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Abstract

genome rearrangement history and parameters.

Background: During evolution, large-scale genome rearrangements of chromosomes shuffle the order of
homologous genome sequences ("synteny blocks”) across species. Some years ago, a controversy erupted in
genome rearrangement studies over whether rearrangements recur, causing breakpoints to be reused.

Methods: We investigate this controversial issue using the synteny block’s for human-mouse-rat reported by
Bourque et al. and a series of synteny blocks we generated using Mauve at resolutions ranging from coarse to very
fine-scale. We conducted analyses to test how resolution affects the traditional measure of the breakpoint reuse rate.

Results: We found that the inversion-based breakpoint reuse rate is low at fine-scale synteny block resolution and
that it rises and eventually falls as synteny block resolution decreases. By analyzing the cycle structure of the
breakpoint graph of human-mouse-rat synteny blocks for human-mouse and comparing with theoretically derived
distributions for random genome rearrangements, we showed that the implied genome rearrangements at each
level of resolution become more “random” as synteny block resolution diminishes. At highest synteny block
resolutions the Hannenhalli-Pevzner inversion distance deviates from the Double Cut and Join distance, possibly
due to small-scale transpositions or simply due to inclusion of erroneous synteny blocks. At synteny block
resolutions as coarse as the Bourque et al. blocks, we show the breakpoint graph cycle structure has already
converged to the pattern expected for a random distribution of synteny blocks.

Conclusions: The inferred breakpoint reuse rate depends on synteny block resolution in human-mouse genome
comparisons. At fine-scale resolution, the cycle structure for the transformation appears less random compared to
that for coarse resolution. Small synteny blocks may contain critical information for accurate reconstruction of

Background

Genomes of related organisms have been shown to share
long tracts of homologous DNA sequence (“synteny
blocks”) across species [1]. During the course of evolu-
tion, large-scale genome rearrangements of chromo-
somes shuffle the order of such homologous segments.
Some years ago, a controversy erupted in genome rear-
rangement studies over whether rearrangements are
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likely to recur in regions known as rearrangement hot-
spots [2]. Pevzner and Tesler [3] inferred the existence of
such “fragile sites”, from high values of their breakpoint
reuse rate (BRR). An argument by Sankoff and Trinh [4]
intended to show that loss of breakpoint usage informa-
tion occurs via synteny block removal, and leads to the
inference of an artificially inflated breakpoint reuse rate.
That argument was criticized by Peng et al. [5] for its
flawed synteny block generation method. Subsequently,
by devising a new approach for computing the BRR,
Bergeron et al. [6] observed that rearrangement scenarios
maximizing operations involving rearrangements of telo-
meres using only single cuts could result in much lower
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rates of reuse. This approach resulted in bounds for the
human-mouse transformation which not only demon-
strated that much lower rates are possible, but also that
the BRR is extremely sensitive to genome representation
and rearrangement model.

In the current paper, we reconsider aspects of the origi-
nal breakpoint reuse debate. We address a theme that
David Sankoff suggested in his 2006 PLoS commentary [7]
was not yet fully confronted. In that commentary, Sankoff
argued that high values of inferred breakpoint reuse may
result from noise introduced by imprecise synteny block
construction rather than due to actual genome rearrange-
ments in the course of evolution. Imprecise synteny block
construction or other processing might effectively rando-
mize the information needed to reconstruct rearrange-
ment history. While others use a variety of methods to
explore the level of this “randomization”, such as distance
in Xu et al. [8], the number of conserved adjacencies [9],
or the structure of common intervals [10], we will use the
cycle structure of the adjacency graph as an indicator of
“randomization”. We examine how the scale of synteny
block resolution affects breakpoint reuse.

To this end, and to continue the discussion of whether
elevated values of breakpoint reuse can be used to infer
that genome rearrangements repeatedly strike the same
“hot spots” during the course of mammalian evolution, we
evaluated the traditional breakpoint reuse statistic using
actual data, in the context of rearrangement model and
resolution for two data sets: 3-way synteny blocks for
human-mouse-rat constructed by Bourque et al. [11], and a
series of blocks generated by the Mauve genome alignment
system [12] with resolutions ranging from fine-scale to
coarse.

Genome rearrangment transformations

The rearrangement transformation between two gen-
omes with no insertions, deletions or duplications can be
specified by the connections between corresponding syn-
tenic segments in the two genomes. We call such seg-
ments genes even if they don’t actually consist of single
genes. The adjacency graph introduced by Bergeron et al.
[13] is an elegant representation of the genomic transfor-
mation. Vertices of the adjacency graph are either the
connections or adjacencies between two gene ends in the
initial and target genomes, or solo telomeric gene ends at
the ends of chromosomes. The complete set of adjacen-
cies {{aj,a2}, {az,a4}, ..., {22n-1,20n)} specifies a genome of
N genes. A breakpoint represents a disruption of their
order, an adjacency of two gene ends associated in one
genome but not the other.

A number of methods have been used to evaluate the
minimum number of genome rearrangement events,
known as rearrangement distance, of a genome transfor-
mation; we will focus on two: the Hannenhalli and
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Pevzner “HP” formulation [14,15] which involves general-
ized inversions, (inversions (Figure 1a), translocations,
fissions and fusions), and the double cut and join (DCJ)
[16] which includes simple transpositions (Figure 1b) and
generalized transpositions (Figure 1c) in addition to the
operations considered by HP.

In the adjacency graph (Figure 1), adjacencies of one
genome are connected to those of another by lines repre-
senting their common gene ends. Followed continuously
these lines resolve the adjacency graph into alternating
closed paths called cycles and other continuously con-
nected open paths. The ends of open paths belong to
gene ends at the ends of chromosomes called telomeres.
In our formulation of the DC]J paradigm all open paths
are closed by a capping procedure described more exten-
sively in [16-18] (for examples, see Additional File 1);
essentially, adjacencies containing telomeric gene ends of
chromosomes are “capped” by artificial gene ends called
“endcaps”. Paths that start and end on the same genome
are closed by a double capped “null chromosome” on the
opposite genome; paths starting and ending in different
genomes are closed by connecting the two capped ends.

