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Abstract

Background: Breast cancer is a highly heterogeneous disease with respect to molecular alterations and cellular
composition making therapeutic and clinical outcome unpredictable. This diversity creates a significant challenge in
developing tumor classifications that are clinically reliable with respect to prognosis prediction.

Results: This paper describes an unsupervised context analysis to infer context-specific gene regulatory networks
from 1,614 samples obtained from publicly available gene expression data, an extension of a previously published
methodology. We use the context-specific gene regulatory networks to classify the tumors into clinically relevant
subgroups, and provide candidates for a finer sub-grouping of the previously known intrinsic tumors with a focus
on Basal-like tumors. Our analysis of pathway enrichment in the key contexts provides an insight into the
biological mechanism underlying the identified subtypes of breast cancer.

Conclusions: The use of context-specific gene regulatory networks to identify biological contexts from
heterogenous breast cancer data set was able to identify genomic drivers for subgroups within the previously
reported intrinsic subtypes. These subgroups (contexts) uphold the clinical relevant features for the intrinsic
subtypes and were associated with increased survival differences compared to the intrinsic subtypes. We believe
our computational approach led to the generation of novel rationalized hypotheses to explain mechanisms of
disease progression within sub-contexts of breast cancer that could be therapeutically exploited once validated.

Background
Complex diseases such as breast tumors frequently have
genomic mutations, translocations, and increased or
decreased dosage of genes. The complex regulatory
arrangements are further permuted, producing extreme
heterogeneity in regulation and severe analytic compli-
cations. Such heterogeneity prevents existing methods,
which often assume a certain level of homogeneity in
samples, from learning underlying regulatory mechan-
isms from molecular measurements of tumor tissues.
This inherent heterogeneity also generates a need for
specialized therapeutic response, necessitating the devel-
opment of models of breast cancer that can incorporate
such heterogeneity.

Several landmark studies have shown that array-based
expression profiling can provide insight into the com-
plexity of breast tumors and can be used to 1) derive a
molecular taxonomy for breast cancer, and 2) provide
prognostic information better than standard assessment
of clinical variables [1]. For example, genomic grade, or
proliferation index is a strong predictor of outcome in
estrogen receptor alpha (ER) positive disease. Another
example is the 21-gene OncotypeDx assay (Genomic
Health, Redwood City, CA) used to stratify ER positive
patients into risk of recurrence groups following endo-
crine therapy. From seminal work published by
Dr. Charles Perou [2] and others, classification methods
have been, and continue to be, used to define “intrinsic”
subtypes of breast cancer. These subtypes include Lumi-
nal A, Luminal B, Basal-like, HER2-enriched and normal
breast-like, and are believed to represent distinct biolo-
gical entities. Moreover, multiple studies have now
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confirmed that patient survival significantly differs with
respect to intrinsic subtype.
A pathway-based classification of breast cancer shows

that intrinsic gene expression signatures can be built
using knowledge from pathway activity on previously
known subtypes [3]. The aim of the study was to pro-
vide a functional interpretation of the gene expression
data that can be linked to therapeutic options. The
paper by Gatza et al. [3] indicates that the intrinsic sub-
types can have further subgroups which may lead to
much better understanding of each subtype. Recently, a
subgroup of Basal-like tumors associated with poor
prognosis has also been reported [4,5].

Aim of this work
To improve the modeling and inference of regulatory
mechanisms from such heterogeneous samples, a bio-
logically based approach to sample and process stratifi-
cation that models and learns context-specific
regulations was proposed and developed [6,7]. The
model hypothesizes that genomic (expression) regula-
tion is comprised of two distinct types: convergent
regulation and divergent regulation, the former repre-
senting a particular set of genes being modulated by
different sets of regulators, and the latter indicating a
given set of regulators modulating entirely different
sets of genes in different cellular contexts. The model
also assumes that when a cell maintains a specific cel-
lular context, (i.e a phenotype) it tightly regulates a
battery of genes. It is hypothesized that the set of
genes under such tight regulation would show rather
deterministic transcriptional activities. When the cell
moves away from this cellular context or changes to a
different cellular state, the behavior of the same set of
genes will not appear as deterministic since their beha-
vior is now under the control of various external
agents. In this paper, we will illustrate, using the
concepts of conditioning and crosstalk, that systematic
inquiry of candidate genes can identify a set of cellular
contexts where a set of genes is tightly regulated, and
corresponding context-specific gene regulatory
networks.
Genomic regulation of breast cancer subtypes may

