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Abstract

applications.

RNA sequences.

Background: Recent advances in sequencing technologies set the stage for large, population based studies, in
which the ANA or RNA of thousands of individuals will be sequenced. Currently, however, such studies are still
infeasible using a straightforward sequencing approach; as a result, recently a few multiplexing schemes have been
suggested, in which a small number of ANA pools are sequenced, and the results are then deconvoluted using
compressed sensing or similar approaches. These methods, however, are limited to the detection of rare variants.

Results: In this paper we provide a new algorithm for the deconvolution of DNA pools multiplexing schemes. The
presented algorithm utilizes a likelihood model and linear programming. The approach allows for the addition of
external data, particularly imputation data, resulting in a flexible environment that is suitable for different

Conclusions: Particularly, we demonstrate that both low and high allele frequency SNPs can be accurately
genotyped when the DNA pooling scheme is performed in conjunction with microarray genotyping and
imputation. Additionally, we demonstrate the use of our framework for the detection of cancer fusion genes from

Background

Recent advances in sequencing technologies have drasti-
cally reduced the cost of nucleotide sequencing [1,2]
and are rapidly establishing themselves as very powerful
tools for quantifying a growing list of cellular properties
that include sequence variation, RNA expression levels,
protein-DNA/RNA interaction sites, and chromatin
methylation [3-8]. An expensive step in the sequencing
process is sample preparation where time consuming
procedures such as library preparation must be applied
to each individual sample. This greatly reduces the uti-
lity of a sequencer for sequencing a small genomic
region in many individuals because the cost of preparing
each sample counteracts the efficiency of the sequencer.
In fact the sequencing capacity in terms of the number
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of reads generated by the sequencer is often much
higher than is necessary for the application. This raises
the need for the development of multiplexing strategies
that allow the processing of multiple samples per single
sample preparation step at the cost of requiring addi-
tional sequencing capacity. However, in several practical
scenarios, the overall cost can be reduced. One such
multiplexing scheme is the use of overlapping pools
[9-11]. In this scheme subsets of samples are mixed
together into pools followed by a single sample prepara-
tion for each pool. Typically in such a sample prepara-
tion, a barcoding technique is applied so each read
generated from the pool will be able to be identified as
originating from the pool. By combining the results of
the sequencing with the information on which samples
appeared in which pool, the mixed information from
each pool can be “decoded” to obtain information on
the sequence of each sample.

Multiplexing pools are practical for sequencing a short
genomic region in many individuals. As sequence
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capacity increases, it is likely that this technique will
become even more practical in the future. Sequencing
capacity is constantly increasing and therefore it is plau-
sible that multiplexing pools will benefit whole-genome
sequencing in the future. We note that in Erlich et al
[9] the use of multiplexing has been proven in the lab,
showing that this methodology is not merely a theoreti-
cal exercise. The current techniques for overlapping
pool sequencing [9-11] are based on group testing or
compressed sensing schemes. Their main limitation is
that they are only applicable to detect rare variants. If a
variant is common in the population, it will be present
in almost every pool, causing the above pooling schemes
to fail in identifying which subset of the samples contain
the common variant.

In this paper, we present an alternate scheme for
sequencing using overlapping pools which, unlike all
previous approaches, is able to quantify both rare and
common variation. The key idea underlying our scheme
is that we formulate the pooling problem within a likeli-
hood framework that provides several advantages over
previous methods. Our scheme is flexible and can be
applied to a wide variety of applications. We demon-
strate this by applying the scheme to two very different
applications, each of which takes advantage of the likeli-
hood framework within our approach and is difficult to
solve using previously proposed combinatorial methods.

