
PROCEEDINGS Open Access

Fractionation statistics
Baoyong Wang, Chunfang Zheng, David Sankoff*

From Ninth Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on Com-
parative Genomics
Galway, Ireland. 8-10 October 2011

Abstract

Background: Paralog reduction, the loss of duplicate genes after whole genome duplication (WGD) is a pervasive
process. Whether this loss proceeds gene by gene or through deletion of multi-gene DNA segments is
controversial, as is the question of fractionation bias, namely whether one homeologous chromosome is more
vulnerable to gene deletion than the other.

Results: As a null hypothesis, we first assume deletion events, on one homeolog only, excise a geometrically
distributed number of genes with unknown mean µ, and these events combine to produce deleted runs of length
l, distributed approximately as a negative binomial with unknown parameter r, itself a random variable with
distribution π(·). A more realistic model requires deletion events on both homeologs distributed as a truncated
geometric. We simulate the distribution of run lengths l in both models, as well as the underlying π(r), as a
function of µ, and show how sampling l allows us to estimate µ. We apply this to data on a total of 15 genomes
descended from 6 distinct WGD events and show how to correct the bias towards shorter runs caused by genome
rearrangements. Because of the difficulty in deriving π(·) analytically, we develop a deterministic recurrence to
calculate each π(r) as a function of µ and the proportion of unreduced paralog pairs.

Conclusions: The parameter µ can be estimated based on run lengths of single-copy regions. Estimates of µ in
real data do not exclude the possibility that duplicate gene deletion is largely gene by gene, although it may
sometimes involve longer segments.

Background
Whole genome doubling (WGD) triggers the wholesale
shedding of duplicate genes through processes such as
epigenetic silencing, pseudogenization, and deletion of
chromosomal segments containing one or more genes
[1-5]. The extent to which this paralog reduction is a
gene-by-gene inactivation process [6] targeting redun-
dant copies at random points throughout the genome,
or a consequence of largely random excision, elimina-
tion of excess DNA [2], is controversial and likely varies
from one phylogenetic domain to another. The distinc-
tion between these two processes is not sharp: The inac-
tivation effect may be produced not only by
pseudogenization and various suppression and silencing

mechanisms but also by the actual excision of a small
but critical region of a gene or promoter. Conversely,
the apparent excision of two or more adjacent genes
may rather be due to any of a variety of genetic, epige-
netic or functional interactions, rather than the deletion
of a DNA fragment. Nevertheless, the determination of
whether paralog reduction is a gene-by-gene process or
the deletion of longer stretches DNA is key to under-
standing the dynamics of genome evolution, not only
following WGD, but as part of the continual innovative
expansion and simplifying shrinkage of genomes over
time.
The other face of paralog reduction is the process of

fractionation. When a duplicate gene is lost, it may be
lost from one copy (homeolog) of a chromosome or the
other. When compared to the pre-WGD genome, or to
a closely related but unduplicated genome, this creates
an interleaving pattern, such that it is only by
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consolidating[4] the two homeologous single-copy
regions that the full original gene complement becomes
apparent. That the consolidated region is directly com-
parable to homologous regions in related genomes is
due to the fact that single-copy genes are rarely deleted
- of the two duplicates created by WGD, it is unlikely
that both are deleted, for obvious functional reasons.
Fractionation is an important evolutionary process

whenever WGD occurs, and is of particular interest for
comparative genomics, since it results in a genome that
is highly scrambled with respect to its pre-WGD ances-
tor. The study of fractionation also brings up the ques-
tion of bias: Are paralogs always or generally lost from
the same “side”, or are they lost randomly from one
homeologous chromosome or the other [3-5,7]?
In this paper, we analyze paralog reduction and frac-

tionation in terms of two models, one easier to analyze
but the other more realistic. First we model paralog
reduction on only one of the two homeologous chromo-
somes as a series of excisions of geometrically distribu-
ted lengths and show how to use the observed run
lengths of single-copy genes on the other chromosome
to estimate the parameter of the deletion length
distribution.
In the second model we allow excisions on both

