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Abstract

Background: Many methods for dimensionality reduction of large data sets such as those generated in microarray
studies boil down to the Singular Value Decomposition (SVD). Although singular vectors associated with the largest
singular values have strong optimality properties and can often be quite useful as a tool to summarize the data, they
are linear combinations of up to all of the data points, and thus it is typically quite hard to interpret those vectors in
terms of the application domain from which the data are drawn. Recently, an alternative dimensionality reduction
paradigm, CUR matrix decompositions, has been proposed to address this problem and has been applied to genetic
and internet data. CUR decompositions are low-rank matrix decompositions that are explicitly expressed in terms of a
small number of actual columns and/or actual rows of the data matrix. Since they are constructed from actual data
elements, CUR decompositions are interpretable by practitioners of the field from which the data are drawn.

Results: We present an implementation to perform CUR matrix decompositions, in the form of a freely available,
open source R-package called rCUR. This package will help users to perform CUR-based analysis on large-scale data,
such as those obtained from different high-throughput technologies, in an interactive and exploratory manner. We
show two examples that illustrate how CUR-based techniques make it possible to reduce significantly the number of

probes, while at the same time maintaining major trends in data and keeping the same classification accuracy.

Conclusions: The package rCUR provides functions for the users to perform CUR-based matrix decompositions in
the R environment. In gene expression studies, it gives an additional way of analysis of differential expression and
discriminant gene selection based on the use of statistical leverage scores. These scores, which have been used
historically in diagnostic regression analysis to identify outliers, can be used by rCUR to identify the most informative
data points with respect to which to express the remaining data points.

Background

In many modern data analysis applications, the user is
faced with data matrices with a huge number of columns
and/or rows. Such matrices arise in disciplines ranging
from astronomy through genomics and social sciences
to zoology. As a specific example, let us consider gene
expression microarray data. In a typical study, hundreds
of thousands of probe expressions are measured for a
large number of samples. This methodology has had a
significant impact on gene expression research, but the
publication of studies with dissimilar or contradictory
results has raised concerns about the reliability of this
technology, especially when all the individual values of
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gene expressions are requested. On the other hand, when
the goal is more modest, e.g,, just classifying the samples
into few categories, there is typically ample information
available in the data, and one can hope that the huge
redundancy in the data compensates for the possible
errors of the technology.

In such cases, it is common to employ one of several
dimensionality reduction methods in order to iden-
tify low-dimensional features for use by a downstream
analyst. Many popular methods, e.g., Principal Compo-
nent Analysis (PCA), multidimensional scaling, recently-
popular nonlinear-dimensionality reduction methods,
etc., boil down to the Singular Value Decomposition
(SVD). The singular vectors, or principal components,
associated with the largest singular values have strong
optimality properties, and they can often be quite use-
ful as a tool to summarize and identify major patterns
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of the data. (See, e.g., [1], as a nice example in the field
of genomics and [2] for a fast matrix factorization algo-
rithm.) Nevertheless, it is typically quite hard for a geneti-
cist or downstream data analyst to interpret those vectors
in terms of the application domain from which the data
are drawn. The reason for this is that the singular vectors
are mathematical abstractions defined for any matrix, and
they are typically linear combinations of all of the input
data. This has been noted most explicitly by Kuruvilla
et al. [3]. After describing the many uses of the vectors
provided by the SVD and PCA in DNA microarray analy-
sis, they bluntly conclude that “While very efficient basis
vectors, the (singular) vectors themselves are completely
artificial and do not correspond to actual (DNA expres-
sion) profiles. ... Thus, it would be interesting to try to
find basis vectors for all experiment vectors, using actual
experiment vectors and not artificial bases that offer little
insight”

To address these and other issues, Mahoney and Drineas
[4] proposed the CUR matrix decomposition method.
CUR decompositions are low-rank matrix decomposi-
tions that are explicitly expressed in terms of a small
number of actual columns and/or actual rows of the data
matrix:

A~ CUR (1)

where A is the original data matrix, C consists of a small
number of actual columns of A, R consists of a small
number of actual rows of A, and U is a small carefully
constructed matrix that guarantees that the product CUR
is close to A. Since they are constructed from actual data
elements, CUR decompositions are interpretable by prac-
titioners of the field from which the data are drawn (to
the extent that the original data are). For example, CUR
decompositions have been used for interpretable data
analysis of DNA single-nucleotide polymorphism data
[5-7]. The theory of CUR matrix decompositions works as
follows [4,8]. To determine which columns to include in C
(and similarly for R), one computes an “importance score”
for each column of A and then randomly samples a small
number of columns from A using that score as an “impor-
tance sampling” probability distribution. This importance
score depends on the matrix A and an input rank param-
eter k. If Vf is the j-th element of the &-th right singular
vector of A, then the normalized statistical leverage scores
equal

1,
2
= X SEZI(V/.) , (2)

forallj = 1,...,n These quantities, up to scaling, equal to
the diagonal elements of the so-called “hat matrix,” i.e., the
projection matrix onto the span of the top k right singu-
lar vectors of A [9]. As such, they have a natural statistical
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interpretation as a “leverage score” or “influence score”
associated with each of the data points; and they have
been widely-used for outlier identification in diagnostic
regression analysis.

