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Abstract

a difficult challenge.

ambiguity of orthologous genes.

GN/.

Background: To access and utilize the rich information contained in the biomedical literature, the ability to
recognize and normalize gene mentions referenced in the literature is crucial. In this paper, we focus on
improvements to the accuracy of gene normalization in cases where species information is not provided. Gene
names are often ambiguous, in that they can refer to the genes of many species. Therefore, gene normalization is

Methods: We define “gene normalization” as a series of tasks involving several issues, including gene name
recognition, species assignation and species-specific gene normalization. We propose an integrated method,
GenNorm, consisting of three modules to handle the issues of this task. Every issue can affect overall performance,
though the most important is species assignation. Clearly, correct identification of the species can decrease the

Results: In experiments, the proposed model attained the top-1 threshold average precision (TAP-k) scores of
0.3297 (k=5), 0.3538 (k=10), and 0.3535 (k=20) when tested against 50 articles that had been selected for their
difficulty and the most divergent results from pooled team submissions. In the silver-standard-507 evaluation, our
TAP-k scores are 04591 for k=5, 10, and 20 and were ranked 2", 2" and 3 respectively.

Availability: A web service and input, output formats of GenNorm are available at http://ikmbio.csie.ncku.edu.tw/

Background

In recent years, the amount of biological literature has
increased rapidly. Text-mining techniques for extracting
information from this work are not completely reliable
[1]. Extracting information on proteins automatically
and precisely is very important and difficult. Many
methods have been developed, and they mainly consist
of two tasks. Relation extraction identifies the relation-
ships among biomedical entities in the literature. In
extracting relations, each biomedical entity, such as a
gene, protein or disease, in an article is mapped to its
database identifier. This task is called name entity
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normalization. This is particularly challenging given the
high ambiguity in biology and biomedicine of many
entity names, such as the gene/protein name [2-7], spe-
cies name [8-10], and the chemical/compound name
[11,12].

The Critical Assessment of Information Extraction
Systems in Biology (BioCreative), a renowned competi-
tion in the field of biological text mining, covers a vari-
ety of important issues. BioCreative III addressed three
text-mining tasks in the domain of molecular biology:
gene normalization (GN), protein-protein interactions
(PPI), and an interactive demonstration task for gene
indexing and retrieval (IAT). The GN task in BioCrea-
tive III was similar to the same tasks in previous Bio-
Creative competitions [4-6], in that the goal was to map
genes or proteins mentioned in the literature to stan-
dard database identifiers. The GN tasks of BioCreative
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I1.5 & III were more difficult than those in preceding
challenges. In particular, species information was not
provided, and the normalization targets were changed to
full-text articles. The GN tasks of BioCreative I & II had
been limited to a specific species, such as a human, fly,
yeast, mice, and the tasks extracted information from
abstracts in the literature. These two differences resulted
in a more challenging evaluation than the previous
competitions.

Many gene normalization studies have focused on GN
tasks in which species information is provided. Haken-
berg [13] developed an outstanding gene-name normali-
zation system, winning the BioCreative II name entity
normalization task. ProMiner [3] is a well-known gene-
name normalization system that employs a dictionary-
based approach and relies on manual curation. GENO
[7] is a high-performing and efficient gene-name nor-
malization system. It applies the TF-IDF weighting
scheme and calculates semantic similarity scores to
resolve ambiguous terms. All of these systems perform
well, obtaining F-measures of 80%. Later, Hakenberg [2]
developed a cross-species normalization system, GNAT,
which considers 13 different species and obtains an F-
measure of 81.4%.

The interactor normalization task (INT) of BioCrea-
tive IL.5 did not provide species information and focused
on full-text articles. Owing to the two difficult charac-
teristics of this task, the normalization results might
seem surprisingly low [5]. Hakenberg et al [14] modified
their previous work, including GNAT and a gene men-
tion recognition system (BANNER), and obtained the
highest precision (F-measure 43.4%). They disambigu-
ated species and assigned candidate identifiers to pro-
teins mentions. Chen et al. [15] developed a Biological
Literature Miner (BioLMiner) system to handle the INT
and IPT (interaction pair task) tasks. Two of their sub-
systems involved in the INT task are the gene mention
recognizer (GMRer) and a gene normalizer (GNer).
These two subsystems were developed based on support
vector machine (SVM) and a conditional random field
with designed informative features. Verspoor et al. [16]
introduced an approach using fuzzy dictionary lookup
to detect mentions of proteins. They also described sev-
eral strategies for disambiguating species associated with
gene mentions; these strategies operated globally
(throughout the document) and locally (in the immedi-
ate vicinity of a protein mention). Seetre et al. [17] used
many subcomponents to produce the AkaneRE system,
which obtained the highest recall (68.3%). The AkaneRE
is provided by the U-Compare system, and it includes
sentence boundary detection, tokenization, stemming,
part-of-speech tagging, parsing, named-entity recogni-
tion, generation of potential relations, generation of fea-
tures for each relation, and finally, assignment of
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confidence scores and ranking of candidate relations.
Dai et al. [18] used a three-stage normalization algo-
rithm with a ranking method to handle this task. For
interactor ranking, candidate identifiers are ranked by
SVM classifier with baseline features and template
features.