show several common traits, although they have several
unique features that make them distinct. The contexts
obtained from this approach can be further used to
study the underlying biology of the individual subtypes,
which can lead to a better understanding of the differ-
ences and similarities between the tumors.
In contrast to previous methods, we used an unsuper-

vised method to identify biologically meaningful cellular
contexts within breast cancer. Our motivation lies in
modeling the heterogeneity of breast cancer with a con-
text-specific approach.

Results and discussion
The results section describes the data collection process,
followed by the context analysis, phenotype and func-
tional enrichment analysis and survival analysis.

Breast cancer data collection and processing
Ten breast cancer Affymetrix HG-U133A microarray
data sets were downloaded from the NCBI GEO data
repository (http://www.ncbi.nlm.nih.gov/geo/). These
cohorts contain distinct clinical and molecular features
such as ER+/ ER-, PgR+/ PgR-, Grade and LN+ and
LN- types. Table 1 lists the data sets along with the
number of samples within each cohort. The data from
all cohorts were combined and normalized together by
RMA normalization. A 2-fold change was used to cate-
gorize genes as under-expressed, no change or over-
expressed; thus generating a data with ternary values
{-1, 0, 1}. The cohorts contain a total of 1,887 samples
with some samples repeated in more than one cohort.
After removing the duplicates, a total of 1,636 samples
were obtained. Additionally, GSE 2603 contains some
cell line data that was removed reducing the number of
samples to 1,614.
Many variables in the data sets have low variance

and may not contribute to network learning. These
variables with low variance across all samples were
removed from the data sets. This also reduced the
dimensionality of the data and made the network
learning process computationally more tractable. Affy-
metrix probe sets were matched to HUGO gene sym-
bols, probes matching to the same genes were
combined by taking the median of the probes with
Spearman’s correlation of 0.8. Probe sets with lower
correlation values were discarded. After filtering at a
variance of 0.14 and combining probes, we reduced the
variable size to 5,023 highly variant genes.

Table 1 Breast cancer cohorts

GEO Accession No. Sample Size

GSE3494 [21] 251†

GSE4922 [1] 289†

GSE2990 [22] 189

GSE1456 [23] 159

GSE7390 [24] 198

GSE11121 [25] 200

GSE12093 [26] 136

GSE2603 [27] 121‡

GSE5327 [28] 58

GSE2034 [29] 286

GEO Breast cancer cohorts containing 1887 samples were reduced to
generate the 1614 sample dataset. †248 overlapping between these cohorts
were removed to retain unique samples. ‡22 cell lines were removed from
this cohort keeping patient samples only.
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Context analysis
A context-specific gene regulatory network was gener-
ated for the data using a parallel implementation of the
algorithm called ExPattern (available at http://sysbio.ful-
ton.asu.edu/expattern). The steps involved in finding
contexts from the breast cancer expression data is illu-
strated in Figure 1. A graph with context-motifs filtered
at a statistical significance of < 0.05 after FDR correction
was generated. A total of 1,466 context-motifs generated

at this step were clustered using Markov clustering
(MCL) [8] to obtain 189 clusters, which are referred to
as ”contexts” henceforth in the paper. MCL was per-
formed on the graph with an inflation of 3.0 to keep the
granularity high, and connectivity was imposed within
clusters, such that each context contained connected
context-motifs only. Contexts with less than 80 samples
(< 5% of total samples) may not convey meaningful
results and thus were discarded, resulting in 41 contexts.

