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Abstract

This paper describes a method for detecting event trigger words in biomedical text based on a word sense
disambiguation (WSD) approach. We first investigate the applicability of existing WSD techniques to trigger word
disambiguation in the BioNLP 2009 shared task data, and find that we are able to outperform a traditional CRF-
based approach for certain word types. On the basis of this finding, we combine the WSD approach with the CRF,
and obtain significant improvements over the standalone CRF, gaining particularly in recall.

Introduction
In recent years, the biomedical text processing field
has created many annotated resources to further the
development of automatic text analysis methods
through standardised evaluation. Following the exam-
ple of TREC [1] and other efforts, the goal is to
develop datasets over which different approaches can
be tested and compared. There is considerable diver-
sity in the types of resources that have been produced,
from TREC-style document relevance scores to the
semantic annotation of all terms in a set of documents
(for entities and events of interest).
Different resources annotate data at varying levels of

abstraction. In some cases, the target concepts are
named entity mentions, such as names of proteins or
medications, on which traditional named entity recogni-
tion (NER) techniques perform well [2]. In other cases,
however, the annotation is over biomedical processes
such as events, and the task has been found much
harder to tackle [3]. The main problem is that a single
class is used to annotate a wide range of linguistic rea-
lisations, and NER approaches that rely on recurrences
of tokens with predictable labelling are often tripped up.
For instance, consider the following examples from the
BioNLP 2009 event extraction task [4], where the tags

are shown as sub-indices to the open brackets of the
target words:
(1) The [TRANS changes] in the mRNA levels of these

protooncogenes...
(2) The human platelet-activating factor receptor

(PAFR) gene is [TRANS transcribed] by...
We can see that two instances have been tagged with

the event TRANS (short for TRANSCRIPTION), which
refers to the process of creating an equivalent RNA
copy of a sequence of DNA. This event is associated
with different surface forms in the text: the noun
changes in (1) and to the verb transcribed in (2). These
types of wide-ranging lexical variations are common
across all event types in the BioNLP task, and make
both the annotation and the task challenging, with the
best system in the shared task obtaining just above 50%
F-score in the basic event structure recognition task
(task 1: [4]).
When studying the BioNLP 2009 dataset, we observed

that there is a set of high-frequency word types that
tend to occur over many event types. This suggests the
possibility of building separate models for each of these
word types, in a fashion applied in word sense disambi-
guation (WSD). This technique has not been tested by
previous trigger-word detection systems, where the
approach is to build event-centred systems, or rely on
hand-made dictionaries. The appeal of WSD is that it
has been studied widely, and has been shown to perform
well under certain conditions: shared tasks like SemEval
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[5] have illustrated that WSD systems can perform
above 70% accuracy for fine-grained sense inventories
[6]; and the performance over NLM-WSD, a collection
tailored to the biomedical domain, is close to 90% accu-
racy [7]. Should we be able to replicate these levels of
accuracy over the BioNLP 2009 data, it has the potential
to boost overall trigger word detection performance.
Another motivation for combining biomedical datasets

and WSD is that the WSD community is constantly
looking for new semantically-annotated data to test the
portability of their systems over. There are only a few
examples of domain-specific corpora annotated with
sense information, and they are costly to produce [8].
For instance the NLM-WSD collection [9] was con-
structed using 11 annotators, and has been used exten-
sively for biomedical WSD experiments. An alternative
could be to adapt the semantic annotation of BioNLP
and other related biomedical datasets (e.g. BioCreative
[10]) in order to generate more testbeds.
To summarise, our main hypothesis in this paper is

that biomedical term-annotation tasks can benefit from
WSD methods, which we will empirically test over the
BioNLP event extraction dataset, where the correct
identification of “trigger words” is a crucial component
of the overall problem. We will adapt this dataset into a
WSD-style collection, and evaluate the performance
over a sample of word types that have particular proper-
ties, such as having enough training examples and a
class distribution that is not overly skewed. We will ana-
lyse the raw performance scores to see if we can achieve
similar performance to those achieved over other WSD
problems, and we will also study the dataset itself, by
measuring the strength of the “one sense per colloca-
tion” heuristic in relation to other WSD datasets.
The primary findings of this paper are: (a) WSD can

indeed outperform sequential tagging techniques over
high-frequency terms with relatively low skew; and (b)
the overall performance of sequential tagging methods is
boosted when we selectively include predictions from
our WSD model.
This article is organised as follows. We describe the

background of our research in Section . We then intro-
duce our experimental setting in Section , and perform
an analysis of feature types in Section . After this study,
our main experimental results are presented in Section .
We discuss further our experiments and analyse the
errors in Section , and finally present our conclusions
and future directions in Section .

