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Abstract

the reads will map to the reference in a different locus.

method produces reliable results at 40x coverage.

Recent studies in genomics have highlighted the significance of sequence insertions in determining individual
variation. Efforts to discover the content of these sequence insertions have been limited to short insertions and
long unique insertions. Much of the inserted sequence in the typical human genome, however, is a mixture of
repeated and unique sequence. Current methods are designed to assemble only unique sequence insertions, using
reads that do not map to the reference. These methods are not able to assemble repeated sequence insertions, as

In this paper, we present a computational method for discovering the content of sequence insertions that are
unique, repeated, or a combination of the two. Our method analyzes the read mappings and depth of coverage of
paired-end reads to identify reads that originated from inserted sequence. We demonstrate the process of
assembling these reads to characterize the insertion content. Our method is based on the idea of segment
extension, which progressively extends segments of known content using paired-end reads. We apply our method
in simulation to discover the content of inserted sequences in a modified mouse chromosome and show that our

Introduction

The genetic variation between two individuals may total
as much as 8 Mb of sequence content [1]. These varia-
tions can vary in size, from single nucleotides up to
entire Mb-sized segments of the genome. Variations at
the nucleotide level are referred to as single-nucleotide
polymorphisms (SNPs), while larger differences span-
ning an entire segment of the genome are called struc-
tural variations (SVs). Structural variations may include
instances where a segment of genome is inserted,
deleted or inverted in an individual genome. Identifying
the variation between two individuals is an essential part
of genetic studies. Knowing the content of these varia-
tions can help us answer questions such as whether an
individual is susceptible to a disease, or why a drug may
affect individuals differently. Numerous studies have
shown a high correlation between SV and genetic
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disorders among individuals [2-4]. The variation
between one individual (the donor) and another (the
reference) is computed by collecting sequence data from
the donor, then comparing this sequence to that of the
reference. In practice, the reference is typically the
NCBI human reference genome (hgl7, hgl8).

One decade after the emergence of high throughput
sequencing (HTS) technology, thousands of genomes
have been sequenced using Illumina, ABSOLID, Solexa,
and 454 technology. These technologies are able to
sequence a mammalian-size genome in a matter of days,
at a cost on the order of a few thousand dollars. This
has attracted much attention from both research and
industry. HTS has revolutionized the sequencing pro-
cess, but it has its own drawbacks. Although the tech-
nology can generate a very large number of reads in a
short amount of time, the length of each read is signifi-
cantly shorter than is achieved using Sanger sequencing.
This limitation has raised a number of challenging com-
putational problems.
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Two orthogonal methods have been introduced to
detect the variation between an individual diploid donor
genome and a haploid reference genome. The first
method, known as resequencing, maps all donor reads
to the reference [5,6] and uses this mapping information
to predict the variation between the donor and the
reference [7-11]. In the second method, called assembly,
a de novo assembler [12-15] is used to assemble the
sequence of the donor genome and then detect the dif-
ferences between the donor and the reference.

One type of structural variation is an insertion of a
segment in the donor genome compared to the refer-
ence genome. Insertions can be classified as either a
unique inserted segment of genome in the donor that
does not align to the reference genome, or a copied
insertion, where the inserted segment exists in the refer-
ence at a different locus.

Kidd et al. 2008 was the first study to tackle the
unique insertion problem, and did so by using tradi-
tional Sanger sequencing of entire unmapped fosmid
clones [16,17]. Unfortunately, this method is costly to
apply to HTS data. Many studies in recent years have
tried to solve the general SV problem using HTS data
[7-11], though these methods were not designed to
detect novel insertions. De novo assembly [12-15] can
be used to detect the unique and copied insertions,
however the high computational cost and memory
requirements have made them difficult to use in prac-
tice. Moreover, as it is shown by Alkan et.al 2010, de
novo assemblers have limitations in how accurately they
can construct the genome [18]. The only efficient
method to assemble unique insertions was introduced
by Hajirasouliha et.al [19], which uses paired-end map-
pings and the unmapped reads to construct the unique
insertions using a de novo assembler.