Figure 1 Context-Mining process flow. The process to analyze heterogeneous biological data to learn context-specific gene regulations is
illustrated in this figure. We first identify context-motifs using crosstalk, conditioning and statistical p-value computations. Since some genes can
be a driver in a context motif, but a passenger in other context motifs, these context motifs can be chained together to build a interaction
graph. In this graph, each edge represents an interaction specific to certain subset of samples (context motif). We now use this property along
with graph clustering to identify potential cellular contexts where we should see a set of interactions sharing significant numbers of samples in
common. Once cellular contexts are identified, we annotate each context (which includes a subset of samples and a subset of genes) using
gene enrichment, subtype enrichment, or survival analysis methods as described in the paper.
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Specificity of the contexts was measured by computing
pairwise Jaccard distance between the contexts for both
samples and genes [9]. The contexts had an average Jac-
card distance of 0.96 for genes and 0.85 for samples,
indicating that most of the contexts were well separated
with little overlap. A summary of context analysis with

respect to the number of associated samples and genes
is given in Table 2.

Clinical characterization and subtype enrichment
Following clustering, the contexts were analyzed for
clinical and molecular marker enrichments. Additionally,

Table 2 Contexts summary

Contexts Samples Genes ER +/ ER- PgR+/PgR- LN+/LN- Grade Subtypes

C 89 1418 2 ER+ PgR+ Low Normal, LumA

C 16 1330 16 ER+ PgR+ Low Normal, Her2, LumB, LumA

C 75 1200 4

C 34 1186 23 LN+

C 68 1068 4

C 40 1044 6 LN+ Low LumA

C 57 824 7 LN+ High Basal

C 73 805 3 PgR+ LN- High LumB

C 51 788 6 ER+ PgR+ Low Normal, LumA

C 18 738 10 ER- PgR- LN+ High Normal, Basal

C 67 731 4

C 79 658 2 ER+ PgR+ Low Normal, LumB, LumA

C 55 551 6 LN- High

C 49 549 6 LN-

C 150 395 5 ER- PgR- LN+ High Basal, Her2

C 126 336 2 LN- Low LumA

C 162 248 2 ER- PgR- High Basal, Her2

C 134 234 4 ER- PgR- High Basal, Her2

C 160 202 2 ER- PgR- High Basal

C 48 188 27 ER- PgR- High Basal

C 121 186 2 Normal

C 143 185 4 ER+ LN- High

C 147 175 3 LN- High LumB

C 168 154 5 ER- PgR- LN- High Basal

C 146 153 2 LN- High

C 110 152 5 ER- PgR- High Basal

C 145 150 9 ER- LN- High Basal

C 159 150 3 ER- Basal

C 130 129 2 ER- PgR- High Basal

C 124 128 2 LN- High LumB

C 131 126 2 ER+ PgR+ Low Normal, LumA

C 28 121 10 LN+ Low Normal

C 155 119 3 ER- High Basal

C 50 118 42 ER+ LumA

C 153 115 5 Normal

C 139 111 2

C 104 95 5

C 144 90 7 LN- High

C 22 86 31 ER- PgR- LN+ High Basal, Her2

C 115 86 2 ER+ PgR+ LN+ Low Normal, LumA

C 111 84 4 ER- PgR- High Basal,

Results show contexts (ordered by number of samples) obtained after context-motif mining and MCL in column 1; contexts samples associated with a threshold
0.7 and specificity of 2 in column 2 and context genes in column 3. Context enrichments with clinical and molecular features (ER Status, PgR Status, Grade and
LN Status) are shown in columns 4-7, selected after a statistical significance of < 0.05 (Low Grade =Grades 1 and 2; High Grade = Grade 3). Last column shows
intrinsic subtype enrichments with LumA=Luminal A, LumB= Luminal B, Basal = Basal-like , Her2 and normal Tumors.

Nasser et al. BMC Bioinformatics 2011, 12(Suppl 2):S3
http://www.biomedcentral.com/1471-2105/12/S2/S3