The first application we consider is obtaining highly
accurate genotype information for a set of individuals.
Currently, genotype microarrays are the most accurate
method for measuring individual genetic variation at a
base-pair level at variable locations across the genome
(Single Nucleotide Polymorphisms: SNPs). A typical
array will collect up to 900,000 or more genotype calls
at common SNPs across the genome. Using imputation
techniques and a reference dataset such as the HapMap
[12] or the 1,000 Genomes project, we can make predic-
tions for the remaining common variants in the genome.
While error rates of genotyping are usually less than .5%
errors at imputed variants range from around 5% in
Europeans, and it could be as high as 10-15% for non-
European populations [12-14]. Imputation accuracy is
particularly poor for rare SNPs and for SNPs in regions
of low linkage disequilibrium. We introduce here a
scheme for obtaining highly accurate genotype informa-
tion on both common and rare SNPs by combining gen-
otyping microarrays, imputation and sequencing in
pools of samples. This application is possible because
our likelihood framework allows us to integrate the
information from the imputation into the procedure to
help us “decode” the information obtained from each
pool. Furthermore, our scheme allows us to utilize the
variant frequency information obtained in each pool.
Our results show that our algorithm is capable of calling
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rare SNPs with high accuracy, but in contrast to pre-
vious multiplexing methods, it can also call common
SNPs with high accuracy, by combining the imputation
data with the pooling scheme. In fact, the same experi-
ment which can obtain genotype information for rare
variants combined with imputation can obtain genotype
information at the common variants. Importantly, the
outcome of our approach results in genotype informa-
tion on the common variation which is more accurate
than what is collected using microarrays. This applica-
tion is particularly practical because much of the follow
up sequencing of populations will be done in the same
cohorts in which genome-wide association studies were
performed. For these individuals, genotyping at common
SNPs using microarrays has already been performed and
for many of these studies only the regions of interest are
targeted for sequencing, or exome sequencing is being
performed, which makes multiplexing pools a practical
approach at present.

The second application we consider in this work is to
rapidly screen for fusion genes in cancer samples.
Fusion genes play an important role in cancers and are
caused by genomic rearrangements in a tumor that cre-
ate new genes consisting of several exons from one gene
followed by several exons from a second gene. Our
application considers the sequencing of RNA obtained
from cancer tumors with paired-end reads. The read
pairs of interest are ones that span exon boundaries
with each read of the pair coming from a different exon.
The majority of such read pairs will map to the same
gene when aligned to the reference genome and. How-
ever, read pairs from fusion genes will map to two
exons from different genes. One potential approach in
identifying fusion genes is to search for read pairs that
contain reads mapping to different genes. The main
drawback of this approach is that it leads to a very high
level of false positives making it difficult to distinguish
actual fusions from experimental artifacts. Our applica-
tion will mix RNA from a large number of cancer
tumors into overlapping pools and utilize the likelihood
framework to decode which fusion genes come from
which samples. In order to accomplish that, we
extended the basic overlapping pool model to consider
different levels of expression for each gene. This can be
estimated from the data. Our decoding scheme is based
on a likelihood formulation which presents novel com-
putational challenges compared to previous approaches.
Each possible configuration (genotype assignment or
gene-fusion assignment) is assigned a likelihood and the
goal of the algorithm is to identify the most likely
decoding. We identify good solutions for the problem
by formulating a related problem as a linear program
which we can efficiently solve. We note that these
results are just the first steps in applying this framework
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to multiplexing sequencing pools and it is likely that
better optimization algorithms and better designs of
pooling schemes can lead to more substantial savings.

Results and Discussion

Genotyping using overlapping pools and imputation

We first report the results of applying our approach to
genotyping individuals to obtain both common and rare
variation using combining overlapping sequencing pools
with genotyping and imputation. In this set of experi-
ments, we utilize the 1958 Birth Cohort from the Well-
come Trust Case Control Consortium [15] data which
contains approximately 1,500 individuals. These indivi-
duals were genotyped at approximately 500,000 SNPs.
For every 10th SNP, we set the values of the genotypes to
missing and applied MACH [16] using the HapMap data
[17], an imputation algorithm, on these SNPs to make
predictions. Since the SNPs were genotyped in the data-
set, we can evaluate the accuracy of the imputation. We
filter out any SNP with minor allele frequency lower than
5% since rare variants are easily genotyped using overlap-
ping sequencing pools and the goal of these experiments
is to evaluate the methods ability to genotype common
variants. We simulate applying our method by generating
sequencing reads by generating reads consistent with the
true values of the genotypes at the missing SNPs for each
pool and then apply our method to make predictions of
the genotypes incorporating the imputation information.
We then measure the increase in accuracy of our predic-
tion relative to the imputation information.

For our experiments we consider a total of 100 indivi-
duals mixed into 36 pools which is a reduction of the
total number of sample preparations necessary by 1/3.
We use a very high coverage of 150 per individual
within a pool for our experiments under the assumption
that the bottleneck is not the coverage, but the number
of pools, each which requires a single sample prepara-
tion step. We assume a sequencing error of 0.005. We
measure the accuracy of the predictions by comparing
the predicted genotypes to the true genotypes and only
call a prediction correct if the genotypes are correct for
all 100 individuals. We note that this is a very high stan-
dard and only 1 of our 100 SNPs have a correct imputa-
tion prediction. Our method has very high accuracy
significantly improving over imputation. Table 1 sum-
marizes the results.