The purpose of the GN task in BioCreative III is to
produce a list of the EntrezGene [19] identifiers of all
species for gene mentions in full-text articles. This task
is a complicated challenge involving three issues: gene-
mention variation, orthologous gene ambiguity and
intra-species gene ambiguity. Gene-mention variation
occurs when a gene in a dictionary has multiple names.
Gene names in the literature also show high variation,
including orthographical variation (e.g., “TLR7” and
“TLR-7”), morphological variation (e.g., “GHF-1 tran-
scriptional factor” and “GHEF-1 transcription factor”),
syntactic variation, variation with abbreviations, and var-
iation in enumeration (e.g., “TLR7/8” and “TLR7,
TLRS8”) [20,21]. Orthologous genes usually belong to
several species. To solve the GN task accurately, gene
mentions must be assigned to the correct species and
normalized to their own database identifiers. This is the
most complicated step, and it arises from the extreme
ambiguity of orthologous genes. For example, the ESR1
gene is associated with 22 Entrez Gene Ids, which
belong to several different species. It is very difficult to
normalize gene identifiers that lack species information.
Intra-species gene ambiguity can occur when different
genes have the same name. For example, the name
“CAS” may refer to multiple distinct identifiers, such as
Entrez Gene 1d:1434 (“Cellular apoptosis susceptibility
protein”) or Entrez Gene 1d:9564 (“Breast cancer anti-
estrogen resistance 1”).

In this study, we propose an integrative method, Gen-
Norm, to handle the three issues of the GN task. Our
approach uses three modules, the gene name recogni-
tion (GNR) module, the species assignation (SA) module
and the species-specific gene normalization (SGN) mod-
ule. Good GNR processing can insure a high quality of
gene mentions and reduce gene mention variation. SA is
critical. Given a gene mention, it is essential to know to
which species the gene belongs. Species information can
help identify orthologous genes and help resolve the
species discussed in each article. Ignoring the SA can
lead to severe problems with gene ambiguity. SGN is
the last and significant for GN; this module is responsi-
ble for intra-species gene ambiguity.

Methods

For the GN task, we developed an integration method
consisting of three modules, as shown in Figure 1. The
GNR module extracts gene mentions from full-text arti-
cles. This module applies a well-known system for
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Figure 1 Architecture of GenNorm. GenNorm includes gene name recognition (GNR), species assignation (SA) and species-specific gene name
normalization modules.

tagging gene mentions to tokenize them by proposed strategies to generate the species entity list. The species
post-processing rules. The distillation strategy then fil- lexicon combines species and cell names (which can
ters non-gene names. The SA module applies a diction- indicate their own species) to cover all kinds of species
ary-based matching method with two robust inferring mentions. Then, the species assignation strategy uses
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contextual information to decrease the ambiguity of
each gene mention. Finally, the SGN module uses an
inference network model to handle intra-species gene
ambiguity and gene-name variation.

Gene name recognition module

Our system uses the name-entity tagging tool AIIA-
GMT [22]. This tool is an XML-RPC client of a web
server that recognizes named entities in biomedical arti-
cles. A general entity recognition process cannot collect
sufficient information for entity normalization. These
systems usually treat lightly or ignore informal, simpli-
fied naming descriptions, such as abbreviated names,
enumeration mention descriptions, and names with con-
junctions. Thus, we propose a post-processing step
which can enhance the ability of general-purpose recog-
nition systems.

Due to the varied naming styles of gene names in the
biomedical literature, a tagged entity will not always
exactly match a gene name in the dictionary. To address
this issue, four translation rules of the post-processing
step, i.e., the “number type”, “conjunctions”, “enumera-
tions”, and “parentheses”, are applied to tokenize gene
names (Table 1).

The first rule is the number type. Numbers of differ-
ent subunit type, e.g., Roman, Arabic and Latin, are uni-
fied. Second, entities with conjunctions are split.
Sometimes, two or more gene names have been com-
bined into one mention by several conjunctions. This
mention is split into several mentions. In the enumera-
tion step, we extract the Arabic and Roman types by
splitting conjunctions and combining the mutual family
name with each Arabic or Roman type. At this step, an
enumeration entity with the sequential numbers repre-
sents several gene names belonging to the same family.
The entity is separated into several different gene names
sharing their mutual family name. In the last rule,
abbreviations in the parentheses of a gene entity are iso-
lated. The “protein(s)” or “gene(s)” are then removed
from the mentions, e.g., “MURF 3 protein” becomes
“MUREF 3.