homeologous chromosomes, and model deletion lengths
in terms of truncated geometric distributions to account
for the above-mentioned prohibition against deleting
single-copy genes.
This work is essentially the creation of a simple, one-

parameter “null” model of paralog reduction, where
deletion is by random events involving geometrically
distributed (with mean µ) numbers of genes on one
homeologous chromosome or randomly on both of
them. This sets up the possibility of statistical tests of
real WGD descendants, to see if the geometric hypoth-
esis is acceptable and to see if fractionation is unbiased
or not. We will not explicitly investigate the alternative
hypotheses of gene-by-gene excision or biased fractiona-
tion; our task here, aside from estimating the parameters
of our model, is simply to set up the null statistical
model with a view to eventually developing useful statis-
tical tests of hypothesis for this problem.
In a previous study of post-WGD evolution [3], we

took chromosomal rearrangement events into account.
In the present paper, we do not incorporate rearrange-
ment into our model, but we do reanalyze some of the
data, to explore the effects of genome rearrangement
processes in confounding the evidence of fractionation
and to suggest a way of redressing the loss of
information.
The lengths of runs of undeleted genes may be con-

sidered independent samples from a geometric distribu-
tion, and the lengths of runs of deleted genes are also

independent, but we show that the deletion events mak-
ing up a run of deleted genes are not independent. As a
consequence, the distribution of deleted run lengths
seems beyond the scope of straightforward mathematical
derivation. The major analytical and computational
result of this paper is the construction, implementation
and evaluation of a deterministic recurrence to calculate
the distribution of the number of deletion events per
run as a function of µ and the proportion θ of unre-
duced paralog pairs.

The models
The structure of the data
The data on paralog reduction are of the form (G, H),
where G and H are binary sequences indexed by ℤ,
satisfying the condition that g(i) + h(i) > 0. This condi-
tion models the prohibition against deleting both copies
of a duplicated gene. We may also assume that whatever
process generated the 0s and 1s is homogeneous on ℤ.
The sequence G + H consists of alternating runs of 1s

and 2s. We denote by p(l), l ≥ 1 the probability distribu-
tion of length of runs of 1s. For any finite interval of ℤ
we denote by f(l), l ≥ 1 the empirical frequency distribu-
tion of length of runs of 1s.
The use of ℤ instead of a finite interval is consistent

with our goal of getting to the mathematical essence of
the process, without any complicating parameters such
as interval length. In practice, we will use long intervals
of 100,000 or 300,000 so that any edge effects will be
negligible. See [3] and the section below on 15 WGD-
descendant genomes for ad hoc ways of handling biolo-
gical scale intervals.

One-sided deletion
In this case h(i) = 1, for –∞ < i < ∞. We assume a con-
tinuous time process, parameter l(t) > 0, only to ensure
no two events occur at the same time. We start (t = 0)
with g(i) = 1 for all i. At any t > 0, consider any i where
g(i) = 1. With probability l(t)dt, the following deletion
event occurs, anchored at position i: we choose a posi-
tive number a according to a geometric variable y with
parameter 1/µ, i.e.:

P a a

a
a

[ ] ( )

, ,

y = =

= −
⎛

⎝
⎜

⎞

⎠
⎟ ≥

−

g

m m
1

1
1

1
1 (1)

and we convert g(i) = 0, g(i + 1) = 0, … , g(i + a – 1) = 0,
unless one or more of these is already 0, in which case we
skip over it and continue to convert the next available 1s
into 0s, until a total of a 1s have been converted. This is a
natural way to model the excision process, since deletion
of duplicates and the subsequent rejoining of the DNA
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directly before and directly after the excised fragment
means that this fragment is no longer “visible” to the dele-
tion process. Observationally, however, we know deletion
has occurred because we have access to the sequence H,
which retains copies of the deleted terms.
When the deletion event has to skip over previous 0s,