Page 4 of 12



intrinsic subtypes were also associated with contexts
with statistically significant enriched subtypes. Clinical
and molecular markers and intrinsic subtypes associated
with each context are listed in Table 2. A reasonably
large number of contexts showed enrichment for at
least one subtype. The grouping of ER+ intrinsic sub-
types (LumA, LumB and Normal) and ER- tumors
(Her2 and Basal-like) was clearly evident with the con-
text enrichment. Basal-like tumors associated with low
survival, showed high grade consistent with previous
studies of Basal-like breast cancer. Additionally, LumA
and LumB types were enriched with more than one con-
text and Basal-like tumors were enriched in several con-
texts. Average Jaccard distance of samples for LumA
contexts is 0.75 and LumB context is 0.85. There were
no overlapping genes between the LumA and LumB
contexts. The average Jaccard distance of samples for
Basal-enriched contexts was 0.84, indicating that these
groups are highly distinct and may indicate subgroups
of Basal-like tumors. Table 2 shows some contexts
enriched with multiple intrinsic subtypes, and we stu-
died this further by grouping contexts and intrinsic sub-
types based on their co-enrichments, via hierarchical
clustering. Enrichments were annotated with ternary
values 1, 0, -1, indicating presence, absence and, in the
case of some clinical features, presence of negative
types. Clinical enrichments ER, PgR, LN status and Grade
were encoded as “-1” for ER-, PgR-, LN- and Low grade
tumors, respectively, and positive “1” for ER+, PgR+, LN+
and high grade tumors, respectively. Hierarchical cluster-
ing was performed using Hamming distance and clusters
were chained with complete linkage. The result is shown
in Figure 2, which indicates biologically relevant groups
for subtypes and clinical features. For example, Basal-like
tumors known to be associated with high grade are
clustered with grade. Luminal A tumors group with Nor-
mal-like tumors and Luminal B group with Her2-like
tumors. Additionally, correspondence between ER and
PgR states is also observed in the clustering result.

Functional annotation
Functional annotation on the contexts with gene sets
from MSigDB revealed interesting results. The results
validate the enrichment of the contexts with ER+ and
ER- tumors, and gene sets pertaining to these character-
istics were found. Context 16 an ER+ and Luminal-like
enriched context showed significant enrichment with
Luminal-like breast cancer gene sets (p-values: 6.00E –
12, 1.38E – 10, 1.07E – 08). Context 48, ER-, high
grade, Basal-like context was enriched with ER- gene
sets and with invasive breast cancer gene sets (p-values:
0.00E + 00). Context 168 (ER-, Basal-like context)
showed enrichment with ER- breast cancer gene sets
and with Basal-like breast cancer gene sets (p-values:
1.55E – 04, 3.32E – 06). Additional pathways for some
selected contexts are included in the Supplement tables
1 - 7 (see Additional file 1 Supplement tables 1-7).

Survival analysis
Survival analysis was performed on the 436 samples out
of 1,614 with survival data (see Table 3)The Kaplan-
Meier plot in Figure 3 with survival of Basal-like tumors,
demonstrates the difference with rest of the tumors
(non-Basal) with disease free survival (DFS) as the end-
point. The Kaplan-Meier plot of Basal-like enriched
context 130 (genes: GATA3, INPP4B) in Figure 4 not
only indicates shorter survival as expected for higher
grade, ER- tumors but also a larger separation from the
rest of the samples including other Basal-like tumors.
Comparison of Figures 3 and 4 clearly indicates a poten-
tial sub-grouping within Basal-like tumors. Kaplan-
Meier plot of Context 51 (genes: BUB1, DLG7, CENPA,
MAD2L1, TTK, MCM10) ER+ tumors also indicates a
better survival of ER+ tumors compared to rest of the
samples (Figure 5).

Discussion
Several contexts of biologic interest and potential trans-
lational potential were highlighted by this analysis that

Figure 2 Context clusters. Hierarchical clustering of contexts with clinical and subtype enrichments.
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appear both expected, and novel. Context 51, indicative
of ER-positive and PgR-positive, low grade, Luminal A
and normal-like tumors, was significantly enriched for
genes associated with cell cycle checkpoint regulation,
specifically, the M phase of mitotic cell cycle (BUB1
MAD2L1 TTK). As would be expected for ER+ low
grade tumors, which tend to exhibit lower levels of