Semantics, conventions, and cycle nomenclature

Due to the addition of null chromosomes, when paths are
closed into cycles, both genomes artificially contain the
same number of chromosomes. Some DC]J operations
involve “artificial cuts” between a telomeric gene end and
an endcap. In other formulations [6,13], paths are not
closed hence such artificial operations do not occur.
Another outcome of the device of introducing caps and
closing paths is the consequent increase in breakpoints.
Some formulations [3,11] count only “internal break-
points“ which do not include “external breakpoints” such
as capped telomeric gene ends, or null chromosomes. In
our approach we include all breakpoints, internal and
external; hence telomeric adjacencies are counted.

In a departure from the usual convention in the genome
rearrangement literature, we call a cycle containing j adja-
cencies in only one genome a j-cycle as this corresponds
better to the analogous cycles for unsigned permutations.
Usually it is called a 2j-cycle. In our formulation, I-cycles
are not counted in the DC]J distance (see below) as they
are the identity transformation of a single adjacency trans-
forming to itself; the cycle count “c¢” counts 2-cycles
(usually called 4-cycles) or higher.

DCJ operation, distance, and comparable HP distance

The double cut and join (DCJ), is a universal operation
that subsumes many biological rearrangement opera-
tions.To resolve the transformation, a DCJ is performed
by breaking connections in two adjacencies in the current
genome and swapping gene ends so that at least one of
the resulting adjacencies exists in the target, decreasing
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(a) INVERSION

(b) SIMPLE TRANSPOSITION

(c) BLOCK INTERCHANGE
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Figure 1 Adjacency and breakpoint graphs for 2, 3-cycles and block interchanges In this representation the genome graphs are superimposed
over the adjacency graphs. (a) An inversion has 2 breakpoints in each genome, a DCJ distance of 1 and a breakpoint reuse rate of 2d/b=1. (b) A simple
transposition with dpc/=3-1=2 and b=3 has an inversion-based breakpoint reuse of 4/3. In (c) we note that a block interchange has two overlapping 2-
cycles. Performing a DCJ about the first creates a circular intermediate (Cl) and about the second, the Cl is reabsorbed. Since b=4 and c=2 the total DCJ
distance is 4-2=2. Breakpoint reuse for a block interchange in the DCJ paradigm is r=2dpc/b=4/4=1, since in the creation of the Cl and its reabsorption,
no breakpoints are reused in general. As for simple transpositions, the join creating the Cl occurs in the same position as the subsequent cut, so one
breakpoint is reused which may not be what occurs in nature! Below the adjacency graph for each example is the corresponding breakpoint graph.
Transpositions and block intechanges look deceptively simple in their adjacency graphs. Although a block interchange appears to contain two simple
2-cycles, they are in fact made of unoriented arcs in the breakpoint graph, and similarly for the simple transposition. As a result both simple
transpositions and block interchanges contain one hurdle, which increase the HP distance by 1 relative to the DCJ distance. Hence the breakpoint reuse
rate for simple transpositions in the HP paradigm is reamm=2dnp/b=2 and for block interchanges it is 2dyp/b=2*3/4=3/2.

the distance by 1. Performing a single DC] decreases the
distance by 1. Each cycle can be resolved independently
by DCJ. For the jth cycle containing b; breakpoints, this
results in d; = b; — 1 steps. As all quantities are additive
over individual cycles, the total DCJ distance can thus be
obtained from a cycle decomposition of the adjacency

Zd , b=2bj,and c=Y1

graph. That is, dpey = j
cycles cycles cycles
where the sums are over cycles. Hence, the resulting DCJ

distance between any two genomes can be expressed as:

dDC] =b-c

where b is the number of breakpoints and ¢ the num-
ber of cycles [16]. In the Hannenhalli and Pevzner for-
mulation which is based solely on generalized
inversions, the distance is:

dyp=b-c+h+f

where b and ¢ (using our conventions) are as above,
and /1 and f are respectively hurdles and fortresses, posi-
tive permutations which don’t contain any inversions by
DC]J, or require “extra inversions” to resolve by HP, and
are generally rare [19]. The difference in the distance
between the two formulations, dpc; — dpcy = h + f, con-
sists of these relatively rare obstructions. Figures 1b and
1c illustrate how hurdles increase distance in the HP
over the DCJ paradigm.

Definition of the classical inversion-based breakpoint
reuse rate (BRR)

In considering an “undisturbed” stretch of genome, per-
forming a reversal creates at most two breakpoints at
each step. Pevzner and Tesler [3] defined the inversion

based breakpoint reuse rate (BRR) as r =2d/b, with d
the genomic distance, and b the number of breakpoints.
This “traditional” reuse statistic is I for reversals as long
as no breakpoints are reused. The cycle distribution of
such a transformation consists entirely of 2-cycles in our
nomenclature (or 4-cycles, by the usual convention)
such as in Figure la. If breakpoints are reused, the sta-
tistic can be as high as 2.

BRR for (generalized) transpositions is model dependent
To see the effect on the genome for these operations,
Figures 1b and 1c show adjacency graphs superimposed
on their genome graphs for a simple transposition and a
block interchange (BI). Both are 2-step DCJ operations
which exchange two segments in a genome by creating an
intermediate circular. The simple transposition reuses the
same cut in the circular whereas the BI does not. A simple
transposition is a special case of a block interchange. As
both operations involve the creation and reabsorption of
circular intermediates (CI) they are considered generalized
transpositions

A breakpoint graph [20] (see Figure 1 for illustrative
examples shown below their adjacency graphs) is a repre-
sentation dual to the adjacency graph such that vertices
in the adjacency graph, are lines or arcs in the breakpoint
graph. Horizontal lines (“black lines”) are typically adja-
cencies in the current genome, while arcs are “desired”
adjacencies in the target. Vertices in the breakpoint
graph correspond to gene ends, and are lines in the adja-
cency graph. Particularly for block interchanges, the crea-
tion of CI, is not easily discerned from the adjacency
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graphs as they look like graphs for a pair of overlapping
2-cycles which seem deceptively like inversions. Break-
point graphs maybe more informative for identifying
transpositions.