Table 1 Results of genotyping using overlapping
sequence pools with imputation information

Individuals = 100

Parameter Values Num Pools

Imputation Accuracy LP Accuracy
36 0.01 0.98
30 0.01 0.87
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Genotyping using overlapping pools without imputation
We also apply our scheme to predict the genotypes
without the imputation for rare variants such as those
not found in the reference. The only difference in our
methodology is that in the optimization problem, for
the imputation vector we use a zero vector since we
expect most individuals will not have the variant. This
problem is actually much easier than the case of com-
mon alleles and we get perfect accuracy for the para-
meters above.

Cancer fusion gene detection

We evaluate our approaches ability to detect cancer
fusion genes using a similar simulation framework. In
this application, RNA from different tumors is is mixed
into overlapping pools and sequenced. In each pool we
search for reads which cross exon boundaries from dif-
ferent genes and are evidence of fusion genes. Counts of
these fusion genes in each pool are then decoded to
identify the samples which contain the fusion genes.

We simulate this process by generating reads in a
similar fashion to the genotyping without imputation
simulations. We assume that we have 100 cancer sam-
ples where either 1, 2 or 3 of the samples contain a spe-
cific fusion gene. We assume a sequence error rate of
1% and vary the coverage and number of pools in our
experiments. A difficulty in this application is that each
individual has a different level of expression for each
gene. We simulate this by randomly selecting an expres-
sion level in the range such that the concentration of
the fusion gene in the RNA will differ by up to a factor
of 10. Table 2 shows the results of our cancer fusion
gene detection simulation experiment. For each experi-
ment, we report the fraction of the time that the algo-
rithm identified correctly which samples contain the
fusion gene.

Table 2 Results of cancer fusion gene detection
simulations

Parameter Values (Num Pools, Coverage, Error Rate) # of Samples with

Fusion
1 2 3
(10,4, 001) 0980 0.760 0.340
(10,12, 0.01) 0.990 0.970 0.700
(10, 16, 0.01) 1.000 0.980 0.780
(10, 20, 0.01) 1.000 0930 0.790
(10, 24, 0.01) 1.000 0990 0.810
(10, 28, 0.01) 0990 0970 0.840
(4, 28,0.01) 0.180 0.030 0.000
(6, 28, 0.01) 0.550 0.230 0.050
(8,28, 0.01) 1.000 0900 0410

Each entry in the table is the fraction that the algorithm correctly identified
the samples harboring the fusion gene.
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Conclusions

In this paper we have described a flexible framework for
overlapping pool sequencing and two applications of
this framework. We presented some results showing the
bounds on the performance of decoding rare and com-
mon variants (in Methods). We argue that due to infor-
mation theoretic bounds, common variants are
impossible to decode without the addition of external
information; we propose to use imputation results as
possible external information. In practice, it is often the
case that such information is given, as many of the sam-
ples have already been genotyped through the massive
effort of genome-wide association studies; in addition,
current cost of genotyping has reduced considerably and
is negligible compared to sequencing costs (especially
when considering gene-targeted sequencing).

Our decoding framework is likelihood based frame-
work and is general enough to account for different
types of data and error models. Particularly, we demon-
strate how our method can be extended to the case
where there are different unknown concentrations of
each variant in each sample as motivated by the cancer
fusion gene detection example. We note that our
approach to detect fusion genes using RNA sequences
can only detect fusion genes that are expressed in the
tumor since we are sequencing RNA, but this is the
case for a significant subset of the total fusion genes
[18].

We expect that with improved optimization algo-
rithms and better designs of pooling schemes, we can
achieve even more substantial savings.