proliferation, this context correlated with an increase in
median survival (Figure 5 p = 7.8997e10–8). Context 89
shared the same enriched subtypes as context 51, and
contained just 2 genes from the same family, MAGEA3
and MAGEA6. The potential utility of MAGEA (Mela-
noma Antigen family A) proteins as a biomarker of the
presence of micrometastases and circulating tumor cells
has been previously reported [10]. We noted that in this
instance, the MAGEA genes were associated with
tumors that typically have better outcome. It is interest-
ing to speculate whether analysis of MAGEA proteins in
circulating breast tumor cells or micrometastases may
enhance prognostication in stage III or IV breast cancer.
This has not yet been studied. Contexts 57, 48 and 145
were three of several contexts associated with the Basal-
like intrinsic subtype and high grade tumors, each with
strikingly different apparent molecular underpinnings.
Context 57 contained genes (e.g., TEK) suggestive of
highly angiogenic Basal-like breast tumors [11]. This
tumor context includes positive lymph node status and
a decrease in median survival (5.9 vs 7.3 months). In
contrast to context 57, context 48 which contained 27
genes, was significantly associated with cell cycle, with
no significant difference in prognosis, perhaps due to
low numbers of tumors with survival data within this
context. Context 130, a Basal-like context has under-
expression of GATA3 which is in concordance with pre-
vious studies of Basal-like subgroup, ’claudin-low’ with
poor prognosis and more refractory to chemotherapy [5]
. Lastly, context 145, again a Basal-like context of high
tumor grade and ER negative status contained genes
associated with deregulated secretory pathways and
mechanisms of docking and fusion of vesicles to target
membranes. The gene PSENEN in this context codes
for a gamma secretase and is known to play a role in
intramembranous processing of proteins such as Notch,
a key mediator of cell-fate, tissue patterning and mor-
phogenesis. PSENEN protein is required for Notch path-
way signaling [12] and Notch signaling is deregulated in
breast cancer [13]. Interestingly, Prat et al have also
identified a subtype of Basal-like breast cancer with
Notch-associated signaling deregulation [4]. Additional
genes in context 145 (such as, MAP3K2) point to
deregulated MAPK, NFkB and PKC signaling, all of
which are oncogenic in breast cancer and have been
reported to be linked to Notch deregulation. As Notch
signaling is emerging as an attractive therapeutic target
in breast and other cancers [13], this context was of par-
ticular interest. There was only one sample with survival
data in context 145 for prognostic evaluation, however
the trend was an association with poor survival. Context
124 is consistent with the low survival of patients with
LumB tumors (p < 1.1897e10–7). The above summarizes
a sampling of contexts which highlight important

