an urge to vomit, is an example of a side effect. In this example, 3 of 5 drugs known to cause nausea are
related to anti-oxidant activity, but the other processes were perturbed by only 1 or 2 drugs. Based on this connectivity, the scores were
calculated to find possible processes causing the side effects. Finally, the processes were analyzed to ensure whether the side effect-biological
process relationships revealed by this approach were meaningful.
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number of drugs that have the co-occurring process i
related to a side effect j, and TDj is used to represent
the number of total drugs related to the side effect j.

Score
CD

TDij=
ij

j

In the drug-process-side effect network, nausea is the
most common side effect and is connected to 26 drugs.
To investigate how many drugs with the same processes
were significant, drug-side effect relations were ran-
domly generated. The processes were determined by
randomly selecting 74 drugs (2~26) for each side effect,
repeated 1,000 times. The distribution was then deter-
mined using the number of related drugs on processes,
and the processes with a p-value less than 0.05 were
analyzed.
Table 2 shows the total number of drugs causing side

effects and how many co-occurring drugs are significant
in the total number of drugs. In the case of total drugs

ranging from 2 to 5, co-significant processes in more
than 2 drugs are significant to side effects.

Evaluation method
The constructed network was evaluated by examining
the significance of relationships between biological pro-
cesses and side effects provided by the network. The sig-
nificance of relationships was measured by comparing
biological processes represented by GO terms with the
co-occurrence of GO terms and effect names appearing
in PubMed records. The first and second steps were
used to calculate the co-occurrence of effect names and
GO terms. First, a set of PubMed records with an effect
name was used as a query. The “[abstract/title]” qualifier
was used in the PubMed search to ensure that effect
names appeared in abstracts or titles. Secondly, because
it is not easy to extract noun phrases from GO terms by
using a simple exact string match, significant phrases
were used. To this end, the following text-mining tech-
niques were used: a conditional random field (CRF)-
based sentence segmentation technique was used to
parse abstracts [9], the sentence was tokenized with the
part-of-speech (POS) technique using an extension of
the Brill POS tagger [10], and noun phrase groups were
extracted with a text chunking technique [11] that spe-
cialized in biomedical data collections. Thirdly, the
extracted noun phrases were compared with GO terms,
and the number of matched phrases was stored along

Figure 5 Tamoxifen-mediated drug-process network and drug-side effect network. Tamoxifen causes six types of side effects that are
reported with a frequency of greater than 20%. We found 10 significant upregulated biological processes associated with tamoxifen (p < 0.001).

Table 2 Side effect-related process threshold

Number of total drugs causing
side effect

Co-occurrences (P < 0.05)

2,3,4,5 2

6,7,8,9,10,11, 12,14,15,16,17 3

19, 24, 25, 26 4
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with the phrases. The comparison between extracted
phrases and GO terms was based on string similarity
between the 2, and the shortest path-based edit distance
(SPED) technique [12] was used. The SPED technique is
a variation of Markov random field-based edit distance
(MRFED) and calculates the shortest path between 2
selected vertices of a graph. Various thresholds were
tested for string similarities, and the threshold was set
at 0.55 since it gave the best performance. Table 3
shows the number of abstracts found in PubMed and
the total GO terms evaluated for rash and urinary tract
infection (UTI); 2,209 GO terms were utilized to calcu-
late co-occurrence scores for evaluation.

Results and discussion
The goodness of the discovered relations was confirmed
using a survey of literature. First, the drug-biological
process network was analyzed using the tamoxifen case
study to show the significance of our method. Secondly,
the ABC network model for A, processes; B, drugs; and
C, side-effects was analyzed to find relationships
between side effects and biological processes. Two case
studies are used as examples to show the meaningful-
ness of the network. Finally, the performance of the net-
work was evaluated by comparing the number of
matched GO terms extracted by a text-mining method
that was applied to a large number of PubMed abstracts.

Drug-biological process network
The network connects 1,309 drugs to 3,629 GO terms
with its ES. The GO terms are varied and some GO
terms are too broad to interpret the relations; therefore,
GO terms with less than 31 genes in human were cho-
sen. Highly relevant GO terms with a t-score greater
than 3.0 (approximately p = 0.001) were also chosen.
A positive association is more upregulated than the con-
trol; a negative association is more downregulated than
the control.
Case study—Tamoxifen-related biological processes in the
constructed network
For the case study of the drug-process network, tamoxi-
fen was chosen because of its well-known mechanism.
Tamoxifen is an antagonist of estrogen receptors in
breast tissue [13]. We use 143th instance in connectivity
map to find relationships between tamoxifen and its
related processes in this case.
Table 4 shows significant processes related to tamoxi-