In this study we attempt to solve both the unique and
copied insertion problems. We will use a hybrid method
similar to the method mentioned in [19] using both the
reference and a specialized assembler to solve the pro-
blem. Our study differs from that carried out by Hajira-
souliha et.al [19] in that we are able to successfully
assemble insertions comprised of both copied and
unique content.

When a paired-end read is sampled from a genome,
the distance between the two mates can be modeled as
a normal distribution with a mean distance y# and stan-
dard deviation 0. We will further assume for simplicity
that the separation distance lies within some well-
defined interval, as shown in Figure 1. The first mate
is mapped in the forward direction (+) and the corre-
sponding mate is mapped in the reverse direction (-).
Given a set of paired-end reads originating from inser-
tion sequences, we will use this fact to "anchor” one
mate in the pair to a known segment of the genome,
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Figure 1 The sampling of paired-end reads from a genome The
sampling of paired-end reads from a genome in which the distance
between sampling positions is at least min, but not more than max

J

.

then find the most likely mapping position of the
opposite mate by aligning it with the endpoint of that
segment. By finding all such reads that can be
anchored and aligned in this way, we are able to dis-
cover the content of the insertion sequence beyond the
endpoint of the known segment. Iteratively repeating
this process allows us to extend these known segments
and assemble the insertions. Figures 2 and 3 illustrate
this approach.

Methods
Notation and definitions
The set of paired-end reads from the donor genome is
represented by R = {ry, ry, r3, ...r,,} where r* and r~
are the forward and reverse strands, respectively, of read
ri. 1,7 loc is the set of positions read r;* maps to in the
reference. r.loc; is the k-th position among all possible
mappings of read i. A,,;, and A,,,, are the minimum
and maximum insert sizes, where A,,;, = ¢ — 30 and
A,ux = p + 30 (three standard deviations from the
mean). The set of insertion locations is represented by
Loc = {locy, locy, ...loc,,}, with Segs = {sego 1, seg1,2, ..
seg,,_1,m} representing the segments of the donor gen-
ome between those insertions. The entire donor genome
sequence is Donor.

We classify reads into the follow five categories:

+ One-end anchored (OEA): Read-pairs in which one
mate maps to the reference genome, and one does not.

o Orphan: Read-pairs in which neither mate maps to
the reference.

+ Concordant: Read-pairs in which both reads map to
the reference, and the distance between their mapped
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Figure 2 Estimating the mate position It is shown that when a
mate in a paired-end read is aligned to the reference, one can
estimate the position where the second mate aligns
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Figure 3 lllustrating our approach Each step of our approach is illustrated in this figure. (a) indicates the donor and reference genome, where
a segment is inserted in the donor genome. In (b) we show how the reads are sampled from the donor genome. Reads preceding the insertion
in (c) map to the reference while their corresponding mate fails to map to the reference. In (d) we show how to use the information from (c) to
predict the position of unmapped mates. In the end (e) displays how we can use the (c) and (d) mapping to align additional unmapped reads.

locations is within the range [Ain, Aju,]- Furthermore,
one mate should map in the forward direction, and one
in the reverse.

« Discordant: Read-pairs in which both reads map to
the reference, but are not concordant.

+ Over-coverage: Reads which are concordant, but
which map to a region with a higher depth-of-coverage
than is expected, where the depth-of-coverage in a
region is simply the number of reads that map to that
region divided by the length of the region.

We will define the following notation for working with
slices of strings and arrays: Given an array A, A[i : j]
denotes a contiguous segment of A of length j — i begin-
ning at position i.

We use the @ operation to represent whether or not
two strings have an alignment score above some thresh-
old. s; @ s, = true iff Align(s;, sp) >z. The exact value of
the threshold 7 varies depending on the context and in
all cases is user-configurable, so we leave it as an impli-
cit parameter and omit it from the notation.

The depth-of-coverage for a particular position in the
reference is defined as the number of reads that cover
that position. We will define ypoc as the mean depth-
of-coverage across the entire reference genome, and
#pocry as the mean depth-of-coverage across the posi-
tions in the reference that are covered by read r.