Table 3 Context sample survival

Contexts Samples with Survival
Data

Median
Survival

Rest
Survival

p-
value

C 89 364 7.00 5.60 0.3723

C 16 359 6.70 6.40 0.1284

C 75 366 7.00 5.90 0.9436

C 34 192 6.00 7.80 0.2202

C 68 289 6.70 6.60 0.7809

C 40 388 7.00 6.20 0.7053

C 57 115 5.90 7.30 0.4309

C 73 190 7.00 6.40 0.2099

C 51 214 7.60 5.70 0.0000

C 18 254 7.30 6.00 0.2651

C 67 236 7.30 6.30 0.6522

C 79 207 7.10 6.40 0.3360

C 55 183 7.30 6.40 0.2083

C 49 221 7.30 6.30 0.3516

C 150 137 7.10 6.50 0.7527

C 126 121 6.70 6.60 0.1025

C 162 71 7.50 6.40 0.2031

C 134 64 7.30 6.50 0.7523

C 160 75 7.70 6.40 0.7879

C 48 43 6.90 6.60 0.8853

C 121 12 5.90 6.90 0.3452

C 143 15 6.50 6.70 0.1870

C 147 8 7.10 6.60 0.5274

C 168 40 7.70 6.50 0.1569

C 146 6 6.70 6.70 0.1116

C 110 46 7.50 6.50 0.7452

C 145 1 5.8 6.7 1.0000

C 159 72 7.60 6.30 0.9455

C 130 31 6.00 6.70 0.0166

C 124 9 2.60 6.90 0.0000

C 131 11 7.40 6.60 0.4671

C 28 22 4.40 7.00 0.2096

C 155 57 7.50 6.40 0.9311

C 50 82 6.40 6.70 0.1115

C 153 29 7.10 6.60 0.9383

C 139 6 7.50 6.60 0.6071

C 104 6 6.40 6.70 0.7090

C 144 4 6.50 6.70 0.0000

C 22 32 7.40 6.50 0.9088

C 115 20 7.30 6.60 0.0370

C 111 27 7.90 6.50 0.3558

Survival analysis results: Contexts 51, 130, 124, 144 and 115 indicate
statistically significant survival difference with the rest of samples.
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Figure 3 Survival for all Basal-like samples. Survival plot (in years) for all Basal-like tumors compared to rest of the tumors (all non Basal-like).
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Figure 4 Survival for Basal-like Context 130. Survival plot (in years) for Context 130 enriched within a subgroup of Basal-like tumors shows
poor survival compared to all Basal-like tumors. GATA3 which was under-expressed in this context was correlated with increased tumor size and
estrogen and progesterone receptor negativity [20], confirming the poor survival indicated in this context.
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unanswered questions in translational breast cancer
research. Validation of these hypotheses to explain
mechanisms of disease progression within sub-contexts
of breast cancer have a potential to be therapeutically
exploited.
There are a number of well characterized commer-

cially available breast cancer cell lines that mimic var-
ious stages of breast cancer progression and biologic
characteristics (including luminal A, HER2 enriched,
Basal-like, invasive, non-invasive, metastatically compe-
tent, etc). Genes of interest identified as part of a speci-
fic context can be experimentally manipulated in vitro
using breast cancer cell lines that match the phenotypic
and/or molecular context of interest. Techniques com-
monly used to manipulate an individual gene within a
viable cell line include RNA interference technology,
which specifically eliminates expression of any specified
target gene, use of target-selective drugs, or use of exo-
genous DNA gene expression constructs, which are
engineered to introduce and express a specific gene of
interest in a cell. The biological and molecular conse-
quences of manipulating expression of a specific gene
can then be measured using cell-based and/or molecular
techniques to validate a computationally predicted
hypothesis. Once verified, this information can be

leveraged to develop more accurate prognostic or pre-
dictive biomarkers for clinical application.

Conclusions
This papers demonstrates the application of context-spe-
cific gene regulatory networks to identify biological con-
texts within heterogeneous breast cancer data over many
samples. This large sample set identifies a finite number
of contexts linked with intrinsic subtypes and clinical
parameters. Diagnosis of intrinsic subtype is an impor-
tant step that aids the prognostics for breast cancer. Our
analysis of intrinsic subtype gene expression signatures is
consistent with previous findings of individual cohort
molecular profiling studies. Previously established intrin-
sic subtypes show different mechanisms indicating a pos-
sibility of further grouping of the intrinsic subtypes.
Distinct contexts of Basal-like tumors confirm the exis-
tence of subgroups within Basal-like tumors as reported
in previous studies. The contextual drivers identified for
these subgroups can help explain the molecular aspects
for the groups. Several new genes were found driving
some contexts that have not been previously reported to
be associated with known subgroups within these sub-
types. Functional annotation of the genes associated with
contexts also revealed different characteristics associated
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Figure 5 Survival for ER+ context samples. Context 51 enriched with low grade, ER+ tumors indicates expected increase in survival compared
to rest of the tumors.
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with each subgroup that can be biologically validated to
define signatures for the groups.

Future work
The results of the experiments in the paper provide a
promising approach to finding gene and clinical signa-
tures associated with intrinsic subtypes within breast
cancer. Nevertheless, biological validation of the genes
involved is necessary and can strengthen the signatures
for each context. Future directions include testing the
results on a independent data set to group subtypes.

Methods
In this section, we first describe succinctly an approach
to infer context-specific gene regulatory networks [7],
[14], [15], a metric to associate samples with appropriate
context, and then describe statistical tests to identify
pathways and clinical phenotypes that are enriched in
context.