After the post-processing, the method applies a distil-
lation strategy to prevent false tagging. This step focuses

Table 1 Several steps of post-processing of the GNR module.
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on protein families, group and complex names, and
non-gene terms from the tagged entities. In our perfor-
mance observation in training data, filtering the protein
families, group and complex names improved the preci-
sion, but the recall was lost. Therefore, the F-measure
did not change, but the TAP-K score was improved.
Thus, these equivocal terms are filtered in this strategy.

We apply four regular expressions (Table 2) to remove
the filtering targets, which might include family names,
figure names, or antibodies, for example. Some gene
identifiers are mentioned in the articles, and these iden-
tifiers can be directly matched to their own species;
however, most general taggers of gene mentions cannot
extract identifiers mentions. For this particular situation,
we attach an “identifier extraction” to the GNR module.
To collect identifier mentions, we combine several kinds
of gene identifiers, such as swissprot_id and SGD_id,
from the locusTaganddbXrefs attributes of the gen-
e_info table of the EntrezGene database and use the
combined corpus to match identifier mentions. To
reduce the computational cost, tokens with Arabic
numerals or alphabetic characters are extracted from
the articles. The extraction of candidate mention of
identifiers is handled by two regular expressions: /(\S*
[0-9]+\S*[A-Za-z]+\S*)([*0-9A-Za-z]+.%)$/ and /(\S*[A-
Za-z]+\S*[0-9]+\S*)(["0-9A-Za-z]+.*)$/. The first match-
ing by pair of parentheses is used to match the target
tokens. The second pair of parentheses extracts the part
of sentences after the matched target tokens. It is
because that one sentence may contain more than one
target token. Particular symbols, including “white”,
“hyphen”, “dot” and “underline”, are then removed from
the tokens and gene identifiers before matching, e.g.,
“YCL057C-A” becomes “YCLO57CA”. After this adjust-
ment, the tokens are compared with the gene identifiers.
Tokens that exactly match gene identifiers are possible
Entrez Gene Ids.

Lastly, the extracted entities are dumped into a “bag of
words,” as determined by their punctuation, symbols,
and spaces. For example, “Hypoxia-inducible factor-1
alpha” is split into “Hypoxia“, “inducible”, “factor”, “1”
and “alpha”, each of which is stored in the bag-of-words
list.

Step Rules Example

Roman — Arabic Greek
— English

Number type

Conjunctions  Split entity by and/or

“proprotein convertase”

Enumerations  Enumeration— gene

mentions

Parentheses  Split entity by

parentheses

I, II, I Roman— “1, 2, 3" Arabic alpha, beta, gamma — “a”, "b", "g"
GABARAP and light chain 3—"GABARAP" & “light chain 3" furin or proprotein convertase — “furin” and
Robo 1/2 — "Robo 1" and “Robo 2" SMADs 1, 5 and 8 — “SMAD 1" and “SMAD 5" and “SMAD 8"

fibroblast growth factor-2 (FGF-2)-interacting-factor — “FGF-2" and “fibroblast growth factor 2 interacting
factor” gamma carboxyglutamic acid (Gla) — “gamma carboxyglutamic acid” and “Gla”
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Table 2 Regular expressions used in the distillation strategy
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Filter set Regular expression
Family name /([A-Za-20-91+)[NA-Za-z0-9) (cell|family|subfamily|superfamily|domain|promotor)/
Attachment /(fig[figure|video|movieltabltable)[NA-Za-z0-9]+([A-Za-z0-91+)/
Antibody name /(anti)[NA-Za-z0-91+([A-Za-z0-91+) [N A-Za-z0-9]+(antibody|antibodies)/
(

Biomedical words

/([A-Za-z0-9]+)["A-Za-z0-9]+(binding peptide|pathway|domain|cell[function|isoforms)/

Species assignation module

To assign a suitable species to each gene mention, the
first step is to extract species mentions from articles. We
propose two robust inference strategies combined with a
dictionary-based matching method. The species name
collection aggregates three different species name lexi-
cons: the NCBI taxonomy, list of cell lines from Wikipe-
dia and the corpus of Linnaeus [9]. Sometimes, species
do not map to any Entrez Gene Ids. For example, Escher-
ichia of tax_id:561 does not map to any Entrez Gene Id.
Such species are removed. The number of species in the
original lexicons is 570,679; after filtering, the number
species in the combined lexicon is 6,764

Synonyms of every species in the lexicon are used to
detect species names using dictionary-based matching.
A species may have a variety of abbreviation names, e.g.,
“Escherichia coli strain k-12” is same as “E.coli k-12”
and “E. coli k-12”. Some species have an especially large
number of synonyms. To handle this case, a dictionary
extension strategy is used. We automatically generate
additional synonyms from each species name by repla-
cing the genus name with its first letter and a dot and
potentially a white space [10], e.g., “E. coli”. These spe-
cies synonyms are then added if they do not already
occur in the collection of lexicons. All uppercase letters
are then changed to a lowercase form. For example,
Taxonomy ID (tax_id): 83333 contains several syno-
nyms, including “escherichia coli k-12”, “escherichia coli
k127, “e.coli k-12” and “e. coli k-12".