Assembling the insertion

Given the set of insertion locations #oc and the set of
reads R, our goal is to identify the subset of reads that
were sampled from a particular insertion, determine the
correct layout of those reads, and finally to decide the
consensus value for each position in the insertion. We
aim to solve this problem using an iterative approach
based on the notion of segment extension, which is ana-
logous to building and traversing a path through the
string graph [20] simultaneously. We will first present
the mathematical foundations of our approach, then
describe the optimizations that make this approach
practical on common desktop computing hardware.

We begin the insertion assembly process by partition-
ing the donor genome according to the insert loci Loc =
{locy, locy, ...loc,,}. This results in a set of segments Segs
= {sego 1, S€g1 2, -.- S€Cy _ 1.m), Where seg;;,1 represents
the segment of the donor genome between insertion
loci i and i + 1. For each segment seg;;,;, we attempt to
assemble insertions i and i +1 by extending the segment
at each endpoint using an iterative process. For the sake
of simplicity, we will formulate only extension in the
forward direction.

The segment extension method is based on identifying
a set of reads which have a high likelihood of covering a
particular position pos in the donor genome, where pos
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lies at the edge of some segment seg. Identification of
this set occurs in two passes. The first pass is performed
only once, and selects reads from R which are likely to
have been sampled from any insertion in the donor gen-
ome. We refer to the result of this first pass as the inser-
tion read set. The second pass is performed for every
position pos, and further filters the insertion read set to
select reads that are likely to cover position pos. We
refer to the result of the second pass as the covering set
for position pos. Once we identified the covering set, we
decide the value of Donor[pos] by finding the consensus
among all reads in the set. We then move to position
pos + 1 and repeat the process.

Insertion read set

Consider a paired-end read r in which one mate covers
the insertion and the other mate does not. In the case
that the insertion sequence is unique, it follows that r™.
loc = & or r".loc = & (J being the empty set), categoriz-
ing the read as OEA. In the case where the insertion
sequence is copied, then both mates will map some-
where in the reference, however the distance between
them is unlikely to be consistent with the expected
insert size (|r".loc — r .loc| < A,;, or |r'.loc — r.loc| >
A,ax). In this case the read will be categorized as
Discordant.

Now consider a paired-end read r in which both reads
cover the insertion. If the insertion sequence is unique,
then neither mate mate will map to the reference and
the read will be categorized as an Orphan read. On the
other hand, if the insertion sequence is copied, then
both mates will map to some region in the reference,
and the distance between them will be consistent with
the expected insert size. However, if we calculate the
depth of coverage in this region, we will find it to be
higher than the sequencing coverage. These reads will
be categorized as over-coverage.

Based on this analysis, we define the following four
functions:

X _Jtrue if(r7doc= orr*loc= )and (r Jocurtloc= )
IsOBA(r) = {false otherwise (1)
P _ + _
IsOrphan(r) = true ifr doc= andr".loc @)
false otherwise

el - P )
IsDiscordant(r) = true if [r"doc), — 17 loc,| < A, or [rF.doc — 1 loc| > A, forallk (3)
false otherwise

max(0, #pocyr] — Mpoc)

Hpocir| (4)

true  with probability Pr =
IsOverCoverage(r) =

false with probability 1 - Pr
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We now construct a subset IRS = {r € R : ISOEA(r)|
IsOrphan(r)| IsDiscordant(r)| IsOverCoverage(r)}, repre-
senting the insertion read set. Note that the IsOver-
Coverage function is designed such that we select the
appropriate fraction of reads from an over-coverage
region. For example, if a region has mean read-depth
24poc, we are only interested in 50% of the reads from
that region. This is captured by the probabilistic
function.

Covering set

Consider a position in the donor genome Donor|[pos]
belonging to an insertion and for which the correct
nucleotide assignment is unknown. Our goal is to deter-
mine the exact set of reads CS,,, that cover Donor[pos],
which we will refer to as the covering set. Assume that
Donorlj] is known for all j € [(pos — 2] — A,,...),pos] and
consider a paired-end read r = (", r"). We assert that if
r~ covers Donor[pos], in other words r € CS,,,;, then the
following conditions must hold:

1. 7" covers some set of positions in Donor[pos — I —
Amax L pos — Amm]