To see why this is so, we note that in the breakpoint
graphs for the simple and generalized transpositions, the
arcs are “unoriented” unlike arcs composing the break-
point graph of the inversion in Figure la, which are
“oriented”. Oriented arcs have their black lines pointing
in the same direction relative to the arc, whereas unor-
iented arcs both point away or towards the central arc.
An arc’s orientation is only defined for arcs rooted in
the same chromosome, otherwise we consider them
non-oriented. DC] performed on oriented arcs produce
inversions, while DCJ performed on unoriented arcs
produce CI. In order for CI to be reabsorbed, the arc
about which we perform the DCJ must overlap others in
the breakpoint or adjacency graph.

As shown in the legend for Figures 1b and 1c, cycle
structures resulting in generalized transpositions in the
DC]J paradigm do not result in the same distance in the
HP paradigm, in which only generalized inversions can
be performed and not the creation of a CI. As a result,
not only do the distances differ, but also the inferred
BRR. We note that while Figure 1b shows an unoriented
3-cycle, 3-cycles also exist which contain oriented arcs.
Such 3-cycles can be resolved by inversions. For oriented
3-cycles, DCJ and HP distances agree as does breakpoint
reuse.

Random permutations, cycle structure, and BRR for
longer cycles
If we continue performing reversals indefinitely in the
same stretch of genome, eventually we will start to reuse
breakpoints (unless the simplifying assumptions of the
“Infinite Sites Model” of Ma et al. [21] are used, which
prevent breakpoint reuse). Consequently, the cycle struc-
ture will change. Each reuse of a breakpoint increases the
length of the cycle in which that breakpoint appears.
Longer and longer cycles appear which continue growing
in number and length. The resulting permutation will
exhibit increased breakpoint reuse. We see this by com-
puting the inversion based breakpoint reuse for a longer
cycle having n breakpoints. The DC]J distance for a cycle
containing # breakpoints is #-1 and, as we have seen, is
identical to the HP distance unless there are hurdles and
fortresses. The inversion based BRR statistic is therefore
Flongeycte = 2d/b = 2(n — 1)/n, which approaches 2 as n
gets large. Since distance is additive over cycles, and so
are breakpoints, for transformations containing N such
cycles the total BRR becomes, ry;gcycie = 2N(n — 1)/Nn =
2(n — 1)/n — 2 for large n.

As more and more random operations are performed
between two genomes, they become increasingly
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divergent and randomized relative to one another. This
affects the cycle structure. Considering results from a
paper on random signed gene order permutations by
Sankoff and Haque [22]which constructed cycles of the
breakpoint graph of random permutations, Richard
Friedberg communicated results on cycle structure to us
which we discuss in the next section. In particular, he
shared a result for the expected number of j-cycles in
the random edge graph for transformations by DC]J for
genomes containing only circular chromosomes. As
gene number per chromosome gets large, we surmise
results for the unrestricted circular case (allowing inter-
mediate genomes to contain circular chromosomes)
coincide with those for the restricted linear case (circu-
lars are immediately reabsorbed).

Cycle structure of random unsigned permutations

Before discussing the signed permutation case in the next
section, we first consider the cycle structure of unsigned
permutations (permutations of objects without consid-
eration of orientation). The results for the unsigned per-
mutation case have already been reported [23] . These
formulas are analogous to those for signed permutations.
In the unsigned case, the expected number of j-cycles is:

qg;=1/]j (1)

To compare this later with the result for signed per-
mutations, we write it as:

ANI(N=)!
a;=0 ) =)
NI/ (N-=-)!
We can get the expected number of cycles directly by
summing eq (1) over j:

<c>=14+1/2+1/3+... 2)

Unfortunately the analogous formula for bipairings (ie
signed permutations of genes with orientation) does not
have the simplicity of eq (1), so we cannot accomplish
this as easily for signed permutations. Nor can we com-
pute ¢ by summing an approximate formula because its
error becomes large when j is near N, no matter how
large N is. Fortunately, there is an indirect way of deriv-
ing eq (2) bypassing eq (1) so that c is found without
finding the individual values of g; and the result agrees
with eq (2). This indirect way has the merit that it also
yields the variance of ¢, which cannot be inferred from
eq (1). With a slight modification this method also
works for bipairings. It yields:

<c>=1+1/3 +1/5+ ... (2%)

Now these individual terms do not correspond to the
formula for signed permutations, eq (1*) below. For
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small j the jth term of (2*) is larger than g;, but for j

<€3>= 2.4 one can

j>3

near N it is smaller. To solve for

write:

<C3> = <¢> — (<q1> + <q2> + <q3>) (3, 3%)

true for both (signed and unsigned) problems. In the
unsigned permutation problem this simplifies to

<c3>=1/4+1/5+1/6 + ...

which has no analogue for bipairings. To evaluate (3)
for bipairings one must use (2*) for <c> and approxi-
mate formulas for the equivalent terms <gq;>, <g2>,

<qs3>.