fen in MCF7 cells (breast cancer cell line) using our

method. The most significant GO term is nucleoside
diphosphate kinase activity, and Neeman’s experiments
support that nucleoside diphosphate is higher in the
tamoxifen-treated cells [14]. Tamoxifen also upregulates
low-density lipoprotein receptor binding according to
Suarez’s study [15]. These results show that biological
processes in our drug-biological upregulated process
relationships are meaningful in drug response profiles.
Table 5 shows that there are 6 downregulated pro-

cesses for tamoxifen. Translation elongation factor activ-
ity is highly related to tamoxifen in MCF-7 cells. As
reported by Byun [16], translational elongation factor
are underwent by tamoxifen. Cilium is known as cellular
GPS, and is crucial to wound repair. For cilium, the per-
ipheral loss of cilia function is reported in tamoxifen
treats cell [17]. Tamoxifen reduced proteoglycan synth-
esis in an in vivo study [18]. Finally, Lahoute found that
tamoxifen induced a loss of serum response factor
(SRF), which induces downregulation of skeletal muscle
fiber development [19]. These results confirm that biolo-
gical processes in the drug-biological downregulated
processes relationships are also meaningful in drug
response profiles.

Biological process-side effect network
The biological process-side effect network contains
63,878 biological process-side effect pairs and covers a
total of 168 side effects and 2,209 processes. In this

Table 4 Upregulated tamoxifen-related processes in the
drug-process network

GO T-score GO term

GO:0004550 4.14835 nucleoside diphosphate kinase activity

GO:0050661 3.38806 NADP or NADPH binding

GO:0016234 3.18592 inclusion body

GO:0006929 3.14893 substrate-bound cell migration

GO:0050750 3.12409 low-density lipoprotein receptor binding

GO:0016878 3.11266 acid-thiol ligase activity

GO:0009109 3.07065 coenzyme catabolic process

GO:0051017 3.04806 actin filament bundle formation

GO:0035035 3.00959 histone acetyltransferase binding

GO:0006527 3.0003 arginine catabolic process

Table 5 Down regulated tamoxifen-related processes in
the drug-process network

GO T-score GO term

GO:0003746 3.1047 Translation elongation factor activity

GO:0005929 3.20237 Cilium

GO:0019319 4.57807 Hexose biosynthetic process

GO:0030166 3.25123 Proteoglycan biosynthetic process

GO:0046364 4.97227 Monosaccaride biosyntheticprocess

GO:0048741 3.26341 Skeletal muscle fiber development

Table 3 Datasets for evaluation

Urinary tract infection Rash

Abstracts 12,523 13,287

GO terms 2,209 2,209
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network, there are 37,280 upregulated biological pro-
cess-side effect pairs with a total of 168 side effects and
1,736 processes (Additional file 2). Furthermore, there
are 26,598 downregulated biological process-side effect
pairs, 168 side effects, and 1,430 processes (Additional
file 3). Figure 6A shows the statistics of upregulated
processes. To apply our algorithm, the side effects of
more than 1 drug need to be considered. We finally
used 119 effects and 744 processes with 4581 relations.
(Figure 6)
Case study—Nausea-related biological processes in the
biological processes-side effect network
In the case study of nausea, the most common cause is
gastroenteritis or food poisoning, but nausea also fre-
quently occurs as a medication side effect. Nausea is
connected to 26 drugs in the drug-side effect network.
For random sampling analysis, a score greater than or
equal to 0.15 was considered significant (p < 0.05).

Table 6 shows 3 upregulated processes related to nausea.
For example, Yoneyama et al found that adenosine deami-
nase activity (ADA) was related to hyperemesis gravi-
darum (vomiting and nausea) [20]. Chemotherapeutic
agents induce oxidative damage in the gastrointestinal
tract, causing nausea and vomiting; therefore, upregulated
antioxidant activity is needed to reduce oxidative damages
[21]. Also, nausea occurs when blood sugar rises rapidly
[22], and the cellular carbohydrate catabolic process is
noted for increasing the blood sugar level in the body.
Table 7 shows downregulated processes that are related

to nausea. In human studies, treatment with cytokines is
often accompanied by nausea [23]. Synaptic vesicle endo-
cytosis may subsequently be used for neurotransmitter
storage [5]. Neurotransmitters are also involved in relay-
ing messages of nausea and vomiting [24].
Case study—Anemia-related biological processes in the
biological processes-side effect network
Anemia is known as deficiency of hemoglobin, which is
a molecular substance inside red blood cells. As hemo-
globin transfers oxygen from lungs to the tissues, ane-
mia makes hypoxia in tissues. Anemia is connected to
10 drugs in the drug-side effect network. A random
sampling analysis score greater than or equal to 0.3 was
considered significant (p < 0.05).
Table 8 shows anemia-related upregulated processes.