Checking all synonyms of a species is a time-consum-
ing task. To enhance the computation speed, all synon-
ymous names of a species are integrated and
transformed into a regular expression automatically. In
other words, the regular expression of a tax_id contains
all existing names of the species. For the given example,
tax_id:83333 would lead to the expression “e(?:\. ?coli k
\-12|scherichia coli k\-?12)”.

The NCBI Taxonomy is a hierarchical structure of
species types. Our collection only includes four types,
“species”, “no rank”, “subspecies” and “variants”. Addi-
tionally, we add the genus, taken from the first word of
each species’ scientific name, to the species dictionary.
These genus names will be used to infer the correct
tax_id, as will be discussed below. (We set the priorities
for the disambiguation of species names as “species” >
“no rank” > “subspecies” > “variants” > “genus name”,

with the species type on the left a higher priority than
the type on the right). When two species have the same
name, the lower priority one is eliminated.

There are some additional cases of non-matching
results. First, some species entities are genus names.
These entities in the same article always indicate a
mutual species of the genus, e.g., “Arabidopsis” is recog-
nized as “Arabidopsis thaliana” when the same article
includes both entities. Second, family species will share
the same species name. An example is shown in Table 3
for the ambiguous Escherichia coli species family, which
includes 45 taxonomy identifiers, such as 511145,
431946, and 511693. For tax_id:511145, the last subtype
of the species is “mgl655”, and it can indicate the spe-
cies mention “Escherichia coli” to tax_id:511145.

To handle these cases, we devised two robust strate-
gies of robust inference. (1) Guaranteed inference: guar-
anteed entities can be wused to disambiguate
unguaranteed entities. The complete species name is
guaranteed to indicate tax_id, but genus names, ambigu-
ous cell names and abbreviations are unguaranteed. The
substitution of genus for species name can also be
described as a type of anaphora. Unguaranteed entities
always occur with the guaranteed name in articles, e.g.,
“Arabidopsis” accompanies “Arabidopsis thaliana” and
“A549” accompanies “A549 cell(s)”. In reverse, “A549”
cannot imply “A549 cell” when the article does not con-
tain the complete species name “A549 cell(s)”. The guar-
anteed entity can imply the unguaranteed entities that
indicate the same species. As an example (Figure 2),

Table 3 Species family of Escherichia coli (tax_id:562)
including 45 species.

tax id Species scientific name

199310 escherichia coli cft073

316385 escherichia coli str. k-12 substr. dh10b
316401 escherichia coli etec h10407

331111 escherichia coli e24377a

331112 escherichia coli hs

344610 escherichia coli 53638

413997 escherichia coli b str. rel606

431946 escherichia coli se15

83333 escherichia coli k-12

511145 escherichia coli str. k-12 substr. mg1655
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Articles ID:2880583

... In order to further investigate the role of NOX2 in virus-mediated IRF-3
activation, we first thought to confirm, in our A549 model, the essential role of RIG-
I in SeV recognition that was previously highlighted in embryonic fibroblasts
(MEFs), ... demonstrating that RIG-1 is essential for downstream signaling to IRF-3
in the early time points following SeV infection in A549 cells.

Figure 2 Example of guaranteed inference. The unguaranteed
species name-"A549" can be inferred to human species by
guaranteed species name-"A549 cells”.

“A549 cells” can imply that “A549” indicates an A549
cell. Thus, the “A549 cell” mention frequency is two in
this paragraph. (2) Co-occurrence inference: the species
sub-type can disambiguate the species name and genus
name, when the sub-type appears after the species and
genus names in the same sentence. The sub-types in the
NCBI Taxonomy include strain, substrain, variant, sub-
species, pathovars and biovar. For example, “MG1655”
is a substrain of “E. coli K12”.

Figure 3 shows how “E. coli K12 (MG1655)” appears
different from all synonyms of tax_id:511145. Diction-
ary-based matching is not useful in this situation. In our
observation, each subtype can be unambiguously
assigned to one species. Thus, the MG1655 can disam-
biguate “Escherichia”, “E. coli” and “E. coli K12” to the
specific species (tax_id:511145).