The cycle structure of random signed genome
permutations

In the case of signed genome permutations, 2N gene
ends can be paired into N adjacencies in (2N — 1)!! dif-
ferent ways where K!! is a double factorial and is equal
to K(K-2)(K-4)...k (with k=1 if K is odd, and 2 if K is
even). The comparison of two such pairings permits a
cycle structure to be constructed. For an adjacency
graph with N adjacencies in eNach genome, let g; be the

number of j-cycles and ¢ = ij the total number of
cycles. =

« Then for such a random adjacency graph:

(2N)11/ (2N = 1)1t
(2N =N/ 2N -j)-nn

<q;>=1/(2j) (1)
For large N and small j the asymptotic limit of equa-
tion (1*) is:
<q;>=1/(2)) (1a*)
which can be compared to the analogous result for
unsigned permutations, eq (1).
Thus for signed permutations:

+ The expected number of cycles, by the indirect
method mentioned previously is:

N
<c>:21/(Zj—l):1+1/3+1/5+...+1/(2N—1)—)%(lnN+y)+ln2 2%
j=1
where y=Euler’s y= 0.577. Hence, for large N we have
that <c¢> is given approximately by:

<c>=1InN+0.98 (2a*)
« The expected number of cycles of length > j is:
<j>=<c>— <q1> — <g1> —...—<q>
which can be evaluated from (1*) and (2*) and
approximately from (1a*) and (2a%).
We wish to know <c3>. Thus, for large N,
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€3> = <> — (<q1> + <qo> + <q3>) (3:.5)

=[2(InN+y)+In2] - [ ++ + 4]

Methods
Summary of our approach
To explore whether randomization of genome transfor-
mations occurs beyond that due to actual evolutionary
events recorded in the “signal in the genome” we have
adopted the traditional breakpoint reuse statistic. We
feel this statistic serves as an indicator of overall appar-
ent breakpoint reuse and best reflects the approach fol-
lowed by the pioneering paper of Pevzner and Tesler
(2003). Towards this end, we consider the traditional
inversion-based breakpoint reuse rate in three data-
based computational experiments discussed in the next
three sections. We calculated BRR for the following
[h=human, m=mouse, r=rat]:

1) a series of Mauve synteny block sets at resolutions
ranging from fine to coarse

2) the 300 kb Bourque et al (2004) h-m 3-way h-m-r
blocks with block removal

3) the 141min LCB Mauve blocks (defined below)
before and after block removal

Generating synteny blocks with mauveAligner

We applied the “mauveAligner” from the Mauve gen-
ome alignment system [12] to search for high-resolution
3-way locally collinear blocks (Synteny Blocks) among
the genomes of Mouse, Rat, and Human. Mauve uses a
seed-and-extend local multiple alignment method to
identify high-scoring local alignments, which it then
clusters into locally collinear blocks—groups of matches
in the same order and orientation among each genome.
We assign each locally collinear block (LCB) a weight w
(B) equal to the sum of lengths of the constituent
ungapped local alignments. The weight of a block w(B)

can be formally defined as “(B) :zle"gth(m), where a

meB

block B consists of one or more ungapped local align-
ments m, and length(m) is the number of nucleotides
covered by m. In the context of mauveAligner, the
matches in a block must be in the same order and
orientation in all genomes. That is, blocks are internally
free from rearrangement.

Because mauveAligner generates local alignments in
unique regions of sequence only, it typically generates
few LCBs containing only repetitive regions, and any
LCBs generated in such regions tend to be small, having
a low weight. mauveAligner filters out those spurious
LCBs by iteratively removing low-weight LCBs in a pro-
cess called greedy breakpoint elimination [12]. Greedy
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breakpoint elimination is analogous to iterative block
removal using w(B) to give an ordering for blocks to be
removed. At each step in the process, the lowest weight
LCB is removed. If one or more rearrangement break-
points have been eliminated, any surrounding LCBs may
coalesce with each other. The weight of a coalesced
LCB is equal to the sum of weights of LCBs that were
joined.

In the present work, the RepeatMasked assemblies of
human (NCBI 35), mouse (NCBI 33), and rat (RGSC 3.4)
were searched for unique 3-way seed matches on the for-
ward and reverse strands using the palindromic seed pat-
tern: 11111*111*11*1*11*111*11111 [24]. Initial seed
matches were maximally extended in each direction until
the seed pattern no longer matches at any overlapping
position. A total of 922,081 ungapped 3-way local align-
ments containing unique sequence resulted. These initial
matches have a minimum length of 27 (dictated by the
seed pattern above). The initial set of 3-way matches
gave rise to 567,782 LCBs, to which we applied greedy
breakpoint elimination to remove all LCBs up to a mini-
mum weight of 55, yielding a baseline set of 520,423 3-
way matches that compose 6483 LCBs. The minimum
sequence alignment length among these blocks is 55
nucleotides. We further applied greedy breakpoint elimi-
nation to the baseline set of 6,483 LCBs, recording the
observed genomic permutation at each successively
higher LCB weight up to a minimum weight of 100,000.
At minimum weight 97,673 (the last weight before
100,000), there are 75 3-way LCBs among the mouse, rat,
and human genomes. At weights larger than 500, the
LCB weight is approximately proportional to the overall
chromosomal span of an LCB, with chromosomal span
100-1000x the LCB weight. The data set is included as
Additional Files 2345678910

Calculating genomic distance by GRIMM and DCJ

The HP genomic distance for the Mauve synteny block
sets constructed at each successive minimum LCB weight
was computed using the GRIMM [25] server. We com-
puted the DCJ [16] distance using a C++ program which
inputs the genome as a signed permutation (exported
from Mauve) as the GRIMM server does, and outputs
the DC]J distance, the number of breakpoints, the number
of cycles of each kind and their total, and the number of
null chromososmes.

Results

Onset of transpositions for human-mouse (h-m)
rearrangements

We found that the HP and DC]J distances agree identically
at low resolution but at high resolution, the GRIMM dis-
tance exceeds the DCJ distance. In Figure 2, we display
these distances on a log scale so as to simultaneously
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display the difference between GRIMM (HP) and DC]J
values. The maximum GRIMM (HP) value is 1223 while
the maximum value of the DCJ distance is 1206. The max-
imum difference between these two distances is therefore
relatively small, only 17 or 1.4% of the total (HP) distance
at highest resolutions.