2. If " [ext] covers Donor|[pos], then Donor[pos — ext —
1:pos—1] & r [0: ext — 1].

The region of the donor genome denoted by Donor
[pos — I — A,y : pos — A,,.;,1] is referred to as the anchor
window, and so reads that meet condition 1 are consid-
ered anchored. Reads that meet condition 2 are referred
to as extending reads. We will capture these conditions
formally in two functions ®4 and ®¢ (anchors and
extends, respectively), defined as follows:

true if Janchor : Donor|anchor : anchor +1|® ™,

@ (1, pos) = (pos—1—A,,.) < anchor < (pos—1-A,,,)  (5)
false otherwise
@ (r, pos) = {true if Jext :-D(mor[pos —ext—1:pos—1]@r7[0:ext —1], ext >k (6)
false otherwise

Refer to Figures 4, 5, and 6 for an illustration of the
process identifying the covering set. Note that for our
purposes, small values of ext are not informative, as
there is a relatively high probability, given two short
strings s; and s,, that s; @ s,. Therefore we will further
require that ext >k, where  is user-configurable. In
practice, given a paired-end read it is not known a priori
which mate is the forward strand and which is the

ﬂ

Anchor window Extension window

Figure 4 Defining the anchor and extension windows
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Anchor window Extension window

Figure 5 Identifying anchoring reads

reverse. During construction of the covering set we
therefore test both orientations and settle on one should
it be found to meet the two conditions.

We can now compute an approximation of CS,,, as fol-
lows: CS;OS ={re IRS: ® ,(r,pos) = true and P ;(r, pos) = true} ,
We note that this is only an approximation, as the repeti-
tive nature of genomic sequence dictates that there will
be reads in CS'pOS that do not truly cover Donor[pos].
Further-more, our choice of x as a lower threshold
means there will be reads in CS,,,; that are not in CS;,,,S .

Using the covering set we can now decide the value of
Donor[pos] as follows, where ext, is the value of ext
computed for read s. Note that this is merely a formal
statement of the standard consensus problem. Refer to
Figure 7 for an illustration of this.

Donor[pos| = arg max(|s € CS,,,, : slext ] = c|) )

c

Once the value of Donor[pos] is known, we can itera-
tively repeat this process for pos + 1, pos + 2,.... Recall
that we initially assumed that the value of Donor [j] is
known for all j : i — 2/ — A, <j <i. This will always be
the case at the boundaries of the insertion, providing a
base from which we can iterate. The iteration terminates
when there is insufficient consensus to decide the value
of Donor[pos]. That is, [s€ CSj:slext|=c|<e ,
where ¢ is a user-defined threshold.

Algorithm 1 Assembling the Insertion

: Segs < Segments(Donor, Loc)
: IRS « InsertionReadSet(R)

: for seg € Segs do

1 |seg|+1

: CS; « CoveringSet(IRS, i)

: while |CS}| > ¢ do

segli] « Consensus(CS7, )
ie—i+l

CS; « CoveringSet(IRS, i)
10 :end while

11 : end for

_— =

ﬂ

Anchor window Extension window
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Figure 6 Identifying extending reads

A|ACITIGIT|C

Assemble Seq.

A /ACTIGT!|?

:

GITITIC| T C
ElriElariEle

Assemble Seq.

Figure 7 Extending the segment Indicating how we can compute
the 7th element in the donor which is indicated by ? in the left
figure. Using the mapping reads we can replace the ? with C

Algorithm 1 illustrates the high-level algorithm. Once
this iterative process has been applied to each segment,
we are left with a set of extended segments
Seg’ = {seg,1,5€81 5,...,5€8 1 »}. In order to assemble
the complete donor genome, we compute the overlap of
each adjacent pair of segments. Pairs with a low overlap
score indicate that only a portion of the insertion
between them was assembled, in which case it may be
possible to revisit the insertion using a more relaxed set
of alignment functions. Pairs with high overlap scores
indicate a successful insertion assembly and may be
merged into a single contig.