We show in Table 4 the types of species mentions by
species extracting step in species assignation module.
The targets of guaranteed inference are “genus name”
and “cell line”, and the target of co-occurrence inference
is “sub-type”. The total percentage of inference targets
among species mentions is 11.3% (8.06%+2.04%+1.20%).
However, these targets are not a major part of species
mentions. It is nonetheless the most difficult aspect of
detecting species mentions. Lastly, a set of high-false-
positive aggregated from species mentions is shown in
Table 5. The first row is collected by Linnaeus software
[9]. Candidate species terms matching high false positive
terms are removed. Two experiment descriptors in the
second row contain “yeast”; similar species names would
lead to false positives, and the “yeast” in these two
experiment terms is removed. In addition, particular
tagged entities are shortened, e.g., the prefixes or suf-
fixes of antibody-related terms, as shown in the third

row. For example, the species mentions “flag”, “goat”

Articles 1D:2869309
The specific adaptation of enterobacter sp. 638 to its plant host was scrutinized
through genome comparison with other plant associated microbes and the
vastrointestinal bacterium E. coli K12 (MG1655).
tax_id:511145
Species names: escherichia coli mgl1655, escherichia coli str. k-12 substr. mgl6535,
escherichia coli str. k12 substr. mgl655, escherichia coli str. mg1655,escherichia
coli strain mgl655, e. coli str. k-12 substr. mg1655, e.coli str. k-12 substr. mgl655

Figure 3 Example of co-occurrence inference. The substrain-
“MG1655" can infer the species name-"E. coli K12" to “E. coli str. k-12
substr. mg1655” (tax_id:511145).
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and “mouse” in “anti-flag antibody”, “goat anti-Rad53
polyclonal antibody” and “anti-HA9 mouse monoclonal
antibody” are filtered.

There are 5,933,419 Entrez Gene Ids belonging to
more than 6,000 species. Genes are ambiguous among
the other genes of the same species and among ortho-
logs. Therefore, we developed a rule-based species assig-
nation strategy to reduce orthologous gene ambiguity.

After the species is extracted, each gene entity is
assigned the suitable tax_id. Based on Wang et al. [8],
we defined several species indicators of tax_id assign-
ment for gene mentions. Details are shown in Table 6.
Boldface terms represent species names, and underlined
words are gene mentions.

Table 7 shows an example using the frequency of spe-
cies mentions from PMCID: 2880583. The tax_id:9606
(Human) is used most frequently in this article, and
there is 1 instance of “293 cell”, 34 instances of “a549
cell” and 6 instances of “human”. If there are no other
species mentions in the article, all gene mentions are
assigned by tax_id: 9606 (human).

Species-specific gene normalization module

After species assignation, the proposed SGN module,
based on previous work [23], measures the inference
scores of candidate Entrez Gene Ids in articles. The pre-
vious study applied an inference network model to the
GN task, but it did not handle orthologous gene ambi-
guity. We applied the inference network model to col-
lect the exact match and partial match between tagged
entities from articles and gene name entities from the
gene dictionary. The inference by exact match is named
entity inference, and the inference by partial match is
named bag of word inference. Exact match means that
tagged entity and gene name entity must be the same
term, and partial match means that at least one word in
the bags of words of a tagged entity and of a gene name
entity must be the same word. The model applied enti-
ties and bag of words to the same estimation. The origi-
nal model gave equal weight to entities and bags of
words, thus could not distinguish the relative impor-
tance of entities and words from the bags of words.
This design disadvantaged the GN performance. We
reorganized the previous design by splitting the infer-
ence network model into two inference estimations.

In SGN, entity inference and bag-of-words inference
are used to measure confidence scores. The gene name
entities are divided into two lists, an entity list and a
bag-of-words list. The entity list stores the output of the
GNR module, and the bag of words list contains all bags
of words from the entity list. Each record of these two
lists is used to obtain a candidate Entrez Gene Id (Cid).
Before inference estimations, the Cid is filtered by the
intersection filtering method described below. The two
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Table 4 Types of species mentions extracted by two Inferring types.

Species type Inferring type Number of species mentions Ratio
Genus name Guaranteed-inference 2,824 8.06%
Cell line Guaranteed-inference 715 2.04%
Sub-type Co-occurrence inference 422 1.20%
General species name - 31,093 88.70%
Total - 35,054 100.00%

The total frequency of inference targets among species mentions is 11.3%.

inference estimations apply a TF-IDF-based inference
network to determine the possible Entrez Gene Ids for
each article. Consider the inference example in Figure 4,
Entrez Gene Id: 51554 includes entities “CCRL”,
“CCRL1”, “chemokine receptor like 1” and “orphan
seven-transmembrane receptor”, etc. PMID: 10767544
consists of entities “CCRL1”, “chemokine receptor like
1”7 and “orphan seven transmembrane receptor related
to chemokine receptors”, etc. Those entities are used to
construct entity inference and bag-of-word inference
estimations. The entity inference is constructed by the
exact match between gene name entities from Entrez
Gene Id: 51554 and tagged entities from PMID:
10767544. There are two exact matches in entity infer-
ence, e.g. “CCRL1” and “chemokine receptor like 1”.
Then, the bag-of-word inference is constructed by par-
tial match between bags of words of gene name entities
from Entrez Gene Id: 51554 and tagged entities from
PMID: 10767544, such as “chemokine”, “receptor” and
“like”.