We assume the differences we found between GRIMM
(HP) and DC]J distances are due to hurdles, since
dGrivm - Apcy = Aup - dpcy = h +f where fortresses, in
breakpoint graphs containing an odd combination of
hurdles, are extremely rare. The hurdles in our human-
mouse (h-m) transformations may be due to simple
transpositions and generalized transpositions (GT) as in
Figures 1b and 1c, which differ in HP and DC]J distances
as shown. GT onset in Figure 2 occurs at min LCB
weights 2153 for h-m corresponding to a DC]J distance
of 293 and GRIMM of 294

BRR for human-mouse Mauve blocks at different
resolutions

The traditional inversion based breakpoint re-use rate,
2d/b, where d is the genomic distance and b the number
of breakpoints [5] was computed for both GRIMM (HP)
and DC]J distance measures on each set of Mauve synteny
blocks. The two distances are identical for most of the
min LCB weight range represented by Mauve block sets
(Figure 2), and the calculated breakpoint reuse rate
would also be the same in that range if the number of
breakpoints agreed for both GRIMM and DC]J distances.
However, to follow the 2003 paper of Pevzner and Tesler
in PNAS [3], we used “internal” breakpoints to calculate
the GRIMM breakpoint reuse rate. For the DCJ BRR cal-
culation we used “internal + external” breakpoints.

Even though the DCJ and HP distances are largely
identical over most of the range, the graphed values of
BRR we present in (Figures 3, 4a, 4b) using the HP and
DC]J distances we evaluated are not the same. They run
essentially parallel to each other. Their difference is not
due to the difference in distance for the most part
(except at highest resolution where the effect due to the
difference in distance is nondetectable), but rather is
due to the manner of evaluating breakpoints.

Our maximum values for the BRR range from 1.67 (for
the “DC]J” value) to 1.738 (for the “HP” value of BRR)
depending on whether the number of breakpoints was
evaluated using external breakpoints in addition to inter-
nal breakpoints (for the DCJ value) or only internal
breakpoints (for the HP value). This variation is consis-
tent with the range of values for BRR in [3] (which goes
from 1.633 to 1.9).

The lowest BRR we observed is 1.376 (for the DC]J ver-
sion), occurring in Mauve synteny blocks with min LCB
weight 141. These blocks have an average chromosomal
length of 2.66 Mb, a GRIMM distance of 813, and the
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Figure 2 Distance and hurdles over the full range of Mauve synteny block resolution The HP (blue) and DCJ (green) distances are virtually

indistinguishable, their difference for h-m is shown in black. The distances far exceed their difference.

total number of blocks is 1143. Increasing the min LCB
weight from here (and hence decreasing the synteny
block resolution), we observe a dramatic rise in both
breakpoint reuse curves, which reach their maximum at
min LCB weight 2386 (Figure 3). The HP BRR then pla-
teaus and stays in the same range until min LCB weight
5518 (Figure 3). It remains over 1.7 for min LCB weights
up to 40000, which have average block size 22.7 Mb, for
a total of 133 blocks, and a GRIMM distance of 116.

Dependence of BRR and cycle structure on resolution

To understand the variation in the breakpoint reuse
measures based on synteny block resolution, we calcu-
lated the cycle structure for the human mouse transfor-
mation on a series of progressively increasing resolution
Mauve synteny blocks. Figure 4 shows the behavior of
the breakpoint reuse measures along with the

proportion of cycles for 2, 3 and >3 cycles for human-
mouse as they vary with LCB weight.

To interpret how these fractional cycle curves affect
the BRR, we wish to express the breakpoint reuse rate
BRR r for the entire transformation as a weighted sum
over the BRR of individual cycles r;, that is,

r= 2. 3)
j

where we wish to determine the coefficient ¢; in such
a way as to involve the fractional distributions over
kinds of cycles. Since the total breakpoint reuse is r =
2d/b, where both the total distance and the total num-
ber of breakpoints are summed over cycles, that is
d= Zdi and U= Zbi hence the coefficient for equa-

. ] . J
tion (4) is:
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¢ = b//b

However, the sum in equation (4) is over individual
cycles, and not kinds of cycles. To accomplish this we
group cycles of the same kind together. If n; is the
number of k-cycles the new sum over kinds of cycles, ie
2-cycles, 3-cycles, 4-cycles, etc is:

r= E nkbkrk

k

where by is the number of breakpoints in a k-cycle.
Expressing the coefficient in fractions of cycles, (2-
cycles, 3-cycles etc) with the fraction of k-cycles =fi=n;/
2ni. and the sum over ny, that is, 2n;=c, the total num-
ber of cycles, we arrive at a weighted sum over different
kinds of cycles:

r=(c/b)Y bifin
k

where by is the number of breakpoints in a k-cycle, f;
the fraction of k-cycles and ry is the BRR of a k-cycle, or
re = de/bk = 2(/( - 2)//(

Resolution based cycle structure for human-mouse

In Figure 4 we represent the dependence of the cycle
structure on min LCB weight. Figure 4a shows the
dependence of the cycle structure over the full range of
min LCB weight. Figure 4b, shows the high-resolution
end. At high resolution, the dependence of BRR bottoms
at min LCB weight 141 approximately where the pro-
portion of 2-cycles (usually called 4-cycles) is at a maxi-
mum and the proportion of >3-cycles (usually called
6-cycles) are at minimum. At the minimum of break-
point reuse, 64% of the cycles are 2-cycles, 23% are 3-
cycles and 12.5% are cycles of length greater than 3. At
highest resolutions (below min LCB weight 140) a rise
in the 3-cycle and >3-cycles fraction and corresponding
drop in the 2-cycles produces a rise in BRR.
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Figure 4 Cycle structure and BRR as a function of LCB weight In this figure, cycle structure is compared with breakpoint reuse rate (BRR).
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represent the number of >3-cycles (usually called >6-cycles) vs the theoretical prediction for random permutations derived earlier. Cycle
decomposition of the human-mouse transformation is graphed against BRR minus 1 so that the contributions of different cycles can be
evaluated. The Grimm breakpoint reuse rate minus 1 is shown in mustard orange in (a) and (b). The corresponding DCJ version is in red in the
same two panels. The fraction of 2-cycles (conventionally 4-cycles) are shown in black in (a) and (b). The fraction of 3-cycles (usually called 6-
cycles) and >3 cycles is shown respectively in blue and green in (a) and (b) and in black in (c).