Methods

We consider the scenario in which a set of N individuals
are to be sequenced for any application such as a dis-
ease association study, or fusion-gene detection. The
most straightforward approach would be to barcode the
individual and sequence them separately. When N is
large, or when the desired coverage is high, this
approach is infeasible due to budget constraints. A few
methods have been suggested to tackle this problem
using a set of overlapping pools [9-11]. These methods
are based on the following generic idea. Let the
sequences of the individuals be represented by a matrix
G = {g;} of dimension N x m, where m is the length of
the genome. g; € {0,1,2} is the number of occurrences of
a genetic variant in position j of individual i - such var-
iant could be a single nucleotide polymorphism (SNP),
copy number variant (CNV), or a gene-fusion, as dis-
cussed in the introduction. The pooling based approach
considers a {0, 1} matrix A of dimension T x N, repre-
senting a set of pools. Each row of A corresponds to a
DNA pool; individual j participates in the i —th row if
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and only if A;; = 1. Thus, the matrix A provides a com-
pact description of the study design. When the study is
performed, under an error-free model, the pooling
results are given as Y = AG. In principle, one can now
decode the matrix by finding a solution to the set of
equations AX = Y. In reality though the pooling results
are not as accurate, and therefore current methods are
using a rounded version of ¥; for every ij, we define c;
= 1if y; > 0 and ¢; = 0 otherwise. Thus, if we replace
the SUM operation by an OR operation then AG = C.
Using this information, Erlich et al. [9],Prabhu et al. [10]
and Shental et al. [11] provide a decoding algorithm
which finds which individuals have g; > 0. For the sim-
plicity of the exposition, we will assume from now on
that only one variant is considered, and so Y, C, and G
are column vectors of length N.

A lower bound on decoding accuracy

Unfortunately, by collapsing the data to a {0,1} matrix
resolution is lost, and therefore there is no hope in
decoding all genetic variants from the pools if the num-
ber of pools is not large. Note that for a given variant,
there are 3" possible genotype vectors. The number of
possible column vectors C; is 27, Therefore, in order to
be able to decode all individual genotypes we need 27 >
3N or T >N. Even without rounding, the number of
possible vectors B; is at most (2N)7, and therefore even
in the error-free case we need (2N)” > 3N, or

T> Q(%). In practice, the pooling decoding meth-

ods work well when the allele frequency is low, under
an error-free model. For a variant of allele frequency o,
the number of possible genotype vectors is

N 1 aN
= (—) , and therefore, we get that in the case
aN o4

where the rounded solutions are provided (the matrix

C), we need 2N)T > 3N, or 2T 2(&)0“, or T > —

Nalogo, and if we are using the full information given

Naloga

T . Note that these
ogN

by the matrix B, we need T > —

are lower bounds, and it may theoretically be the case
that a larger number of pools is required; however, it is
easy to see that if A is chosen as a random matrix
where each entry is 1 with probability 0.5, then the
bounds given here are tight up to a constant factor (the
proof is omitted from this version). Moreover, in [9-11],
it is shown that using the matrix C one can decode low

allele frequencies (a = %) then T = O(logN) suffices,

which is consistent with the bounds we provide here.
Since a random matrix provides a good decoding
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scheme in theory, we followed this intuition and gener-
ated a matrix A so that half of the entries in each row is
1 and the other half is 0. To obtain a better design
matrix, we use local search; we repeatedly permute a
random row and a random column and check to see if
the Hamming distance between the permuted row/col-
umn and the other rows increased. If so, we keep the
change, otherwise, we revert. After performing 1000 per-
mutations, we result in a matrix whose rows and col-
umns are farther apart, which improves our ability to
decode.

Incorporating imputation into decoding

As described above, from an information theoretical
point of view, decoding the genotype vector is only pos-
sible when the allele frequency is low and therefore the
genotype vector is sparse. For this reason, both Erlich et
al. [9] and Shental et al. [11] make the connection
between decoding and compressed sensing [19], where
the requirement for the decoding success is based on
the fact that the desired vector is sparse. We therefore
suggest to incorporate imputation results into the
decoding scheme; this allows us to overcome the infor-
mation theoretical bound for the following reason. We
can represent the true genotypes G as a sum of the
(rounded) imputation predictions I, i; € {0, 1, 2}, and a
set of imputation residual errors R, r; € {-2,1, 0, 1, 2},
where G = I + R Then, the observed data can be repre-
sented as the pools’ results Y = AG, which is Y = Al +
AR. Now, note that R is a sparse vector, and [ is known;
therefore, from a theoretical point of view, the above
information theoretic lower bound does not hold on our
case and there may be an algorithm that is able to
decode the genotypes based on the sequencing and the
imputation. In principle, we can solve for the imputation
residual errors by solving the set of equations for AX =
Y - AL Once we obtain the residual vector, we can
obtain the actual genotypes. In practice, as described
below, we use the imputation dosage so our algorithm
theoretically searches over the entire space, and not
only over sparse vectors, but the search is pruned for
vectors that are dense based on a likelihood model. As
we show in the results section, this yields an improved
imputation accuracy for high allele frequency SNPs.