For disambiguating confused Cids and decreasing the
computation cost, we discard many irrelevant Cids by
our intersection filtering method. All pairs of Cids are
compared: all terms extracted by exact and partial
match are considered in each Cid. A Cid is removed
when its term list is a subset of the term list of another
Cid.

Results

Our system was run on the evaluation data of the Bio-
Creative III GN [24] task training and test corpora, as
shown in Table 8. The test data were unknown to our
system until the official runs were executed. The train-
ing set included two sets of annotated full-length arti-
cles. The first set had been fully annotated by a group
of trained and experienced curators, who had been
invited from various model organism databases. The

Table 5 High-false-positive set.

second set was partially annotated: only the most impor-
tant genes had been annotated by human indexers at
the National Library of Medicine. The test set included
507 full text articles from various BMC and PLoS jour-
nals. To understand the differences in the results
between teams, organizers selected the 50 articles that
presented the most difficult and varied results to evalu-
ate the submissions of the teams. The “gold standard” of
the 50 selected articles was annotated manually, and the
“silver standard” of 507 articles including the 50 “gold
standard” articles was generated automatically by an
Expectation Maximization (EM) algorithm using the
best submissions of all teams. The numbers of gene IDs
common to the shared 50 gold- and silver-standard arti-
cles is just 528. The annotated gene identifiers of the
gold standard are very dissimilar to silver standard.

Carrol et al. [25] proposed a new metric, threshold
average precision (TAP-k), for measuring retrieval effi-
cacy of GN task performance. In short, TAP-k is the
mean average precision with a variable cutoff and a
terminal cutoff penalty. Evaluations using the gold and
silver standard annotations are shown in Table 9; note
that the set of 50 gold standard articles is a part of the
507 silver standard articles. We obtained the highest
TAP-k scores on the gold standard: 0.3297 (k=5), 0.3538
(k=10), and 0.3535 (k=20). In silver-standard-507 evalua-
tion, our TAP-k scores are 0.4591 for k=5, 10, and 20.
Our system was ranked 29, 2"¢, and 3™ in terms of
TAP-5, TAP-10, and TAP-20 respectively on the 507
full-text test articles.

The annotation of the silver standard depends on the
submissions of all teams. Because the best submission
might be dissimilar to other teams’ submissions, its rela-
tive performance on the silver standard might suffer.
Nevertheless, the two best runs with the gold standard
from our submission are still among the ones with the
highest TAP-k score with the silver standard. In addition,

Filter set Terms

High-false-positive terms
Experiment terms
Antibody

3a (215167), t7 (10760), cat (9685), ass (9793), j1 (1829)
yeast two hybrid (4932), yeast 2 hybrid (4932)
anti-, antibodies, polyclonal, igg, serum, monoclonal, antibody
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Table 6 Species indicators of species assignation strategy which are adapted from Wang et al. [8]

Species Description Example

indicators

Identifier ~ The gene is assigned a species when the gene is extracted by A bar for Cat8 is not included, as only one gene (YOR019W, factor
gene identifier extraction. change 2.1) has a Cat8 site alone.

Prefix The first lowercase letter of the gene name is an abbreviation of ~ hZIP 2 (human gene)
its species.

Previous  The tax_id is assigned to a gene entity if the species entity DrosophilaHCF

indicator  appears in front of the gene entity. zebraflshLtk

Forward  The tax_id is assigned to a gene entity if the species entity is in Conversely, ISWI is a unique and essential gene in Drosophila,

indicator ~ front of the gene entity in the same sentence. The nearest species highlighting a possible divergent role for ISWI in flies and a distinct
is used for assignment. mechanism of interaction with the Sin3A/Rpd3 complex in higher

eukaryotes.

Backward  The tax_id is assigned to a gene entity if the species entity We identify the shady gene as encoding a cell signaling receptor,

indicator  precedes the gene entity in the same sentence. The nearest leukocyte tyrosine kinase (Ltk), that has recently been associated
species is used for assignment. with human auto-immune disease.

Majority ~ The most frequently mentioned tax_id is assigned to the gene The most frequent mention of PMCID: 2880583 is tax_id is 9606

indicator  entity if it cannot be assigned by previous rules. (Human) as shown in Table 7.

the four teams (numbers 83, 74, 98 and 101) that per-
formed best on the gold standard consistently remained in
the top tier in silver-standard evaluations. It is evident that
relative rankings tended to be preserved in this compari-
son. Evaluation with the silver-standard annotation proves
that the automatic annotation works [24].