Cytochrome b5 reductase is an enzyme in the blood. This
enzyme regulates the iron in red blood cells and helps the
oxygen transportation. Therefore, cytochrome b5 reductase
is highly related to anemia. Antioxidant activity of blood
serum is highly related to anemia [25]. Anemia search results
are similar to those of nausea (GO:0016209, GO:0044275)
because 8 of 10 drugs causing anemia also cause nausea.
Table 9 shows downregulated processes related to

anemia. Regulation of cytokine production during
immune response was related to anemia in a previous
study [26]. Iron deficiency induces anemia and neuro-
transmitter deficiency. Synaptic vesicle endocytosis may
subsequently be used for neurotransmitter storage [5].
Downregulated activity of synaptic vesicle endocytosis
induces neurotransmitter deficiency.

Evaluation result
Two different side effects, i.e., rash, and UTI, were used
for evaluation by retrieving PubMed records for each side
effect and calculating the co-occurrence scores for each

Figure 6 Network statistics in drug upregulated biological
process-side effect network. Figure 6A shows the relationship
between side effects and the total number of connected drugs in
upregulated processes. The range of the total number of drugs is 1
to 26. It shows that 49 side effects occurred with only 1 drug, and
26 drugs caused nausea. Figure 6B shows that most scores of
relations (about 88%) are less than 0.5. Half of relation scores are
less than 0.2. Further, only 543 relation scores are greater than or
equal to 0.5. This means that many significant processes are not
over-represented among drugs. Therefore, a threshold needs to be
determined to show which processes are highly related to which
side effect (Table 2).

Table 6 Nausea-related upregulated processes

GO Co-occurrence
score

GO term

GO:0019239 0.19 Deaminase activity

GO:0016209 0.19 Antioxidant activity

GO:0044275 0.19 Cellular carbohydrate catabolic
process
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GO term. Figure 7 shows the co-occurrence scores for
each GO term for 2 cases. To evaluate the significance of
discovered biological processes, the top 10%, 20%, 30%,
40%, and 50% scores in the distribution were selected, as
shown in Figure 7. This threshold was used to examine
the significance of the processes in each top n%.
Figure 8 shows the number of matched terms between

our approach and the results of the text-mining method
for GO terms extracted from PubMed.
For rash, our method showed 116 GO-related terms. Of

116 processes, 13 were found in the top 10% of the text-
mining results, 25 processes were found in the top 20% of
the results, 36 processes were found in the top 30% of the
results, 55 processes were found in the top 40% of the
results, and 64 processes were in the top 50% of the results.
For UTI, our method shows 76 GO-related terms. Of 76
processes, 8 were found in the top 10% of the results, 13
were found in the top 20% of the results, 23 were found in
the top 30% of the text-mining results, 35 were found in
the top 40% of the results, and 45 processes were in the
top 50% of the results.
It was assumed that more frequent responsive pro-

cesses to drugs causing the same side effect have higher
probabilities of correlation with a side effect than less
frequent responsive processes. The hypothesis was
tested with rash and UTI cases. In Figure 9A, the rash2
bar (blue) includes less frequent response processes, and
the rash3 bar (red) includes only significant frequent
response processes. For the rash2 bar, we found 100
related processes. Eleven processes (11%) were found in
the top 10% of the text-mining results, 21 (21%) were in
the top 20% of the results, 30 (30%) were in the top
30% of the results, 48 (48%) were in the top 40% of the
results, and 55 processes (55%) were in the top 50% of

the results. The rash3 bar shows 16 significant frequent
response processes by drugs. Two processes (13%) were
in the top 10%, 4 (25%) were in the top 20%, 6 (38%)
were in the top 30%, 7 (44%) were in the top 40%, and
9 processes (56%) were in the top 50%. For all results,
except 40%, rash3 performs better than rash2 in terms
of the proportion of processes discovered over the top n
ranked processed (Fig. 9A).
In Figure 9B, the UTI2 bar (blue) includes less fre-

quent response processes, and the UTI3 bar (red) only
includes significant frequent response processes. For the
UTI2 bar, our method found 73 related processes. Seven
processes (10%) were found in the top 10%, 11 (15%)
were found in the top 20% of the results, 21 (29%) were
found in the top 30%, 33 (45%) were found in the top
40%, and 42 processes (58%) were found in the top 50%.
As indicated by the UTI3 bar, our method found 3 fre-
quent response processes by drugs. One process (33%)
was found in the top 10%, 2 processes (67%) in the top
20%, 30%, and 40%, and 3 processes (100%) in the top
50% of the results. This shows that UTI3 performed bet-
ter than UTI2 in all 5 cases (Fig. 9B) and confirms that
our method was able to find relationships between bio-
logical processes and side effects.