Pooling using read counts

Our approach differs from previous approaches in that
we are considering the matrix Y and not C. As discussed
above, this should allow us a gain of approximately log
N factor in the number of pools needed, at least for
higher allele frequencies. However, in order to do so, we
need to explicitly model the sequencing errors. The
error model may be different, depending on the applica-
tion at hand. We will describe here the model we use
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for the detection of mutations (SNP calling). There are
three main sources of noise that we include in the
model:

1. There are slight differences in the concentration of
each individual’s DNA in each pool. This pooling noise
is modeled as a normally distributed noise added to
each non-zero element of A with mean 0 and variance
0, Thus, we set

2. There is a variance in the coverage of any specific
region in the genome. We denote by L the length of the
sequenced genomic region; if the total number of bases
sequenced is ALN, then we expect that each base will be
covered by A reads on average. A is often termed the
expected coverage. We will denote the number of reads
covering individual i by r;;, r;5 (corresponding to the
two chromosomal copies). Then, 7; is Poisson distribu-
ted, with mean m;. Prabhu et al. [10] showed that the
m; are approximately drawn from a Gamma distribution
with @ = 6.3 and § = A/o for Illumina Solexa sequen-
cers. We note that for a given variant it is easy to infer
the value of m;, since it is shared across all individuals
in all pools. Thus, we have

m; ~ T(a, B), ry ~ Poisson(m;)

3. The third source of error is sequencing error. The
sequencing error rate depends on the location of the
base in the read, but since the location of the base is
uniformly distributed, we simply model the error rate by
a constant probability ¢ for a substitution (1% is an
acceptable estimate).

The above procedure produces a matrix A of noisy
pools and a pair of vectors R?,R! of noisy sequence
reads; the number of sequence reads le is generated by
a Poisson distribution with an expectation that depends
on the genotype g;, and the coverage m;, followed by a
Binomial distribution to model the errors as explained
above. R corresponds to the reads with the major allele,
while R' corresponds to the reads with the minor alleles.
Note that even if g; = 0, if ¢ > 0, then expected number
of reads with the minor allele will be greater than 0
because of errors. The pooling results are given by (Y°,
YY), where Y* = AR

A likelihood model

Given the pooling results Y, we need to find a decoding
algorithm that estimates G from Y. To do so, we define
a likelihood model which can evaluate each putative
solution. Our likelihood model takes into account both
the error model, as well as population genetics data and
external information when available. We decompose the
likelihood L(G; Pools) into several functions, and take
their product as a composite likelihood.
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Hardy-Weinberg Equilibrium

We first note that the overall allele frequency p of the
SNP can be estimated as the average across all pools.
We can now compute the Hardy-Weinberg (HW) prob-
ability of the observed genotypes
PriW(G|p)=2"p"*" (1 —p)™, where ng, ny, n, are
the genotype counts in G. Using Bayes law we have

Pri" (Pools | G) = PriY (G| POOZS)M

Pr(G)