Background
In this paper, we focus exclusively on the BioNLP 2009
shared task dataset, where events are defined relative to
trigger words of different types, and the goal is to both
identify the trigger words and infer the role they play in

a given event. There are three separate subtasks in this
challenge, and in this paper we focus on Task 1: Core
event extraction. Trigger words are linked to a total of 9
events relating to protein biology, which we list in
Table 1. The annotation of protein occurrences in the
text is given to participants in advance, and these are
used as arguments for event triggers.
In the original BioNLP 2009 shared task, most systems

relied on at least two separate modules: trigger detection
and event construction. Trigger detection involves the
identification of event triggers and their type, while
event construction associates event triggers with their
arguments. For our experiments, we will focus on the
trigger detection task, in order to simplify the analysis
and comparison of different methods. The systems pre-
sent in the BioNLP shared task addressed the trigger
detection subtask by relying on hand-made dictionaries,
sequential classifiers, or class-specific models; not word
type models as we do in this paper. The top-ranked sys-
tem in the 2009 BioNLP shared task was developed by a
team from the University of Turku [11]. Their pipeline
consists of three main steps: trigger detection, argument
assignment, and semantic post-processing. For trigger
detection they treat each token as a separate classifica-
tion problem, and train SVMs for each event type. They
rely on a rich set of features, including a dictionary built
from the training data, and syntactic dependencies.
Their overall task-1 system achieved an F-score of 52%
(with 47% recall and 58% precision) by relying on sepa-
rate SVM classifiers for trigger detection and argument
assignment. However, the performance over the trigger
detection step in isolation was not reported.
The second-ranked system for the task was built by a

team from the University of Jena [12]. Their main archi-
tecture also had an independent module for trigger
detection, which relied heavily on hand-curated diction-
aries, built from the GENIA event corpus [3] and other
sources. Their work required manual effort to pre-iden-
tify the predictive power of candidate trigger words for
each event type, and they relied on this information to
build dependency graphs that were refined in subse-
quent steps. The recall of their system was similar to

Table 1 List of target events for BioNLP 2009

Gene expression

Transcription

Protein catabolism

Localization

Binding

Phosphorylation

Regulation

Positive regulation

Negative regulation
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the top ranked system, but the precision was much
lower. Again, their performance for trigger word detec-
tion is not known.
We turn to the WSD literature to see if these techni-

ques can contribute to the trigger detection task. There
is a large literature on WSD; see [13] and [14] for recent
overviews. The most successful approaches are super-
vised systems that build a separate model for each word
type and POS, learning only from contexts that include
it. The motivation behind this approach is the “one
sense per collocation” heuristic [15], which observes that
the meaning of a given word in a particular collocation
tends to be invariant across all token occurrences.
One method that has been shown to perform consis-

tently well over open-domain WSD and biomedical
WSD is the Vector Space Model (VSM). It achieved
high performance over the biomedical NLM-WSD col-
lection (close to 90% accuracy) [7], and it has also been
applied to the Senseval-3 English Lexical Sample dataset
[16], where it ranked among the top systems with an
accuracy of 72% [17]. This classifier can accommodate a
wide range of features, from local dependencies to
MeSH terms (cf. Section ).

Experimental setting
We designed an experiment to integrate a WSD module
into an event-extraction system based on the BioNLP
2009 shared task data. We first describe the dataset
used in this experiment, then the different systems
tested.