Conclusions
In this paper, we proposed a new approach for automati-
cally discovering relationships between biological pro-
cesses and side effects using the co-occurrence based
multi-level network. We built the drug-biological process
network, and showed that our method can be used to dis-
cover drug related significant processes (as shown in the
example of tamoxifen). In addition, we built an ABC
Model (using A, biological processes; B, drugs; and C, side
effect information) for 74 drugs, 168 side effects, and
2,209 biological processes. A literature analysis confirmed
that relations between side effects and biological processes
found by co-occurrence were meaningful. In addition, our
method was evaluated using a text-mining technique to
extract co-occurring GO terms with effects. The results
showed that our method is efficient and useful for finding
relationships between biological processes and side effects.
In a future study, the scoring scheme will be improved

because the current scoring algorithm considers all drugs
equally regardless of the number of side effects or the
number of biological processes associated with them. For

Table 7 Nausea-related downregulated processes

GO Co-occurrences
score

GO term

GO:0002718 0.15 Regulation of cytokine production
during immune response

GO:0046631 0.15 Alpha-beta T-cell activation

GO:0070410 0.15 Co-SMAD binding

GO:0016863 0.15 Intramolecular oxidoreductase activity

GO:0048488 0.15 Synaptic vesicle endocytosis

Table 8 Anemia related up-regulated processes

GO Co-occurrences
based score

GO term

GO:0016209 0.3 Antioxidant activity

GO:0005852 0.5 Eukaryotic translation initiation
factor 3 complex

GO:0004128 0.3 Cytochrome-b5 reductase activity

GO:0044275 0.3 Cellular carbohydrate catabolic
process

Table 9 Anemia related down-regulated processes

GO Co-occurrences
score

GO term

GO:0070410 0.3 Co-SMAD binding

GO:0002718 0.3 Regulation of cytokine production
during immune response

GO:0048488 0.3 Synaptic vesicle endocytosis
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Figure 7 Literature-based co-occurrence score distribution of 2 side effects. Top 20 processes are omitted in this graph because of range
problem.

Figure 8 The number of processes matched with text-mining results for rash, and UTI. The x axis is the top n% of co-occurred GO terms
with biological processes (total 2,209). The y axis is the number of processes with scores greater than the top n% (x axis) threshold of the total
process scores.

Figure 9 Evaluation of our hypothesis for rash and UTI. The x axis is the top n% for the total process scores. The y axis is percentage of
processes with scores greater than the top n% (x axis) threshold of the total processes scores.
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example, drug A has only 1 side effect (s-1), whereas drug
B has 2 side effects (s1 and s2), with all other settings the
same, including association with biological process (p). In
this case, drug A provides more reliable information on
the association of s1and p than drug B. However, the pro-
posed scoring scheme cannot reflect this, thus causing a
loss of information for a more accurate association. We
also plan to investigate whether biological processes
related to side effects are valuable resources in elucidating
the mechanism of drug effects. Instead of using the text-
mining technique, a manual evaluation will be conducted
to identify undiscovered relationships from process-side
effect pairs that are not mentioned in literature. In addi-
tion, we are interested in a research on personalized drug
responsive expression data by applying multi-level net-
works for personalized medicine. By exploring the rela-
tionship between drugs and phenotypes on the multi-level
network, we will be able to understand the mechanisms
underlying drug involvement in the human body.

Additional material

Additional file 1: This file contains common drug names and
related side effect names which are reported with frequency of
greater than 20% from SIDER. First Column: Drug Bank ID Second
Column: Drug name Third Column: Effect ID ( UMLS Concept ID)
Fourth Column: Effect name.

Additional file 2: This file contains up_regulated processes (T-score
> 3.0) and related effects. First Column: Effect ID ( UMLS Concept
ID) Second Column: Process ID ( Gene Ontology ID) Third Column:
The number of drugs which affect to process and causing the side
effect. Fourth Column: Total drugs which are causing the side
effect.

Additional file 3: This file contains down_regulated processes
(T-score > 3.0) and related effects. First Column: Effect ID ( UMLS
Concept ID) Second Column: Process ID ( Gene Ontology ID) Third
Column: The number of drugs which affect to process and causing
the side effect. Fourth Column: Total drugs which are causing the
side effect.
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