this hides the anchor i and length a of previous deletion
events. Denote by r the random variable indicating the
total number of deletion events responsible for a run.
Then, given r = r, the run length z is distributed as the
sum of r geometric variables, which would result in the
negative binomial distribution:
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if these geometric variables were independent. As we
shall see later, however, the hypothesis of independence
does not hold.
If we observe G at some point in time, as in the last

row of Table 1, all we can observe are the run lengths
of 0s and 1s. We cannot observe the a, i or r, while t
and l(t) are unknown and, as we shall see, only mathe-
matical conveniences that do not enter into our calcula-
tions. The parameter about which we wish to make
statistical inferences is the deletion length distribution
parameter µ, since it is this quantity that is at the heart
of the biological controversy about paralog reduction.
This inference therefore can only be based on the run
lengths and the proportion of remaining 1s. If the prob-
ability distribution of r is π(·), the distribution of run
length x is approximately:
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The one-sided model is an extreme version of biased
fractionation and is not meant to model any real

situation. It is, however, relatively tractable and hence
provides a mathematical framework for understanding
more realistic cases.

Two-sided deletion
In a more realistic model, deletions can occur both in
sequence G and sequence H as in Table 2. Thus before
choosing a position i, we chose either G or H with prob-
ability ø and 1 – ø, respectively. The default we shall
study here, f = 1

2 , represents unbiased fractionation.
Then position i, where g(i) + h(i) = 2 and geometric
variable a are chosen as before.
Suppose G is the chosen sequence. Then g(i) is set to

0, g(i + 1) is set to 0, and so on until g(a + i – 1), unless
we first reach a position j where g(j) is already 0, in
which case we skip as before, or until we reach a posi-
tion k where h(k) = 0. In this case, we cannot continue
to delete, because g(k) is a single-copy gene, and we are
prohibited from letting g(k) + h(k) = 0, for any k. In this
case, we must truncate the geometric variable a, having
already deleted only k – i < a terms.
In this model, the deletion length is no longer geo-

metric but a mixture of geometric and truncated geo-
metric variables, and run length is no longer negative
binomially distributed, even approximately.

Results
Simulations to determine π

We carried out a simulation of the one-sided model on
an interval of ℤ of length 100,000. The top row of Fig. 1
compares π(r) when θ = 0.5 and θ = 0.1, for µ = 2, 3, 6,
and 11. We can see that the number of deletion events
contributing to a run is somewhat dependent on µ
when half of the the sequence has been deleted, but is
strongly dependent when 90 % has been deleted. In the

Table 1 One-sided model

event i a -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 r

start 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 -1 3 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1

2 -4 1 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1,1

3 4 4 1 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1,1,1

4 -5 4 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 3,1

Four deletion events leading to two runs of 0s. Illustrates the creation of a
long run with r = 3 subsuming two previous shorter runs. Note that r is not
observable.

Table 2 Two-sided model

event i a -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 r

start 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 -1 3 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1,1

-4 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

3 4 4 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1,1,1

1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 3,1

-5 4 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Four deletion events affecting two homeologous chromosomes, leading to
two runs of single-copy genes. The fourth step illustrates how further deletion
(at i = –1) and the “skip” process (at i = 2) are blocked when a single-copy
gene is encountered (i = –1) on the homeologous chromosome, truncating
the geometric variable a.
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bottom row, the graph on the left shows that run length
l is distributed very differently for µ = 2 and µ = 11,
when the proportion of the sequence deleted is exactly
the same. This strongly suggests that observing the run
length distribution and the overall proportion of dele-
tions should allow us to infer µ.
Finally, the remaining graph in Fig. 1 shows that any

edge effects in our simulation are negligible. Whether
we work with G and H on an interval of ℤ of length
100,000 or, as in another simulation, length 300,000,
gives virtually the same results.
Figure 2 shows the relationship, in the one-sided and

two-sided models, between the proportion of genes
deleted, on one chromosome or the other, and the average

run length, for a range of values of µ. This confirms our
impression that average run length and overall proportion
of deletion, both observable, can be used to infer µ.