Datasets
In order to build a WSD collection, we first identified
the candidate target words in the BioNLP data that are
most likely to benefit from WSD, in terms of both
WSD having a good chance of performing well over
them, and there being enough token instances that,
when fed back into a larger system, the predictions can
potentially have a significant impact. Each word occur-
rence in the data will have one of the 9 trigger-word
event classes or the non-event class (a total of 10
classes). Candidate word types for WSD are those
which have high frequency and occur with different
event classes. We rely on the GENIA tagger [18] for
tokenisation and POS-tagging, and we group word
occurrences by lemma and POS.
For this experiment we chose the words in the

BioNLP 2009 training data that had a token bias lower
than 90% for the majority class (i.e. there are more than
10% of token instances which occur with a class other
than the majority class), and at least 50 training
instances. We separate the occurrences of words accord-
ing to their POS, e.g. we would separate out the noun
and verb instances of the word change, and build

dedicated WSD classifiers for each. The 90% threshold
filters out word types that have a strong prior for a sin-
gle class, where there is little margin for improvement.
Keeping these high-skew words would boost the perfor-
mance, but we opted to remove them to focus on the
higher-entropy, more interesting cases. The word selec-
tion process leaves us with 63 word types, which corre-
spond to 14,903 train instances and 2,910 test instances.
Note that we use the development data provided by the
task organisers as the test set, since the final test data
has not been released. Out of these test instances, 848
belong to annotated events, covering 65% of the 1,300
trigger event annotations in the test set. If we include
the word types with high skew (i.e. 90% or more), we
cover 990 trigger-annotated instances (76% of the test
events), leaving only 24% of triggers to be identified
with other techniques. The complete list of target words
is given in Table 2. We also rely on existing WSD data-
sets in order to analyse if our new collection has signifi-
cant differences regarding the class-entropy of the
features. For this, we studied two WSD corpora where
our WSD method has been shown to perform well: the
biomedical NLM-WSD collection, and the open-domain
Senseval-3 English Lexical Sample collection. The for-
mer consists of 50 word types with 100 annotated token
instances each; the latter contains 57 word types, with
an average of 132 annotated token instances each. Our
own BioNLP dataset has an average of 282 token
instances per word type.

Classifiers and features
Our main WSD classifier is based on the Vector Space
Model (VSM), in the form of a nearest-prototype classi-
fier. Each occurrence of an ambiguous word is repre-
sented as a binary vector in which each position
indicates the occurrence/absence of a feature, and a sin-
gle centroid vector is generated for each sense of each
word type during training. These centroids are com-
pared with the vectors that represent new examples
using the cosine similarity metric. The sense assigned to
a given test instance is that of the closest centroid.
As a secondary WSD classifier we use a Support Vec-

tor Machine (SVM-Weka), as implemented in the
Weka toolkit [19]. SVMs map feature vectors into a
high-dimensional space and construct a classifier by
searching for the hyperplane in that space that gives the
greatest separation between the classes. For our experi-
ments we rely on a polynomial kernel, with the C para-
meter set to 1 (the default value in Weka). In both
cases, we build a separate classifier for each word type.
Both WSD classifiers rely on an extensive set of

features:
• Local collocations (Local): A set of features which

describe the context of the ambiguous word token, in
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the form of: (1) bigrams and trigrams containing the
ambiguous word constructed from lemmas, word forms,
POS tags and PROTEIN tags provided in the BioNLP
2009 dataset; and (2) the lemma/word-form of preceding/
following content words (adjectives, adverbs, nouns and
verbs) occurring in the same sentence as the target word.
• Syntactic dependencies: We identify the syntactic

dependencies between the target word and other words
in the sentence. We define two types of features: (1) lex-
icalised dependencies (the dependency relation type +
the related lexical item), and (2) unlexicalised dependen-
cies (the dependency relation type only). We extract the
dependencies from the four parsers provided by the
BioNLP 2009 shared task organisers [20].
• Bag-of-words (BOW): Lemmas of all content words

(nouns, verbs, adjectives, adverbs) in the same sentence
as the target word, and, as a separate feature, lemmas of
all content words within a ±4-word window around the
target word.
• Medical Subject Headings (MeSH) [21]: the manu-

ally-assigned MeSH terms associated with the document
that the sentence was taken from. MeSH is a controlled
vocabulary for indexing biomedical and health-related
information and documents, and all biomedical papers
in MEDLINE are indexed with MeSH data.
We also implement a sequential tagger that does not

follow the WSD approach of separate models for each
word type. Specifically, we use the CRF++ toolkit [22],
which has been shown to be highly successful over var-
ious chunking tasks. CRFs provide a discriminative fra-
mework for building structured models to segment and
label sequence data [23]. CRFs have the well-known
advantage that they both model sequential effects and
support the use of large numbers of features.