Note that in algorithm described above, at each
iteration we selected the value that is the consensus
of all reads in the covering set. In general, this
approach works well when applied to non-repetitive
insertion sequences. For insertion sequences that are
repetitive, however, there will be multiple values of ¢
for which |re CS;: r[exts]:c| > ¢, where ¢ is suita-
bly large to eliminate the effect of read errors. In this
case we say that our iterative algorithm has encoun-
tered a divergence, and we proceed to branch and
explore each supported value of c. Ultimately, each
branch will return a set of hypothetical sequences. In
attempting to select the most probable sequence from
this set, we reason that an ideal assembly of all inser-
tions would account for every read in IRS. Therefore
when assembling each individual insertion, we select
the hypothesis that accounts for the greatest number
of reads.

We assume that the locations of the insertions are
provided to us as input to the assembly method. There
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are two main methods for determining these locations
that have been presented in previous work:

1. Using existing SVs frameworks: Many efficient tools
have been developed in past few years to detect the SVs
efficiently and accurately [8,10]. We can use the output
of their methods as the input to our algorithm.

2. Clustering the OEA Reads: OEA reads are indicator
of unique insertion, we will cluster the OEA reads and
pick the cluster set which has the most number of OEA
reads. Clustering the OEA reads will increase our confi-
dence level if an insertion has occurred in the donor
genome. Furthermore, it will reduce the estimated num-
ber of unique insertions in the donor genome, which
follows the maximum parsimony [19].

Optimization

Given a donor genome containing a total length L; of all
insert content, a naive implementation has a running
time that is dominated by the insertions assembly step,
with a running time of O(L; - |IRS|- maxp05(|CS;05|)) .
For every position pos in each insertion, we must search
through |IRS|, computing ® 4 and @ for each read, to
identify the approximate covering set CS),. Note that
as |IRS| will be dictated by L;, and |CS;,05| will be fairly
constant, this can be roughly simplified to O( L%) .

In order to reduce the computational complexity of
this search problem, we make use of recent methods
developed for read-mapping applications using the Bur-
rows-Wheeler Transform (BWT) [21]. While we will
not discuss the implementation details, the advantages
of using a BWT can be summarized as follows. Given
two strings x and y, we would like to find all instances
of string y in x, allowing for d mismatches. While a
naive search algorithm would require O(|x||y|) opera-
tions, using a BWT we can achieve this in only O(¢%|y|)
operations, irrespective of |x|, where £ is the size of the
language (4 in our case). Furthermore, unlike the com-
mon suffix tree-based approaches, the BWT can be
represented compactly, making this approach feasible on
standard desktop hardware.

In read-mapping applications such as BWA and Bow-
tie[22,23], x is the reference genome, and y is an indivi-
dual read. We instead set x= r1+r2+ ...r,:', the
concatenation of all forward-end reads, and search for
substrings s of the anchor window. Given a function
BWTSearch that returns the set of matching indices, we
can now use the BWT to locate all anchored reads:

{re R:®,(r,p) = true} = {r; e R': jle | JBWTSearch(s, x)}
That is, if read 7; is anchored, then one of the calls to

BWTSearch should return the index jl. The key differ-
ence here is that computing the set on the left requires
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computing ® 4 for all reads in R’, while the set on the
right can be computed using only A,,,. — A,,;, (the
number of substrings of length / in the anchor window)
calls to BWTSearch.

We also note here that as each insertion is assembled
independently, it is straightforward to parallelize our
approach on multiple processors. Once the insertion
read set IRS has been generated, it can be read by all
processes on a single machine or cloned on each
machine in a cluster. Each process is then assigned a
single segment to extend. Furthermore, the construction
of IRS itself can be parallelized simply by dividing up
the set of reads among multiple processes.

Results

In this part of the paper we will report the accuracy of
our method in assembling the insertions. We designed a
simulated framework in which the reference genome is
the C57BL/6] (NCBI m37) chromosome 17 and the
donor genome is simulated by inserting sequence seg-
ments into the reference genome. Unique insertions
were generated using a uniform distribution over the
four bases. Copied insertions were generated by choos-
ing a uniformly random position in the genome and
duplicating the content at that position. The mean size
of the inserted segments is 2kbps, with a standard devia-
tion of 200bp. We generate a set of reads from the
donor genome using MetaSim [24], using a read length
of 36 and a mean insert size of 200bp with a standard
deviation of 25bp. We generate reads at 40X coverage.
Moreover, we vary the number of inserted segments
from 10-1000. We calculate the accuracy of our method
by counting the number of insertions that were
assembled correctly within some small margin of error
(an edit distance of 10bp was used in the results
shown). Table 1, shows the results of this calculation,
confirming that our method maintains high reliability as
the number of insertions grows. In these results, each
insertion contains equal parts unique and non-unique
content, generated by copying a segment of the refer-
ence genome and inserting a unique segment. The
decrease in accuracy as the number of insertions grows