Assuming no prior information, we observe that
maximizing Pr"*"(Pools | G) is equivalent to maximiz-
ing PG | Pools). We denote
Gy =PriY(Glp)=2"p" M (1 - p)™ -
Likelihood of the observed reads
We compute the probability of the observed reads in the
pools given G based on the noise model. Note that the
only unknown in the noise model is the concentrations
of the individuals in the different pools. This is true
since the coverage in any given region can be easily esti-
mated. Assume that A is the coverage. Then, the num-
ber of reads with the minor allele (or major)
contributed by individual j in pool i are Poisson distrib-
uted with AMG, (or Ai,»/'L(Z - G))). Since the sum of Pois-
son distributions is Poisson distributed, we have that
ij is Poisson distributed with a known expectation and
thus we can write its likelihood. We denote this func-
tion by f’°**(G). In order to find the concentration
values Aij we need to use external information. One
such possibility could be to genotype small set of SNPs
across the population and use those as the ground truth
in order to tune the values of A4;. These SNPs provide a
set of linear equations for the values A; for each pool
we have one equation per SNP, and the number of vari-
ables is N. Therefore, genotyping as many as O(N) SNPs
and using a least squares approach guarantees an accu-
rate estimate of Ai,».
Likelihood of imputed data
Due to the bounds given on the possibility for detection,
it is clear that without external information we will not
be able to do much better than detecting rare SNPs.
One natural choice for external data could be the geno-
types of the individuals using microarrays. Today’s geno-
typing technology is extremely cheap compared to
sequencing, and the genotyping of thousands of indivi-
duals is feasible within a given study. The genotype
information, however, provides the information about
less than a million SNPs and another million CNVs
across the genomes, while many other genetic variants
are left unmeasured. To cope with this, imputation
methods have been developed, in which nearby SNPs
are used to impute unmeasured variants using the link-
age disequilibrium structure of the genome [16,20].
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However, this process is inevitably noisy, especially
when imputing SNPs of low allele frequencies or SNPs
in regions of low linkage disequilibrium. Together with
the pooling information we are able to provide a much
more accurate calling of the imputed SNPs in all ranges
of allele frequencies and linkage disequilibrium patterns.
The output of the imputation method typically provides
a distribution of the possible genotypes. For each indivi-
dual j, we can assume that there is a given probability /;
(0), 1, (1), hi(2), where h,(j) is the probability that indivi-
dual i has G; = j. We can now use the imputation
results for our likelihood model, by writing
fimeute( Gy = Pr(G | imputation) = TIY, h,(G;) -

A decoding algorithm using linear programming

We use a linear program to bound the possible errors of
each of the pools. If the coverage for the SNP is A, we
have that the pools should roughly satisfy AAG = Y. We
can therefore solve the following linear program:

T

LP(G') = min in +B|G—1,|

i=1
N
s.t. /’LZ a;iG; = Y; S x;, Vi
j=1

N
lEaijGj—Yini,‘v’i

j=1
0<G;<2je{l...,N}

The linear program provides a lower bound on the
best possible /; distance between LAG and Y as well as
returning a solution G which is close to the imputation
prediction I f3 is a parameter that trades off the relative
importance of being close to the imputation vector com-
pared to being consistent with the pools. Note that if ¥;
is distributed as Poisson with expectation 4; for which
Y; - u; = x;, then

Y Yy Y,
: Y.'e’ _ X Y. e’ _
I)r(Y]_):euJ Him Y e x,(l_ij)Y, S Bt
Y]-! Y]-! Y]- Y]-!
2p(@)y T Vi
— ]
Therefore, we get that f(v)<e i, 7

Application to gene fusion detection

In order to detect gene fusions, we make several
changes and extensions to the model presented above.
The major additional complication in detection of
fusion genes is that each sample may have a different
expression level for a particular fusion gene. Even if we
include the same amount of RNA from each tumor
into each pool, the relative concentration of each gene
will differ in each sample. However, this concentration
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is approximately constant across pools. Let e; be the
normalized expression level of a particular variant j (in
this case a fusion gene). Whether or not an individual
i has the variant j is encoded as G = {g;}, g; < {0, 1}.
We define the matrix H = {e;g;} as the concentrations
of the samples and the results of the pools (assuming
no noise) will then be Y = AH instead of Y = AG as in
the genotyping application. In this application, we can
also assume that the matrix G is sparse, but in order
to perform the decoding, we must also estimate e;; for
the non-zero values of g;;.

It is possible to estimate e; because they are constant
across pools, however this introduces additional com-
plexities in the optimization. We take advantage that
fusion genes are very rare and most fusion genes are
not shared across tumors. We constrain our optimiza-
tion to allow for a maximum of k tumors to contain a
given sample. We note that we only need to estimate
the values of e; corresponding to non-zero elements of
g;- To perform the optimization we enumerate over all

possible genotype vectors and for each vector we

estimate the corresponding e; values.

Since optimizing the likelihood function for each pos-
sible genotype vector is computationally impractical, we
solve a linear program as a method to quickly eliminate
poor solutions. Let A* be a matrix consisting of the only
the columns of A corresponding to the non-zero entries
of the genotype vector. If x is a vector which has a
length the same as the number of non-zero elements in
the genotype vector, the solution to A * x = Y will be an
approximate estimate of the values for e;. We can incor-
porate errors by adding a vector of all 1s to A* and
appending a term to x corresponding to the amount of
errors expected in each pool. For the top 100 estimates
obtained by using the pseudo-inverse, we then perform
a grid search over the values of ¢; using the likelihood
function described above.
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