Table 2 List of target words for our WSD experiment (N
= noun, V = verb, J = adjective). We present the number
of train and test instances, the number of classes, and
the bias of the majority class

Word Train # Test # Classes # Top class %

expression.N 1465 265 5 0.51

transcription.N 1214 210 2 0.83

activation.N 1177 272 3 0.89

promoter.N 770 141 3 0.76

binding.N 625 113 2 0.84

induce.V 565 128 3 0.65

activate.V 523 93 2 0.84

effect.N 416 79 4 0.83

inhibit.V 412 57 2 0.67

induction.N 405 116 4 0.57

bind.V 373 80 2 0.52

role.N 342 75 3 0.87

express.V 308 55 5 0.57

increase.V 289 59 2 0.57

stimulation.N 284 53 4 0.89

regulation.N 274 52 3 0.66

regulate.V 265 49 3 0.59

require.V 257 53 3 0.74

production.N 251 45 4 0.49

inhibition.N 219 38 2 0.79

mediate.V 218 54 3 0.74

stimulate.V 215 35 3 0.83

result.V 180 35 4 0.86

enhance.V 178 27 2 0.62

phosphorylation.N 170 52 3 0.64

increase.N 157 27 2 0.52

lead.V 146 25 2 0.83

interaction.N 144 41 2 0.71

associate.V 138 43 2 0.85

block.V 138 28 3 0.67

control.N 124 26 2 0.87

translocation.N 123 20 2 0.76

tyrosine.N 119 24 2 0.76

synthesis.N 119 9 3 0.75

detect.V 109 16 7 0.76

tNF.N 108 11 2 0.70

inducible.J 108 28 3 0.78

affect.V 107 14 4 0.62

transactivation.N 106 4 2 0.86

nucleus.N 104 12 2 0.85

decrease.V 98 12 2 0.54

reduce.V 90 26 2 0.52

control.V 89 17 2 0.65

suppress.V 89 20 2 0.65

degradation.N 88 15 2 0.72

produce.V 87 19 3 0.55

transcript.N 80 21 2 0.88

occur.V 80 24 2 0.89

target.N 75 16 3 0.87

Table 2 List of target words for our WSD experiment (N
= noun, V = verb, J = adjective). We present the number
of train and test instances, the number of classes, and
the bias of the majority class (Continued)

dependent.J 73 16 3 0.71

cause.V 72 10 2 0.85

essential.J 70 9 2 0.84

interact.V 70 15 2 0.51

heterodimer.N 69 22 2 0.84

secretion.N 66 11 2 0.73

prevent.V 65 12 2 0.60

change.N 62 10 3 0.81

transfecte.V 61 25 3 0.85

absence.N 60 10 7 0.83

modulate.V 58 8 3 0.79

contribute.V 55 16 3 0.78

decrease.N 51 10 2 0.61

cross-linking.N 50 2 2 0.52
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For the CRF classifier we used a similar set of feature
types to the WSD classifiers: word-forms, lemmas, POS,
chunk tags, protein annotations, and grammatical
dependencies. For dependency annotation, we used the
Bikel parser and GDep as provided by the shared task
organisers. This information was provided as a feature
that expresses the grammatical function of the token.
We applied a window size of 4 words in either direction
from the target word.
Note that the CRF classifier is able to classify occur-

rences other than those for the target word types, but
we evaluate only over the 63 target words for a fair
comparison.
Finally, we also built an extended version of CRF

(CRF-VSM) which uses the WSD predictions as an
extra feature. In cases where the current token is none
of the target words, the feature has the value NULL. For
the training data, we obtain the predictions by using 3-
fold cross-validation, and for the test data we rely on
the full training set. This system allows us to combine
the NER and WSD approaches to the problem. For eva-
luation we provide the precision, recall, and F-score for
each class, in addition to reporting the micro-averaged
results over the 9 trigger-word classes. We also show
the average accuracy across all instances; this score is
less relevant to the final goal of correctly identifying
trigger words, because it is affected by the predomi-
nance of the NON-EVENT instances and ignores recall.
We use randomised estimation to calculate whether

any performance differences between methods are statis-
tically significant [24]. As a baseline we present the
Majority Class (MC) classifier, which assigns the most
frequent class seen in the training data to all the test
instances.