In the plateau, nearly half (45% to 48%) of the cycles
are 2-cycles, 11.26 to 12.5% of the cycles are 3 cycles, and
39 to 43.66% of the cycles are of length greater than 3.
The initial rise to the plateau from the minimum of
breakpoint reuse corresponds to a rise in the percentage
of 2-cycles, a decline in the percentage of 3-cycles and in
the percentage of cycles of length greater than 3. The
decline in breakpoint reuse as the min LCB weight grows
is due to a rise in the percentage of 2-cycles from 48.5%
at minimum LCB weight 51235 to 67% at LCB weight
97673 while the percentage of greater than 3-cycles
declines from 36.4% to 22.2%.

The decline in breakpoint reuse as min LCB weight
grows past 50000 is due to finite chromosome length.
Entire chromosomes can be spanned by Mauve synteny
blocks at their lowest resolution. The average length of
blocks with highest min LCB weight (100,000) is 42.4 Mb,
almost the size of the smallest (human) chromosome,
46.9 Mb. At such resolutions, the BRR diminishes, the per-
centage of 2-cycles rises and that of >3 cycles declines.

Minimum of BRR and cycle structure

The region around the minimum of BRR is very interest-
ing: near min LCB weight 200, the fraction of 2-cycles
peaks (Figure 4a and b) and the fraction of >3 cycles is at
a minimum at a slightly lower min LCB weight than the
min of BRR. It is in this overall region that the transfor-
mations are least complicated, and the “signal in the
genome” is best preserved. There are mainly “simple gen-
eralized inversions” since we are simultaneously at the
maximum of the 2-cycles fraction and at the min of the
>3 cycles, hence at the smallest fraction of long cycles,

although there is a caveat in that longer cycles have cor-
respondingly higher weights. We next compare our com-
puted cycle structures for human-mouse at different
resolutions with the previously derived predictions of
cycle structure for random permutations.

Low resolution cycle structure approaches random
permutation

We compared the total number of >3 cycles in the
human-mouse transformation to the expected distribu-
tion for a random permutation having the same number
of synteny blocks derived earlier. As resolution decreases,
e.g. with increasing min LCB weight (Figure 4c), the
number of >3 cycles of the transformation approaches
the theoretical distribution derived earlier for this num-
ber in a random permutation having the same number of
synteny blocks.

Systematic block removal for the 300 kb h-m Bourque

et al. blocks

Bourque et al. [11], constructed 3-way synteny blocks
for human, mouse and rat, using GRIMM-Syntenywhich
can be accessed online [3,5]. GRIMM-Synteny preserves
information about microrearrangements within synteny
blocks, dividing the blocks into “micro” and “macro” by
a choice of parameters. Choosing 300 kb as their cutoff,
they arrived at 394 blocks for human-mouse.

We applied the following protocol of successive block
removal on these 300 kb “Bourque” blocks. Blocks were
removed in a stepwise fashion, starting with the smallest
blocks. Remaining blocks were concatenated if they
appeared in the same orientation and order in both
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genomes. Although our approach follows the spirit of
the Sankoff-Trinh [22] block removal procedure, in
their approach, blocks were removed from simulated
genomes. Ours used a set of blocks that were derived
from real data. Theirs were generated so as to have no
breakpoint reuse. After removing blocks, the Sankoff-
Trinh procedure amalgamated the proximal blocks in a
manner subsequently shown to be faulty [5]. Since their
data was simulated as a permutation file, it had no
actual size. Since we used real data, the blocks we used
have size and orientation.

We calculated breakpoint reuse after each set of
blocks was removed, and plotted the resulting curves
versus the size of blocks removed (Figure 6). BRR was
calculated using GRIMM [25] via the Hannenhalli and
Pevzner algorithm [14,15] and via DCJ [16] with break-
points evaluated as previously discussed. As before, the
differences in these values of breakpoint reuse are not
significant, but are mainly due to the different methods
of counting breakpoints (internal for GRIMM and inter-
nal+external for DCJ). The change in breakpoint reuse
with block removal (for either BRR measure) for the
Bourque et al. blocks is not significant. As the break-
point reuse rates do not change significantly with block
removal, we hypothesize that this situation is similar to
the plateau region in Figures 3 and 4a and 4b where the
genomic permutation is “randomized”. In the next sec-
tions we perform the same block removal procedure on
the Mauve blocks most closely corresponding to the 300
kb Bourque et al. blocks.

Corespondence between Mauve blocks and “Bourque-

et al.” blocks

No direct correspondence can be made between the
Mauve synteny blocks and those of Bourque et al 2004,
since Mauve blocks and the Bourque et al. 3-way syn-
teny blocks for human mouse rat were generated from
different genome assemblies. By comparing various
parameters including GRIMM and DC]J distance,
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breakpoints, and Breakpoint Reuse Rate (BRR), we
derived a rough correspondence (Tables 1 and 2); the
Mauve blocks with min LCB wt 141 most closely corre-
spond to both the 300 kb and 1 Mb Bourque et al.
blocks. We call these the Bourque et al.-like Mauve
blocks.

BRR for the Bourque et al.-like Mauve blocks

We repeated our stepwise block removal protocol for the
Bourque et al.-like Mauve blocks (Mauve blocks at min
LCB weight of 141), since after block removal these
Mauve blocks most closely resemble the 300 kb Bourque
et al. blocks. In addition, blocks at min LCB weight 141
have the minimum observed value of BRR (see Figure
4b). Although both GRIMM and DCJ BRR curves initially
rise with block removal for the min LCB weight 141
Mauve blocks, after all blocks smaller than 300 kb are
removed, the curves enter a plateau (Figure 6a).