Non-independence of deletion events in a run
A long deletion event within a run if undeleted genes
has a greater chance of including all the following genes
in that run, and possibly successive runs as well, than a
short event deleting, say, only one or two genes. This
implies that longer deletion events will tend to be
grouped together in an event while short events are
more likely to be in short runs. This the events making
up a run are not chosen independently. This is reflected
in the simulations in Fig. 3 for the case θ = 0.3.

Figure 1 Run statistics Distribution of number of deletion events r composing each run when the proportion of sequence deleted is 0.5 (top
left) and 0.9 (top right). Distribution of run length, reflecting a mixture of negative binomial distributions, for two values of the parameter of the
underlying geometric distribution (bottom left). Identical results for simulation interval of 100,000 or 300,000 genes (bottom right).
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Application to 15 descendants of WGD events
To explore the relevance of our models for real gen-
omes, we emphasize that we observe only the propor-
tion θ of unreduced duplicates and the distribution of
run lengths of single-copy genes on both homeologous
chromosomes. (We can also observe the distribution of
the run size of surviving paralog pairs, although models
have not been developed for this.) We cannot observe t
or l. We cannot sample from the geometric distribution
of deletion sizes, only their accumulation into runs, so
that we cannot directly estimate its mean µ, the para-
meter of biological interest.
In [3], we studied 15 descendants of 6 ancient WGD

events. In real genome sequences such as these, many
or most runs of deleted paralogs will be impossible to
identify; one or both of the homeologous regions will

have been disrupted by inversions, translocations or
other rearrangement events that juxtapose the surviving
genes in the run with genes originally remote on the
chromosome or from elsewhere in the genome.
We could, however, identify some two-sided undis-

rupted runs of single-copy genes, fractionated between
two chromosomal regions. We searched for such analy-
tical units (AU), two-sided runs flanked at either end by
a pair of undeleted duplicate genes, with the two flank-
ing genes on a chromosome having the same orienta-
tion, and including no intervening gene having a paralog
somewhere outside the run, as in Fig. 4. It is statistically
unlikely that such an AU configuration be produced by
a series of compensating rearrangements, so that any
rearrangements must have occurred entirely within the
run, or have included the entire run intact plus the
flanking duplicate pairs.
Among all the runs of single-copy genes in a WGD

descendant genome, it is only the AU that can be used
as evidence for the paralog reduction process, because it
is only from these that we can reconstruct common
conserved homeologous regions on two chromosomes
(or remote regions on one chromosome).
Key characteristics of the genomes, their global prop-

erties and the properties of the two-sided runs are given
in Table 3. D = d/(n – m) is the rearrangements per
gene since WGD, where d is calculated only on the
duplicates by the algorithm in [8], n is the total number
of genes in the given genome and m is the number of
single-copy genes.. The way d is calculated, there are
between one and two breakpoints per rearrangement.
We do not know how many rearrangements have
affected the whole genome, duplicates and single-copy,
but as a first approximation we assume that the prob-
ability that any adjacency will be disrupted by a rearran-
gement since the WGD is proportional to D, or aD.
The proportionality constant a ≤ 1 is unknown, but
experience suggests a = 1

2 is a reasonable value.
In [3], the AU lengths in each of the 15 genomes were

distributed as in Fig. 5. Since we model run length in
terms of an unknown mixture of distributions involving

Figure 2 Comparison of models Average length of run of single
copy genes in one-sided and two-sided models for µ = 2, 3, 6,11.