In addition, we calculated precision, recall and F-mea-
sure to evaluate the accuracy and coverage of our result
(Team 83). We obtained an F-measure of 46.56% with
the gold standard, 46.90% with the silver standard with
50 articles and 55.09% with the silver standard with 507
articles (Table 10).

To better understand the contribution of each compo-
nent in the GN method, we sequentially ran the system
over the test data without each component of each
module. Table 11 shows how each component contribu-
ted to GN performance. The first row shows the TAP-k
(k=5, 10, 20) score when all components were used. The
other rows show the performance when one of the com-
ponents was missing. The values in parentheses are the
decrement of the component removals.

Discussion

In the following section, we first discuss the impact of
the GNR module in the context of three extension com-
ponents of the gene mention recognition system (AIIA-

Table 7 An example of the frequency of species mentions
by PMCID: 2880583.

PMCID Species and cell name tax id Num

2880583 293(1), a549(34), human(6) 9606 41
bovine(1) 9913 1
mice(1), murine(1) 10090 2
rabbit(1) 9986 1
sendai virus(2) 11191 2

GMT). The impact of two robust referring strategies,
the filtering processing and five assignation rules
(because identifier extraction is repeated in the GNR
module, we do not perform the same experiment again)
of SA module are described. Finally, we analyze the per-
formance of the SGN module by the intersection filter-
ing method and inference network.

First, we found that the post-processing step is a use-
ful component of the GNR module. If the output of
AIIA-GMT were not followed by post-processing, per-
formance would clearly decrease. The most effective
component is identifier extraction; several popular and
high-performance tagging systems, such as AIIA-GMT
[22], ABNER [26], and GENIA Tagger [27], usually can-
not recognize gene identifiers well.

The three rows under the SA module (Table 11) show
the performance when one of the two robust inference
strategies, the filtering processing and six species assig-
nation rules, was unused. The disambiguation of species
mentions is critical, which is why we designed two
robust referring strategies to handle it. Using only one
of the two robust referring strategies caused a decline in
the performance of the species assignation rules and an
approximately 6%-7% decrease in TAP-k scores. The
effect of the two robust inference strategies is not
obvious; the ratio of species mentions that are unguar-
anteed species names (i.e., genus and cell line) and sub-
type is just 11.3% (Table 4). The filtering of false-posi-
tive set is very useful. The next most helpful indicators
of species assignation are “Forward indicator” and
“Majority indicator”. Especially for “Majority indicator”,
the detection of the species covered in the article is an
important issue [8,10]. Majority indicator is most popu-
lar. Furthermore, the precise extraction of species men-
tions leads to good performance of the Majority
indicator.
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Figure 4 Example of species-specific gene normalization by two inference estimations including entity and BOW inference.

Table 8 Statistics of annotations of full-text articles

Training (fully annotated)  Training (partially annotated)  Test (gold standard)  Test (silver standard)

507 50
Total number of full-text articles 32 525 50 507 50
Total gene IDs of each annotation 607 770 1669 9378 1828
Avg. gene IDs of each annotation 18.97 1467 3332 18.50 36.56

Table 9 Performance on the gene normalization task by the top 4 performing teams in the BioCreative Ill competition

Teams Gold standard (50 selected articles) Silver standard (50 selected articles) Silver standard (All 507 articles)
TAP-5 TAP-10 TAP-20 TAP-5 TAP-10 TAP-20 TAP-5 TAP-10 TAP-20

Kuo et al. (Team 74) Istrun 02137 0.2509 0.2509 0.3820 0.3820 0.3820 04873 04873 04873
2nd run 02083 0.2480 0.2480 0.3855 0.3855 0.3855 04871 0.4871 0.4871
3rd run  0.2099 0.2495 0.2495 0.3890 0.3890 0.3890 0.4916 0.4916 0.4916

Our method (Team 83) 1strun 03254 0.3538 0.3535 0.3567 0.3600 0.3600 04591 0.4591 0.4591
2nd run 03216 0.3435 0.3435 03291 03291 0.3291 04323 04323 04323

3rd run  0.3297 03514 03514 03382 03382 03382 04327 04327 04327

Liu et al. (Team 98) Istrun  0.2835 03012 03103 03343 03535 0.3629 03818 0.3899 0.3875
2nd run  0.2909 0.3079 03087 03354 03543 03634 0.3790 0.3878 0.3868

3rd run 03013 03183 0.3303 03710 04116 0.4672 04086 04511 0.4648

Lai et al. (Team 101) Istrun  0.1896 0.2288 0.2385 0.3590 0.3859 0.3859 04289 0.4289 0.4289
2nd run  0.1672 02150 02418 03239 0.3945 04132 04294 0.4408 0.4408

3rd run  0.1812 02141 0.2425 03258 04109 04109 04536 0.4536 04536




Wei and Kao BMC Bioinformatics 2011, 12(Suppl 8):S5
http://www.biomedcentral.com/1471-2105/12/58/S5