Our prior experience with the sets of Mauve blocks at
different resolutions suggests that when enough smaller
size blocks are removed, the remaining blocks approach
a more randomized cycle structure. The BRR curves in
Figure 6a for the Mauve blocks after >300 kb blocks
have been removed resemble those for the Bourque
et al. blocks (Figure 5) although the BRR values do not
match exactly. The existence of the plateau suggests the
Bourque et al. blocks have lost rearrangement informa-
tion encoded by true rearrangement breakpoints and are
approaching a random permutation.

3 cycles for Bourque et al.-like Mauve blocks with block
removal",1,0,1,0,0pc,0pc,0pc,0pc>>3 cycles for Bourque et
al.-like Mauve blocks with block removal

In Figure 6b we note that the divergence between the >3
cycle numbers for actual vs expected number of cycles
for a random permutation is greatest when no blocks
are removed and decreases with the proportion deleted.
Although the two curves in Figure 6b never merge, the
number of cycles greater than 3 approaches the curve

Table 1 Comparison of Bourque 300 kb blocks with Mauve The table shows the correspondence between the Bourque
300 kb blocks and the Mauve blocks. The closest corresponding minimum LCB weight is in parentheses

Bourque 300 kb  Mauve (closest LCB)

Mauve w/out removing blocks

Mauve after removing <300 kb blocks

#Synteny blocks 394 395 (991) 378 (1096) 347 (1471)
average size (Mb) 6.851 6.855 (1042) 7.983 (1096) 7.887 (141)
distance 338 338 (877) 322 (1096) 308 (141)
GRIMM breakpoints 417 417 (980) 384 (1096) 359 (1471)
breakpoint reuse 1.645 1.646 (549) 1.694 (1096) 1.72 (1471)
distance 338 338 (877) 320 (1096) 308 (141)
DCJ breakpoints 432 431 (861) 397 (1096) 371 (141)
breakpoint reuse 1.550 1.550 (471) 1.612 (1096) 1.66 (141)
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Table 2 Comparison of Bourque 1 Mb blocks with Mauve This table shows the correspondence between the Bourque 1
Mb blocks and the Mauve blocks. Again the closest minimum LCB weight is in parentheses.

Bourque 1 Mb

Mauve (closest LCB)

Mauve 1 Mb after removing < 1 Mb blocks

#Synteny blocks 273 273 (5889) 248 (141)
average size (Mb) 9.820 9.797 (3006) 10.500 (141)
distance 246 246 (5548) 245 (141)
GRIMM breakpoints 296 296 (5565) 273 (1471)
breakpoints reuse 1.662 1.662 (742) 1.736 (141)
distance 246 246 (5548) 245 (141)
DCJ breakpoints 312 312 (4154) 285 (141)
breakpoint reuse 1577 1.578 (770) 1.719 (141)
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depicting the expected number of >3 cycles lending cre-
dence to the notion that the permutation becomes
increasingly randomized as blocks are removed.

Discussion
Alternative measure for breakpoint reuse
The work presented here uses the classical definition of
breakpoint reuse rate. In a different approach, Bergeron et
al. (2008) devised a new way of calculating the breakpoint
reuse rate, BRR, and showed that by this definition the
BRR is intimately connected to particular rearrangement
scenario and model. They redefined the breakpoint reuse
rate as:

r=C/b

where C is the total number of cuts made by the opera-
tions of the scenario, and b the number of B-vertices (ie
in the target genome) in long cycles or paths. In methods
that force an artificial closure of paths ending in telo-
meric adjacencies, and an equalizing of chromosome
number resorting to use of null chromosomes (including
our formulation of the DC]J), there is no biological basis
for cuts performed between caps and gene ends or
between caps and caps in null chromosomes. The tradi-
tional breakpoint reuse measure can double-count the
number of actual cuts performed for each DCJ in specific
scenarios, leading to a severe overestimate of the BRR.
Bergeron et al. (2008) followed up on this insight by
devising a number of ingenious manoeuvres to find sce-
narios that either maximize or minimize their statistic.
For some long paths it is possible to decrease the number

of cuts by a factor of two, thereby radically diminishing
the effective breakpoint reuse. By the new definition,
the value of the breakpoint reuse rate can become less
than 1, achieving the following bounds for human-
mouse:

089 <r<151

Although the variation we achieved is not quite as
dramatic, as that obtained by Bergeron et al. we did
attain nearly half this variability just by changing the
resolution of the synteny blocks.

In another work on this subject [26], Sinha and Meller
investigated the relationship between BRR and synteny
blocks using a simple approach to synteny block aggre-
gation depending on two principle parameters: the max-
imum gap (max_gap) between adjacent blocks to be
merged, and the minimum length (min_len) of synteny
blocks. They found that the classical breakpoint reuse
rate was almost constant for different data sets and a
wide range of parameters, which roughly corresponds to
our results for BRR in the plateau region (our Figures 3,
4, 5, 6). Their work did not investigate synteny blocks of
the high resolution presented here. Although they do
not report the actual chromosomal span of their smal-
lest blocks, the block set they analyzed with the highest
synteny block count is generated by GRIMM and, hav-
ing 2000 blocks, has much fewer than our highest reso-
lution dataset which has about 6500. Like us, they also
found that BRR was strongly correlated with HP dis-
tance, increasing with more divergent genomes. To
compare our results for BRR with theirs, we calculated
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the minimum, maximum, mean and standard deviation
of the BRR over the range in Figure 3 as well as for
regions corresponding to the rise in the graph (from
min LCB weight 100 to 2717), the plateau (min LCB
weight 2717 to 42336), and the fall (min LCB weight
42336 to 76134). The results are summarized in Table 3.

Our results largely agree with those of Sinha and Mel-
ler for the plateau region, however, Sinha and Meller
did not arrive at values of breakpoint reuse varying as
much as ours did overall. Our breakpoint reuse rate var-
ied nearly 20 % of the maximum value.