Feature analysis
Supervised WSD systems build upon the “one sense per
collocation” heuristic, which shows that in fixed colloca-
tions, a given word will tend to occur with the same
meaning. Yarowsky [15] defined “collocation” as the co-
occurrence of words in a given relationship, for instance
the words no relevant occurring immediately before the
word changes. The features that we used satisfy this
definition of “collocation”. We analyse the class entropy
of the features in our collection and compare it with the
WSD corpora introduced in Section . We rely on all fea-
tures that occur at least twice, and we average the
entropy values of all the features for each of the four
basic feature types. We did not have access to all feature
types for every corpus (e.g. MeSH is not found in Sense-
val), but the available ones can give us some insight into
the differences across the corpora.
The average entropy per feature type and corpus are

given in Table 3. Looking at the overall entropy for the

BioNLP corpus, we can see that it falls between the low
entropy of the domain-specific NLM and the higher
entropy of Senseval. This is encouraging because our
classifier has been able to obtain good performance over
the Senseval dataset. The scores for the NLM collection
show that this dataset is particularly well-suited to
WSD, which has been illustrated by the high perfor-
mance reported in the literature [7].
With respect to the different feature types, there are

not big differences in our collection, and as expected,
local features and syntactic dependencies do best. More
surprising are the results across Senseval data, with the
high entropy of BOW and the low score of syntactic
dependencies. NLM features have low entropy for all
the different types.
We also analysed the entropy for the different target

word types in the BioNLP dataset. We grouped the
words into three sets based on their average feature
entropy, as can be seen in Table 4, together with exam-
ples of word types. We expect that words with low
entropy will achieve better performance, and we test
this idea in Section.

Results
We analyse the results of the different classifiers over the
development portion of the BioNLP dataset. The scores of
the four classifiers and the Majority Class (MC) baseline
are given in Table 5. SVM-Weka performs poorly, just
above the majority class baseline in terms of F-score. We
can see that VSM suffers from low precision, and CRF has
low recall, but both achieve an F-score quite a bit higher
than SVM-Weka, despite SVMs having been found to be
the strongest performer by the top two teams in the origi-
nal shared task. The smaller set of instances used to build

Table 3 Entropy for each feature type across the three
WSD corpora

Feature type BioNLP NLM Senseval

Local 0.301 0.176 0.380

Syntactic dep. 0.305 — 0.280

BOW 0.339 0.186 0.455

MeSH 0.360 0.183 —

Overall 0.323 0.180 0.435

Table 4 Number of word types and their average training
frequency for different average entropy ranges. An
example for each group is provided, together with its
most frequent class

Average Entropy # Words Avg. Freq. Example Major Class

H < .3 28 272.8 occur.V NON-EVT

.3 ≤ H < .4 20 167.3 change.N NON-EVT

H ≥ .4 15 264.8 express.V GENE-EXP
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the models could be one of the reasons for the low perfor-
mance of our SVM. By using only instances from the tar-
get word type, the training data for each class is reduced
considerably, and the conceptually simpler VSM performs
better in this setting. Another reason for the low perfor-
mance of SVM could be the lack of tuning of the kernel
and parameters. The best performer of all, however, in
terms of both accuracy and F-score, is the combined CRF-
VSM, where the output of VSM is incorporated as a fea-
ture into CRF. This approach significantly improves the
recall and F-score of the base CRF (p-values < 0.01), and it
is also significantly better in precision (p-value < 0.01) and
F-score (p-value < 0.05) than the base VSM. That is, the
combination of the two approaches performs better than
each of the two methods in isolation. This result is highly
significant in suggesting a new approach to the BioNLP
2009 task, or at the very least, a new source of features to
combine with the existing task 1 systems.
We also compared the performance of CRF and VSM