Table 1 Accuracy of our method at varying numbers of
insertions, from 10 to 1000

#Insertion Accuracy(%) Standard Deviation(%)
10 98.00% 447%
50 92.80% 1.79%
100 94.20% 249%
500 91.64% 1.04%
1000 89.92% 0.77%

Accuracy of our method at varying numbers of insertions, from 10 to 1000.
Each insertion contains both unique and non-unique content.
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can be attributed to the increase in the number of
reads contained in the Insertion Read Set. As the size
of this set grows, the probability of selecting the wrong
reads during segment extension also increases. Our
results demonstrate, however, that this effect is fairly
small.

In Figure 8 we show that the running time of the
algorithm increases quadratically if we apply the naive
indexing algorithm. Using the Burrows-Wheeler Trans-
formation discussed in the Optimization section results
in a running time that grows linearly.

In order to test our method in different insertion
categories, we run our method on three different cases
as shown in Figure 9. Case 1 is where the insertion is
unique and the sequence is inserted in a unique region
in the reference. In Case 2 the insertion is copied but it
is inserted in a unique region. Case 3 is similar to case
2, where the insertion is copied but contains a unique
segment as well. Table 2 indicates the assembly accu-
racy for 1000 insertions in the 3 different categories. In
the first case we are testing how accurately our method
can assemble the unique insertions. This is the simplest
case among the three. In the second case, not only we
are testing our assembly accuracy, but our success is
also an indication of how well we can detect the set of
over-coverage reads. High accuracy in the second case is
not only important for insertion assembly, but it can
also be widely used in the CNV detections. In case 3, in
addition to the complexity in case 2 and case 1, we have
to deal with the case where there is an insertion inside
another insertion. As the results indicate our method
maintains high accuracy as the complexity of the inser-
tions grows, which suggest we can apply our method to
any insertion assembly problem, without any assump-
tions as to the type of the insertions.

1000

800

600 . N "
Naive indexing

Time in seconds

400

200

- — - BWT-based indexing

5 6 8 9 1
+# of inserts (length ~1000)

Figure 8 Comparison between the naive search method and the
BWT search method
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Figure 9 Three different categories of insertions

Discussion

Detecting structural variation (SVs) between two indivi-
duals has been studied widely in the past few years.
Although detecting the presence of SVs is an important
problem, assembling the actual sequence of the SV
accurately is invaluable. While high throughput sequen-
cing (HTS) has revolutionized genomics by giving us the
opportunity to cost effectively sequence many indivi-
duals, this technology limits the extent to which refer-
ence-based assemblers can discover the content of
inserted sequences. In this study we addressed the inser-
tion assembly problem using paired-end HTS data.
While previous methods were focused on assembling
the content of unique insertion sequences, and thus are
not able to assemble insertions containing copied
regions, our method is able to assemble both copied and
unique insertions. Furthermore, it is independent of any
de novo assemblers, and as such it can be used as a
stand alone tool to assemble insertion sequences. We
have shown that at 40X coverage we can assemble the
insertions with very high accuracy. Finally, we
have demonstrated the practicality of our approach
by presenting both algorithmic optimizations and

Table 2 Accuracy of our method in 3 different categories

Category Accuracy(%) Standard Deviation(%)
Case 1 98.40% 0.23%
Case 2 92.06% 0.98%
Case 3 89.92% 0.77%

Accuracy of our method in 3 different categories. In Case 1 both the inserted
sequence and the region in the reference is unique. In Case 2 the copied
sequence is inserted in a unique region in the reference, while in Case 3 the
copied insertion contains a unique insertion as well. For each case, 5
simulations were performed.
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parallelization opportunities that make this method fea-
sible even for mammalian-size genomes.
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