Conclusions

High values of breakpoint reuse have been used to justify
the existence of fragile sites in genome rearrangement
scenarios. Although fragile sites may well exist in the
course of mammalian genome evolution, we argue that
computed high values of the “traditional” breakpoint
reuse statistic do not yield conclusive evidence for the
existence of such sites. Rather, as we have shown, the
cycle structure for such high BRR transformations these
genome transformations are more like random permuta-
tions. Small synteny blocks may contain critical informa-
tion about rearrangement history. As small synteny
blocks are lost, either by diminished resolution or block
removal, the numbers of >3 cycles increasingly approach
the expected values for a random permutation. For the
Bourque et al. 300 kb blocks, block removal did not
diminish BRR. In an experiment in which we best
matched the Bourque blocks with Mauve (at min LCB
weight 141 blocks) we showed that the behavior of BRR
curves of the Mauve blocks upon block removal also had
flat levels once all blocks spanning less than 300 kb were
removed. We posit that blocks spanning less than 300 kb,
which are missing from the Bourque et al. dataset, may
encode vital information about the true rearrangement
history and associated parameters. The distribution of
the number of cycles >3 corroborates our suggestion that
information is lost either with diminished resolution or
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with systematic block removal starting with the smallest
blocks. Finally, because the GRIMM and DC]J distance
was not significantly different for a great portion of the
resolution range, the difference in rearrangement models
did not come into play except at the highest resolutions.
At these resolutions, evidence for transpositions exists
but they comprise less than 2% of all rearrangements.

An implication of our study is that precise definition of
synteny blocks both large and small is crucial for accurate
inference of rearrangement history parameters. Small
blocks matter. Although larger blocks can be predicted
more reliably, homology can be confidently predicted
even for small regions spanning less than 1000 nucleo-
tides using BLAST statistics. Probabilistic methods for
Synteny Block reconstruction [27] can be used to assign
a confidence value (or posterior probability) to blocks
large and small. Future work might investigate the rela-
tionship between filtering blocks using such confidence
estimates and rearrangement parameters such as break-
point reuse, cycle count distributions, and others.

Finally, even though we suggest that the breakpoint
reuse rate may be lower than previous estimates, we note
that our findings do not preclude the existence of chromo-
somal regions with an unusually large number of closely
spaced rearrangement breakpoints or “fragile regions”.
Even if breakpoint reuse is low, breakpoints might cluster
near each other on the chromosome. Indeed this could be
a natural consequence of Nadeau and Taylor’s work: if
breakpoints are selected uniformly at random along a gen-
ome, the inter-breakpoint distances will be geometrically
or exponentially distributed (as will synteny block lengths),
and clusters of nearby breakpoints may exist purely by
chance. However, Pevzner and Tesler [3] inferred an
excess of short distances exist between breakpoints over
the expected exponential distribution in the random
model, concluding this implied the existence of fragile
regions solely based on elevated values of their breakpoint
reuse statistic. Even though we contend this argument
may not hold as we have shown the breakpoint reuse

Table 3 Statistics of DCJ BRR for Figure 3. Our graph in Figure 3 is divided into separate regions corresponding to Rise,
Plateau, and Fall. The Min, Max, Mean and St Deviation of the BRR based on the DCJ are tabulated for each region
separately, and for the overall graph. The Sinha-Meller results are approximate values reported in [26]

Min BRR Max BRR Mean BRR St deviation
Entire Graph 1374833 1.6667 1.559591 0.08839528
Rise 1.374833 1.6667 1525399 0.09207892
Plateau 1.5675789 1.664557 1.627744 0.02758151
Fall 1447619 1.609023 1531881 0.05047854
Sinha-Meller 153 1.67 ~1.63 ~0.025
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statistic depends significantly on the resolution scale used
in the analysis, other investigators have shown the exis-
tence of breakpoint clusters [28-30].

Additional material

Additional file 1: Appendix on Capping Examples for the
DCJAppendix on Capping Examples for the DCJ This appendix
provides illustrative examples on how capping is performed in our
version of the DCJ paradigm.

Additional file 2: Permutation filePermutation file These files contain
the permutations for the human-mouse-rat collinear synteny blocks
which are output by Mauve.

Additional files 3: LCB filesLCB files These files contain the Icbs for the
human-mouse-rat collinear synteny blocks files which are output by
Mauve. In addition, there are three files giving the lengths of the
chromosomes of each genome.

Additional files 4: LCB filesLCB files These files contain the Icbs for the
human-mouse-rat collinear synteny blocks files which are output by
Mauve. In addition, there are three files giving the lengths of the
chromosomes of each genome.

Additional files 5: LCB filesLCB files These files contain the Icbs for the
human-mouse-rat collinear synteny blocks files which are output by
Mauve. In addition, there are three files giving the lengths of the
chromosomes of each genome.

Additional files 6: LCB filesLCB files These files contain the Icbs for the
human-mouse-rat collinear synteny blocks files which are output by
Mauve. In addition, there are three files giving the lengths of the
chromosomes of each genome.

Additional files 7: LCB filesLCB files These files contain the Icbs for the
human-mouse-rat collinear synteny blocks files which are output by
Mauve. In addition, there are three files giving the lengths of the
chromosomes of each genome.

Additional files 8: LCB filesLCB files These files contain the Icbs for the
human-mouse-rat collinear synteny blocks files which are output by
Mauve. In addition, there are three files giving the lengths of the
chromosomes of each genome.

Additional files 9: LCB filesLCB files These files contain the Icbs for the
human-mouse-rat collinear synteny blocks files which are output by
Mauve. In addition, there are three files giving the lengths of the
chromosomes of each genome.

Additional files 10: LCB filesLCB files These files contain the Icbs for
the human-mouse-rat collinear synteny blocks files which are output by
Mauve. In addition, there are three files giving the lengths of the
chromosomes of each genome.

List of abbreviations

Bl: block interchange; BRR: breakpoint reuse rate; Cl: circular intermediate;
DCJ: double cut and join; GT: generalized transpositions; h-m: human-mouse;
h-m-r. human-mouse-rat; HP: Hannenhalli-Pevzner; kb: kilobase; LCB: locally
collinear block; Mb: megabase.
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