Inferring context-specific gene regulatory networks
Previously, we developed a method to infer context-spe-
cific gene regulatory network from gene expression data
[7], [14], [15]. In this section, we describe the method
that we have further refined since then, by introducing
context-motif mining, followed by graph-clustering of
context-motifs to infer contexts and corresponding con-
text-specific gene regulatory networks.
Mining context-motifs
Given a gene gk as a driver gene and a condition defined
by a subset of samples Mj, the algorithm uses probabilis-
tic measures to identify a set of genes, i.e. passenger
genes, that show a coherent molecular pattern within
the condition. We define this set of genes, one or more
of which function as drivers and the others as passenger
genes, context-motif. Formally, a context-motif is repre-
sented as Ci = (Gi, Yi, Si, Mi) where Gi represents a set
of driver genes, Yi the possible states of the genes (an
example would be -1, 0, +1 for a ternary quantized data
set), Si a set of passenger genes, and Mi the set of sam-
ples under which coherent expression is observed.
Coherence of expression pattern and its specificity are

measured by two statistics, conditioning (δk) and cross-
talk (hk), as given in Eqs. 1 and 2, which determine if a
gene k displays a cohesive expression pattern specific to
a cellular context regulated by Y=1, where Xk is state of
driven genes.

δk= 1 – P(Xk= 1 | Y = 1), (1)

hk = P(Xk= 1 | Y ≠ 1) (2)

Conceptually, conditioning measures the lack of tran-
scriptional coherence in the condition of interest and
crosstalk measures the specificity of coherence. This is

based on the property that, cell deviates from its regula-
tory behavior under environmental changes or, in
this study, more specifically, the presence of tumor.
A change in the cellular context can be used to condi-
tion a subset of samples.
Since both crosstalk and conditioning parameters are

estimated from observations, the statistical significance
(p-value) of these parameters is computed by hypergeo-
metric probability, to determine whether the patterns
found in this case are not by chance.
The algorithm to identify all potential context-motifs

interrogates every gene in the data set as a potential dri-
ver gene (Gi) by being in a specific state (Yi) across a
subset of samples (Mi) and to find all corresponding
passenger genes (Si). As we test every gene in the data
set, we also estimate the statistical significance (p-value)
of identified context-motif Ci via permutation test and
multiple testing correction by Storey’s false discovery
rate (FDR) [16].
Once the context-motifs are identified with statistical

significance, each context is considered to manifest reg-
ulatory relationships between the driver genes and cor-
responding passenger genes, i.e Gi ® g ∊ Si, specific to
Mi with Gi(drivers) conditioned on a specific state Yi =
yi. A driver gj in context-motif Cj could be a passenger
in another context-motif Ci, conditioned by gi. When
such implicit driver-passenger relationships gi ® gj are
added together, a set of context-motifs identified from a
given data set can be represented as a graph. The con-
text-motif-specific gene-gene interactions represented in
a graph can be further analyzed as described below to
reveal context-specific gene regulatory network.
Contexts and context-specific gene regulatory networks
The graph described above consists of several hundreds
(or thousands) of context-motifs and thousands of gene
interactions, and each interaction is specific to certain
subset of samples. Hence, this graph might be sub-
divided into sub-networks based on its topological struc-
ture, and each sub-network might be associated with
subset of samples. We utilize a clustering technique for
graph, specifically, Markov clustering, as described in
Ramesh et al. [8,15].
Markov clustering (MCL) is an unsupervised graph

clustering algorithm that simulates the flow in a graph
using the notion of random walks. If a random walk
visits a node in a cluster, it would be likely to visit sev-
eral other members of the cluster before leaving the
cluster [8].
The algorithm consists of two alternating operations;

expansion and inflation to simulate the flow. Graph
expansion is identical to taking the power of a matrix
using matrix multiplication, which homogenizes the
flow across different regions of the graph. The second
operation, inflation, is mathematically equivalent to
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taking the Hadamard power of a matrix followed by
scaling. Simply, the graph is denoted by a matrix of
transition probabilities and expansion computes random
walks by assigning probabilities with all pairs of nodes,
since there are more paths within a cluster than
between clusters the probabilities will be higher within a
cluster. To maintain the stochastic property of the
matrix, inflation re-scales the columns. Thus, the infla-
tion parameter controls the granularity of the clusters.
We use an implementation of Markov clustering based
on the algorithm proposed by van Dongen [17].