Table 10 Performance statistics evaluated by TAP-K and F-measure on test data and training data sets.
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Corpus Data set TAP-5 TAP-10 TAP-20 Precision Recall F-measure
Test data (Tst run) 50 (gold standard) 03254 0.3538 0.3535 53.85% 39.44% 4553%
Test data (2nd run) 0 (gold standard) 03216 0.3435 0.3435 55.54% 39.07% 45.87%
Test data (3rd run) 0 (gold standard) 0.3297 03514 03514 56.23% 39.72% 46.56%
Test data (1st run) 0 (silver standard) 0.3567 0.3600 0.3600 58.94% 38.95% 46.90%
Test data (2nd run) 0 (silver standard) 0.3291 03291 0.3291 58.60% 37.64% 45.84%
Test data (3rd run) 0 (silver standard) 0.3382 03382 03382 59.46% 38.35% 46.62%
Test data (Tst run) 507(silver standard) 0.4591 0.4591 0.4591 71.79% 44.69% 55.09%
Test data (2nd run) 507(silver standard) 04323 04323 04323 72.08% 42.70% 53.64%
Test data (3rd run) 507(silver standard) 04327 04327 04327 72.41% 42.82% 53.82%
Training data 32 (gold standard) 04703 0.4969 0.4969 63.82% 67.71% 65.70%

Finally, the SGN module includes two major parts:
intersection filtering and inference estimation. The con-
tribution of the intersection filtering method is to
enhance computing speed, and thus the effect of this
method on performance is not remarkable. To evaluate
the contribution of the inference network model of two
estimations, we replaced this model by a simple vector
space model. The performance decreased substantially.

We evaluated our method using the full-text articles
provided in the BioCreative III competition. Our best
result had TAP-k scores of 0.3297 (k=5), 0.3538 (k=10),
and 0.3535 (k=20) under the gold-standard evaluation.

Our method approaches the challenges of GN as a
series of tasks, with several issues handled by respective
modules. Thedisadvantageousdesigns of each module
may lead to a decline in overall performance. The major
goal of this work is to present the architecture of our
method in a clear way and analyze the effective compo-
nents, which we do through systematic removals. This

Table 11 Contribution of each component of modules

analysis can help in the redesigning of each segment to
create a better system.

Conclusions

The GN task of BioCreative III was more difficult than
previous GN tasks, and the chief reason is orthologous
gene ambiguity. In this study, we focused on the issue
of gene normalization in species assignation and devel-
oped an integrated method for mapping a biomedical
entity to the correct Entrez Gene Id. To obtain good
performance, we focused on ameliorating the effects of
gene mention variation, orthologous gene ambiguity and
intra-species gene ambiguity. The integrated method
consists of three modules, GNR, SA and SGN, which
function serially to handle these three issues. We parti-
cipated in the GN task of the BioCreative III competi-
tion by adopting an integrated method based on our
previous work to handle intra-species gene ambiguity.
Results demonstrated that our method worked well,

Remove component TAP-5 TAP-10 TAP-20
None 0.3254 0.3538 0.3535
GNR module

Post-processing of AIA-GMT [22]

Distillation strategy
|dentifier extraction
SA module

Two robust inference strategies

Identifier

Prefix

Previous indicator

Forward indicator

Backward indicator

Majority indicator

SGN module

Intersection filtering method
Inference network

0.2653(-18.47%)
0.3094(-4.92%)
0.2706(-16.84%)

0.3014(-7.38%)
0. 2538( 22.00%)
119(-4.15%)
0. 3099( 4.76%)
0.2846(-12.54%)
0.3056(-6.08%)
0.2280(-29.93%)

0.3121(-4.09%)
0.2852(-12.35%)

0.3063(-13.43%)
0.3355(-5.17%)
0.2888(-18.37%)

0.3319(-6.19%)
0.2538(-28.26%)
0.3383(-4.38%)
0.3361(-5.00%)
0.3056(-13.62%)
0.3330(-5.88%)
0.2280(-35.56%)

0.3411(-3.59%)
0.3039(-14.10%)

0.3063(-13.35%)
0.3355(-5.09%)
0.2888(-18.30%)

0.3319(-6.11%)

0.2644(-25.21%)

0.3383(-4.30%)

0.3361(-4.92%)

0.3056(-13.55%)

0.3330(-5.80%)
(-

0.2280(-35.50%)

0.3411(-3.51%)
0.3039(-14.03%)
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ranking at the top level of performance among all teams.
Our proposed method makes sufficient use of gene/spe-
cies information in context and of a thesaurus of gene/
species.

Nonetheless, the current, state-of-the-art performance
on the GN task is not good enough. The mining of full-
text articles and cross-species normalization are big
challenges for GN. To improve future performance, the
contexts of articles will be used, e.g., chromosomal loca-
tions, families, functions.
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