Figure 3 Non-independence of deletion events in a run
Association of shorter deletions with smaller values of r.

chr. 1   o  o  o  o  o      o  o  o  o      o  o

chr. 2   o      o  o      o  o          o  o      o

chr. 3                                            o

  s=1  s=0    s=2       s=2       non-AU

Figure 4 Analytical units (AU) The number of single copy genes s
bounded by pairs of duplicates on chromosomes 1 and 2 is the
sum of those on chromosome 1 and chromosome 2. The last two
pairs of duplicates on chromosomes 1 and 2 do not border an AU
because one of the genes between them has a paralog on
chromosome 3. From [3].
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r geometric or truncated geometric variables, where π(r)
is unknown, we cannot infer µ directly. Nevertheless, we
remark in the figure that the frequency distribution f(u)
of the run lengths u ≥ 1 is closely approximated by a
geometric distribution with mean u in all of the cases,
except where there are few data. The mean u varies
widely from genome to genome. In this section we will
continue to make use of this approximation to help
understand the data.
Consider an AU of length u. There are u+1 possible

breakpoints in an AU of length u, including the two at
either end of the run of single-copy genes involving the
flanking duplicate genes, that could destroy the AU,
according to definition.
Each adjacency in an AU will survive (not be dis-

rupted by a breakage) an evolutionary period equal to
the time from WGD with probability approximately (1
– aD). An AU of size u will survive with probability (1
– aD)(u+1) Then f(u)/(1 – aD)(u+1) is an estimate of the
frequency of AUs of size u if there had been no rearran-
gements. The predicted relative frequency of run length
becomes a geometric distribution with mean ν, where:

1
1

1
1

1
1− = −⎛

⎝⎜
⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟n u z
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z D= a , and

n = −
−

uz u

z u
. (5)

Fig. 6 shows the two-sided curve of run length versus
proportion deleted as in Fig. 2, but with the mean run
length u , averaged over the descendants of each of the
six distinct WGD events superimposed. Each point is
connected in the figure to the corrected mean ν calcu-
lated from Eq. 4. We used a = 0.5. This somewhat arbi-
trary choice is bounded above by the fact that z must be
greater than u in Eq. (4).
This correction procedure is relatively unstable, since

it is very sensitive to the arbitrary parameter a. All the
more so with very low values of θ, as on the right of
Fig. 6, where the model begins to percolate, i.e., where
the runs merge together at a rapidly increasing rate.
Nevertheless we see no evidence in the figure that µ is
much greater than 1, leaving a gene-by-gene model very
much a viable candidate alongside the geometric exci-
sion model.

A model for π(r) in the one-sided model
We are interested in inferring µ from the observed dis-
tribution of run lengths and the proportion of undeleted
terms θ. At the outset θ = 1. As t ® ∞, θ ® 0. We are
not, however, interested in t, since it is not observable
and any time-based inference we can make about µ will
depend only on run lengths and θ in any case. On the
other hand, r, the number of deletion events per run is
an interesting variable since we can assume run length
is rµ on average, and we can model the evolution of r
directly in the one-sided model. We consider the distri-
bution π as a function of θ.
As π changes, probability weight is redistributed

among several types of run:
1. new runs (r = 1) falling completely within an exist-

ing run of undeleted terms, not touching the preceding
or following run of deleted terms
2. runs that touch, overlap or entirely engulf exactly

one previous run of deleted terms with r ≥ 1, thus
lengthening that run to r + 1 events,
3. runs that touch, overlap or engulf, by the skipping

process, two previous runs of r1 and r2 events respec-
tively, creating a new run of r1 + r2 + 1 events, and
diminishing the total number of runs by 1, and
4. runs that touch, overlap or engulf, by the skipping

process, k > 2 previous runs of of r1, … , rk events
respectively, creating a new run of r1 + … + rk + 1
events, and diminishing the total number of runs by k –
1. Case 3 above may be considered a special case of this
for k = 2 and Case 2 for k = 1.
The first process, involving a deletion event of length

a requires a run of undeleted terms of at least a + 2.
What can we say about runs of undeleted terms? We
know that runs of deleted terms alternate with runs of