Sample-Context association
Contexts obtained from clustering consist of quite a few
context-motifs each of which is individually represented
by a set of variables (genes) and conditions (samples).
We developed a method to aggregate all the samples
assigned to the context-motifs in a context and to deter-
mine if a sample can be specifically associated with the
context with statistical significance.
Formally, let N be the number of samples and ki the

number of samples in a context motif Ci. Now let C be
a context made of {C1, C2,…, Cm}. In a simple approach,
the samples for the context cluster can be assigned by
combining all the samples in every context-motifs:

s sC
C

i

i

C

C

=
∈
 . (3)

However, some samples could be present in only one
or two context-motifs and may not represent the overall
context. Hence, we use a metric to evaluate samples that
are consistently present across majority of the context-
motifs to systematically associate samples to context. Let
C{j} ⊂ C denote the subset of C in which the sample sj is
included. Then, we define a likelihood that sample sj
belongs to C, considering the fact that each context motif
Ci consists of different number of samples, as:

L s
w C

w C
j

i
s C

i

j i

i

 C( ) =
( )

( )
∈∑

∑
. (4)

where sj ↦ C indicates sj is assigned to C, and

w C
k

N
Ki

i
K

K( ) = − ⎛
⎝⎜

⎞
⎠⎟

≤ ≤1 1 2, , (5)

to compensate the different sample size associated
with each context motif. It’s easy to see 0 ≤ L(sj ↦ C) ≤
1, where L(sj ↦ C) = 0 indicates no appearance of the
sample in any context motif, while L(sj ↦ C) = 1 indi-
cates the presence of the sample in every context motif.

K is used to control how favorably one wants to con-
sider context-specificity of sample membership to a
given context. The higher the K, the more context-spe-
cific the sample membership is.

Enrichment analysis
Intrinsic subtypes of breast cancer
A method, Single Subtype Predictor (SSP), for individual
class classification developed by Hu et al. [18] was used
to classify tumors from the 1,614 samples into five
intrinsic subtypes. The algorithm uses the expression of
306 “intrinsic genes” across 315 samples of known sub-
types to define a “centroid” (expression profile) for each
subtype (available at https://genome.unc.edu/pubsup/
breastTumor/). New tumors are then classified based on
the expression profile of these 306 genes, with tumors
assigned to the closest subtype centroid using Spearman
rank correlation as a measure of distance. Probe sets
from the Affymetrix data sets used here were mapped to
the 306 genes in the intrinsic gene set, with median log
base 2 intensities used when multiple probe sets
matched a gene in the “intrinsic” list. The log-trans-
formed expression data for each gene was then mean-
centered within each cohort, before comparing them to
the subtype centroid for classification.
Phenotype enrichment
Subsequent to clustering of contexts and associating
samples to contexts, we study the phenotypic character-
istics of each context. We use the intrinsic subtypes, as
described above, such as Estrogen receptor (ER) status,
Progesterone receptor (PgR) status, lymph node (LN)
status and grade of the tumor, as phenotypes. Each of
the phenotype determines certain characteristics of the
tumor and can reveal therapeutic treatment options.
Tumors contexts enriched with these phenotypes can
provide interesting biological insights. Enrichment of
contexts with a certain phenotype can be performed
using hyper-geometric probability with multiple testing
correction [16].
Functional annotation: gene set enrichment analysis
In addition to the phenotypic enrichments of a contexts,
we also investigate the enrichment of biological func-
tions in each context, using gene set associated with
each context. The Molecular Signatures Database
(MSigDB) consists of collections of gene sets such as
Gene Ontology (GO) gene sets, gene sets for Biological
Processes, pathway gene sets, curated sets, and compu-
tationally predicted gene expression neighborhoods
underlying certain biological characteristics [19]. Genes
can be annotated using a method called gene set enrich-
ment analysis, which computes the enrichment of data-
base gene sets with the genes found in the contexts.
This method also uses hypergeometric test to measure
the significance of the enrichment. A gene annotation
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tool GATHER was also used in for annotation of con-
texts (http://gather.genome.duke.edu/). The overall pro-
cess of mining context-motifs followed by chaining
context-motifs to obtain contexts can be illustrated in
Figure 1. The process flow diagram also illustrates func-
tional annotation processes for genes within the con-
texts and phenotype enrichment for samples belonging
to each context.

Additional material

Additional file 1: Functional annotation for contexts Functional
annotation for selected contexts is provided as Supplement tables 1-7.
Each table lists pathways or gene sets found to be enriched with genes
from a context, size of the pathway or gene set, its description, amount
of overlap and statistical significance.
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