according to the average entropy of the target words.
The results are given in Table 6. We can see that VSM
obtains the best performance for low-entropy words,
and it is able to clearly improve over CRF for words
with an average feature entropy below 0.40. The
improvement in recall is statistically significant (p <
0.01), and the F-score improvement is statistically signif-
icant for words with entropy below 0.30 (p < 0.05). This
demonstrates that we have the ability to pre-identify
words that are most likely to benefit from WSD. Note
also that, surprisingly, the best performance overall is
obtained in the high-entropy range.
We also report the results of CRF-VSM by event type

in Table 7. We can see that different types exhibit very
different performance, and the most difficult to predict

are regulation events. This could happen because these
three classes tend to occur in similar contexts, and are
hard to differentiate. The best performance is achieved
by the rare PROTEIN CATABOLISM event, with full
precision and a high F-score of 91.7%; the high-fre-
quency event GENE EXPRESSION ranks second with
an F-score of 76.7%.
Finally, we present the overall results for each POS in

Table 8. The main observation is that the F-score and
recall are much higher for nouns than for verbs, but the
precision and accuracy for the two are similar.
The difficulty of disambiguating verb senses has been

observed variously in the WSD literature, and these
results seem to confirm that tendency. Regarding adjec-
tives, the performance is actually below the majority
class baseline, but there are only three word types and
relatively few token instances for each, so the overall
impact on results is negligible. The difficulty here
appears to relate to the choice of which word to anno-
tate as the trigger word, and a richer model of the inter-
action of the words related to the event would be
required to improve the performance.

Discussion
Our results over the BioNLP 2009 dataset show that the
transformation of existing biomedical annotation into a
WSD dataset can be challenging. One of the main dif-
ferences over standard WSD is that the word-models
tend to be biased towards the non-event class, and this
can be problematic for the classifiers. For the noun
transcription, e.g., 83% of the training instances are of
type NON-EVENT. A possible solution could be to

Table 5 WSD performance of the different classifiers (the
best results per column are given in bold)

System Acc Prec Rec F-score

MC 72.8 55.9 27.4 36.7

SVM-Weka 62.7 39.9 39.6 39.8

CRF 78.4 72.4 46.3 56.5

VSM 71.7 54.4 62.5 58.1

CRF-VSM 78.9 70.2 52.6 60.1

Table 6 WSD result for different entropy ranges (the best
score for each evaluation metric and entropy range is
shown in bold)

Average Entropy CRF VSM

Prec Rec F-sc. Prec Rec F-sc.

H < .3 71.6 25.7 37.9 39.5 58.3 47.1

.3 ≤ H < .4 76.5 42.1 54.3 63.3 56.1 59.5

H ≥ .4 70.6 60.9 65.4 59.9 69.5 64.3

Table 7 Performance of CRF-VSM by event type, sorted
by F-score (Freq. = Frequency of the event in test data)

Event Freq. Prec. Rec. F-score

PROTEIN CATABOLISM 13 100 84.6 91.7

GENE EXPRESSION 208 75.9 77.4 76.7

PHOSPHORYLATION 34 82.8 70.6 76.2

LOCALIZATION 13 72.7 61.5 66.7

BINDING 119 78.7 52.9 63.3

TRANSCRIPTION 52 64.0 61.5 62.7

POSITIVE REGULATION 263 64.9 42.2 51.2

REGULATION 86 51.2 25.6 34.1

NEGATIVE REGULATION 60 50.0 23.3 31.8

Table 8 WSD experiment performance of VSM by POS.
The best result per column is given in bold