Table 3 Data on 15 genomes

t n m 1 – θ u
S. cerevisiae 150 5616 4498 0.89 6.0958

C. glabrata 150 5180 4382 0.92 5.3839

V. polyspora 150 5112 4164 0.9 4.922

S. bayanus 150 5857 4773 0.9 5.8297

N. castelli 150 5213 4053 0.88 5.0717

Paramecium 20 38626 14576 0.55 2.0299

populus 70 20082 7228 0.53 1.6402

Arabidopsis 50 25655 13267 0.68 3.6086

fugu 350 14251 12653 0.941 3.806

medaka 350 14564 13352 0.957 5.0629

stickleback 350 16726 14876 0.941 4.3792

tetraodon 350 17120 16088 0.969 6.876

chicken 450 10077 8495 0.915 3.6122

opossum 450 13339 11589 0.93 5.5507

human 450 13828 12144 0.935 3.818

Evolutionary inference about 15 descendants of 6 WGD events. t: time in My
since event, n: total genes, m: single-copy genes, 1 2− = +q m

n m
, d: halving

distance [8], u average run length.
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undeleted terms, so that there is one run of the former
for each of the latter. The mean length u of the deleted
runs should be (1 – θ)/θ times the mean length v of
the undeleted runs:

v r r
r

=
−

=

∞

∑q
q
m p

1
1

( ). (6)

The distribution r(l) of lengths of the undeleted runs
is geometric, since each deletion event creates a ran-
domly placed demarcation between two runs in the
sequence consisting of all the remaining terms. The
number of terms between two successive such demar-
cations corresponds to the difference between succes-
sive order statistics, and is hence geometrically
distributed.
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Figure 5 Single copy runs in 15 WGD descendants Distribution of length of run of single copy genes in 15 genomes descended from WGD
events. Zero length indicates adjacent pairs of paralogs (i.e., not single-copy). Coloured boxes contain genomes descended from the same
event. Frequencies of zero-length runs are not considered in the fitting by the geometric distributions shown. From [3].
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The proportion of terms in runs of length l is lr(l)/Er,
where Er = El>0lr(l). As depicted in Fig. 7, the probabil-
ity pA that a deletion event falls within a run of length l
without deleting the terms at either end is:

p
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where j indexes the starting position of the deletion
within the run, and a is the number of terms deleted in
the event.
The probability pB that a deletion event touches only

the run of deletions on the left of the run of undeleted
terms is:
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The probability pC that a deletion event touches or
overlaps the run of deletions on the right but does not
extend over the entire run of undeleted terms beyond
that is:
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The probability pD that a deletion event completely
overlaps the run of deletions on the right and touches
or overlaps the run of deletions beyond that but does
not extend over a further run of undeleted terms:
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The probability pE that a deletion event touches the
run of deletions on the left of the run of undeleted
terms and touches or overlaps the run of deletions on
the right but does not extend over the entire run of
undeleted terms beyond that is:

p
E

l k aE

kl a l

l k

=
≥≥ =

+ −

∑∑ ∑1

11

1

r
r r g( ) ( ) ( ). (11)

The event A adds one new run with r = 1. The events
B and C lengthen an existing run from r events to r + 1.
The events D and E join two existing runs of of r and s
events to create a single run of length r + s + 1. In our
initial model, we neglect the merger of three or more
runs of deletions. There is no conceptual difficulty in
including three or more mergers, but the proliferation
of embedded summations leads to computational pro-
blems. Thus we should expect the model to be adequate
until θ gets very small, when mergers of several runs at
a time become common.
The last lines of each of (7),(9) and (10) include the

collection of terms, significantly cutting down on com-
puting time when these formulae are implemented.
We define the change δ(r) in the number of runs of

deleted terms with r = 1, 2,... as:

d p( ) ( ) ( ).1 2 2 1= − + + +p p p p pA B C D E (12)

d p p( ) ( ) ( ) ( ) ( ).2 1 2 2 2= + − + + +p p p p p pB C B C D E (13)

Figure 6 Single copy runs in WGD descendants compared to
model Mean deletion run length in WGD descendants, uncorrected
and corrected for rearrangements, compared to average length of run
of single copy genes in the two-sided model for µ = 2, 3, 6 and 11.
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For r > 2,

d p p p( ) ( ) ( ) ( ) ( ) ( ) (r p p r p p s r s p p pB C D E

s

r

B C D= + − + + − − − + +
−

−

∑1 2 2 1 2
1

2

++ 2p rE) ( ).p (14)

In an implementation on a finite interval of ℤ, the
number of runs of deleted terms will change from some
value R to R′, where:

′ = +
=

∞

∑R R r
r

d( ),
1

(15)

the distribution of run lengths will also change from π
to π′, where:

′ = +
′

p
p d

( )
( ) ( )

,r
R r r

R
(16)

where the mean increases accordingly from u to u′ ,
so that the mean v ′ of the new distribution r′ of run
lengths of undeleted terms satisfies:

v
R

R
u v u′ =

′
+ − ′( ) . (17)

The new proportion θ′ of undeleted terms is

v u v′ ′ + ′/ ( ) .
We implement equations (7) to (17) as a recurrence

with a step size parameter Λ to control the number of
events using the same pA, pB, pC, pD and pE and δ(·)
between successive normalizations, using Λδ(·) instead
of δ(·) in (15)-(17). The choice of Λ determines the
trade-off between computing speed and accuracy.

Fig. 8 shows the results of our current implementation
of our deterministic recurrence for the case µ = 2. The
results fit simulations of the stochastic model quite well.
There are at least two reasons for the observed discre-
pancies. At the outset, since we used a large step size Λ
for the computationally costly recurrence, its trajectory
lags behind the simulation, especially with respect to the
slower decrease in pA and slower increase in pB + pC.
Later discrepancies are partially due to not accounting
for the merger of three or more runs. These can be esti-
mated and are summarized as “other ” in the diagram,
but the quantities involved are not fed back to the
recurrence through (16).

Figure 7 Deletion model Types of deletion event affecting less than three pre-existing runs. White area indicates run of undeleted terms.
Lightly shaded area indicates run of previously deleted terms. Darker area represents current deletion event. A: creates one new run with r = 1.
B: lengthens left hand run to r + 1 events. C: lengthens right hand run to r + 1 events. D and E: merge two runs to create a single run with r +
s + 1 deletion events.

Figure 8 Comparison of model with simulations Changes in
rates of different event types as calculated by recurrence, compared
with simulation results.
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Other possible sources of error might be due to the
cutoffs in x used for calculations involving g(x) and r(x).
However, extensive testing of various cutoff values has
indicated such errors to be negligible in our
implementation.

Conclusions
We have developed a model for the fractionation pro-
cess based on deletion events excising a geometrically-
distributed number of contiguous paralogs from one of
a pair of homeologous chromosomes. This is extended
to the mathematically less tractable case where both
homeologs are susceptible to deletion events. The exis-
tence of data prompting this model is due to a func-
tional biological constraint against deleting both copies
of a duplicate pair of genes.
The mathematical framework we propose should

eventually serve for testing the geometric excision
hypothesis against alternatives such as gene-by-gene
inactivations or imbalanced fractionation, although we
have not developed these here.
Simulations of these models indicate the feasibility of

estimating the mean µ of the deletion event process
from observations of the length of runs of single-copy
genes and the overall proportion of single-copy genes.
Application to real data from an earlier survey of 15
genomes descended from 6 WGD events, however, is
hampered by the accumulation of rearrangement events
that have obscured most of the runs of single-copy
genes. We have proposed a way of correcting for the
missing runs, but this remains a rather approximate
procedure.
The main outstanding question remains the exact

derivation of π, the distribution of the number of dele-
tion events contributing to a run of single-copy genes.
The simulations are convenient in practice, since they
depend on only one parameter µ as they evolve over
time, but they give little mathematical insight. Our most
important advance is a deterministic recurrence for the
π(r) as the proportion θ of undeleted genes decreases,
albeit for the one-sided model only. This takes into
account the appearance of new runs over time, the
lengthening of existing runs, as well as the merger of
two existing runs with the new deletions to form a sin-
gle, longer one. This calculation fits the process as simu-
lated rather well and seems promising for further
development.
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