POS # Test Acc Prec Rec F-score

Noun 1802 72.9 55.8 70.0 62.1

Verb 1055 70.0 53.2 53.2 53.2

Adj. 53 64.2 9.1 10.0 9.5
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apply re-sampling techniques to build more balanced
models [25].
Another issue is the difficulty of event annotation for

humans, even when strategies to ensure quality are put
in place. After a long process, the BioNLP event annota-
tion enforced the following guidelines [3]: text-bound
annotation (grounding all annotations to strings in text),
single-facet annotation (keeping the viewpoint of anno-
tation simple and very focused), and semantic typing
(looking at types of entities for each event, and types of
event for each entity to detect anomalies). The develo-
pers of the corpus explain that this process improved
the inter-annotator agreement significantly, although
they did not provide the numbers. They also describe
how some high-frequency words can represent a wide
variety of biomedical events depending on their related
words in the context.
In our error analysis we found that meta-linguistic

knowledge would be necessary to correctly identify
some of the targeted events, and richer features than
standard WSD sets would be required. For instance, let
us consider the noun transcription and the event type
TRANSCRIPTION, which refers to the process of creat-
ing an equivalent RNA copy of a sequence of DNA. The
word occurs 201 times as the TRANSCRIPTION event,
and 1,013 times as NON-EVENT in the training data.
Looking at the features, they have an average entropy of
0.23, which puts this target word among the low-
entropy words. However, for this word the F-score of
VSM is slightly lower than CRF, and we can see that
some of the NON-EVENT occurrences have similar fea-
tures to the event occurrences. By analysing the exam-
ples, we found the following phenomena, which are not
captured by our current model:
1. The event is described in the text as a process, and

the annotators mark the word that culminates it, not
the initiator. In this example, lack is annotated instead
of transcription:
The transcription was initiated from one of three

EBNA promoters, Qp: by contrast, both Cp and Wp
were silent, thus resulting in the [TRANSlack] of EBNA2
mRNA.
2. The event is underspecified in the sentence, refer-

ring to an unspecified gene, and it is not considered
relevant. In this example, transcription is not annotated:
OTF-1-enriched protein fractions did not affect DRA

gene transcription although it functionally enhanced the
transcription of another gene.
3. Multiple events occur simultaneously, and the anno-

tation has to accommodate their relationship. In the fol-
lowing example the main event is a negative regulation
event (NEG-REG) that affects a transcription event. The
annotators seem to focus on the surface form of the

NEG-REG event first (marking destabilization), and then
annotate as TRANSCRIPTION the noun phrase that is
directly related to it, choosing preformed, and ignoring
the first mention of transcription:
Glucocorticoids are known to downregulate interleu-

kin-1 beta production in monocytic cells by two differ-
ent mechanims: direct inhibition of the gene
transcription and [NEG-REG destabilization] of the [TRANS-

preformed] interleukin-1 beta mRNA.
4. The noun transcription occurs multiple times refer-

ring to the same event, but only the first occurrence is
tagged:
A 2-4-fold increase in IFN-beta promoter [TRANStran-

scription] was observed in Sendai virus induced extracts,
and deletion of PRDI and PRDII elements decreased
this induced level of transcription.
These examples illustrate that for the BioNLP 2009

dataset, there are meta-linguistic aspects of the annota-
tion that have to be taken into account, and more con-
sistency is required to close the gap between textual
representations and the ultimate goal of biomedical
pathways. Significant effort has been done in the anno-
tation of the BioNLP dataset, but we believe that word-
by-word analysis can provide better means to improve
and extend this kind of tagging. It has been shown in
the WSD evaluation tracks that the annotation of lexi-
cal-sample datasets is easier and produces better quality
data than all-words datasets, and this could be trans-
lated to the annotation of biomedical events. We have
seen in this corpus that 63 ambiguous word types cover
62% of the event annotations, and focusing on the
instances of these words separately could be a better
way to produce consistent annotation.

Conclusions
We described a WSD-based method for detecting event
trigger words in the BioNLP 2009 shared task data, and
demonstrated that it attains superior performance than a
traditional sequential tagging approach. The highest
score is achieved when using the WSD predictions as fea-
tures for a sequential tagger, which significantly improves
the recall and F-score of the latter. We also observed that
measuring the training class-entropy of features seems to
be a good indicator of the kind of target word types that
can improve over a sequential tagger.
Another result of this work is the identification of

consistency issues in biomedical annotation, even when
clear guidelines are provided. We found that a word-
centered approach may help to find inconsistencies, spe-
cially given that a few target words seem to have high
coverage of the trigger annotations. For future work we
are planning to explore other challenges, such as Bio-
Creative, and also to deploy full systems for the BioNLP
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shared task challenge, in order to directly compare
against other systems.
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