The basic algorithm for choosing columns from a
matrix—call it COLUMNSELECT—takes as input any mxn
matrix A, a rank parameter k, and an error parameter ¢,
and then performs the following.

1. First, compute v}, ...,V (the top k right singular
vectors of A) and the normalized statistical leverage
scores of Equation (2).

2. Second, keep the j-th column of A with probability
pj = min{l, crj}, forallj € {1,...,n}, where
¢ = O(klogk/e?).

3. Third, return the matrix C consisting of the selected
columns of A.

In some applications, this restricted CUR decomposition,
A ~ PcA = CX, where X = CTA, is of interest and where
C* denotes a Moore-Penrose generalized inverse of the
matrix C.2

In other applications, one wants a CUR matrix decom-
position in terms of columns and rows simultaneously.
The basic algorithm for this performs the following.

1. Run COLUMNSELECT on A with ¢ = O(klog k/€?)
to choose columns of A and construct the matrix C.

2. Run COLUMNSELECT on AT with r = O(klog k/€?)
to choose rows of A (columns of AT) and construct
the matrix R.

3. Define the matrix U as U = CTAR™.

Thus, in contrast to PCA and the SVD, where the low-
dimensional basis consists of singular vectors that are
linear combinations of all the data vectors, here the matri-
ces C and R consists a small number of actual columns
and rows of A, respectively. The details of this procedure,
including the use of randomness, are important for the
strong underlying theory [4,8,10]; but in practice several
variations that exploit the structure identified by the sta-
tistical leverage scores perform very well. These practical
design decisions we made for our implementation will be
described in the next section.

In this paper, we describe the rCUR package, which is a
freely available, open source R implementation of the CUR
matrix decomposition method. We will summarize func-
tionality and features of the package that allow the user
to obtain the statistical leverage scores and the matrices
C, U, and R by simple S4 classes and methods. In certain
cases, we have found that the statistical leverage scores
themselves are useful directly, and thus we also describe
variations to select the columns or rows that deviate from
the theory described above. We will then demonstrate
the strength of the technique on a microarray study. In
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particular, we will show that even for a very large set of
heterogeneous samples with various experiments, rCUR
is able to select a few percent of the probes that have the
same classification capacity as the original full set.

Finally, it should be emphasized that this CUR approach
is very different the classical statistical perspective, where
statistical leverage scores have been used in diagnos-
tic regression analysis to identify outliers and errors [9];
and that Bien et al. [11] have described the connections
between CUR matrix decompositions and sparse opti-
mization methods. See also [12] as a previous example in
the genomics literature for gene selection via outliers.

Implementation
The rCUR package was developed to allow users to easily
perform CUR matrix decompositions. For this purpose,
an easy to use primary function, called CUR, was imple-
mented. The input of the function CUR is a two dimen-
sional matrix with column and row names. If any of the
column or row names is missing then the index of the
dimension is assigned automatically. From the matrix A
the function CUR calculates the statistical leverage scores
and the matrices C, U, and R. Importantly, the rank
parameter (typically denoted k) has a fundamental influ-
ence on the resulting leverage scores (and thus on the
construction of C and R), since only the top k singular
vectors of A are used in their calculation. Thus, it should
be chosen carefully, based on domain-specific consider-
ations. If no value is supplied for k, then k is arbitrarily
set such that the sum of the top k singular values is more
then 80% of the sum of all singular values. In our imple-
mentation the size of the resulting C, I and R matrices
is not determined dynamically based on the error param-
eter €. Rather the number of columns (¢) and rows (r)
to be selected are input parameters and the actual error
of the approximation is returned if requested. The out-
puts of function CUR are stored as slots in a S4 class,
called CURob;j. In addition, in certain cases we have found
that the leverage scores themselves can be used directly,
and thus we also provide an implementation that selects
the columns or rows without involving any randomness.
In particular, this involves using the statistical leverage
scores as a “ranking function” rather than as an “impor-
tance sampling” distribution, and then deterministically
choosing k or slightly more than k of the the highest lever-
age columns/rows. Selecting data points or features (for
example in gene expression studies) in this way makes the
analysis more reproducible and interpretable, although we
have found that in some cases the inclusion of random
additional columns indeed slightly improves the precision
of the approximation.

Several other column selection methods are also imple-
mented in rCUR. These can be selected by the parameter
“method”.
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random the original method described in [4] that was
outlined above; this is the default.

exact.num.random like the default method, but it is
guaranteed, that exactly as many rows and columns are
selected as requested. (In the random case it is only
the expectation value.)

top.scores the rows and columns with the highest lever-
age scores are returned deterministically.

ortho.top.scores columns and rows are selected in an
iteration based on a factor that combines not just the
leverage score but also the orthogonality of the next vector
to the already selected subspace.

highest.ranks rows and columns with the highest rank of
leverage score for some rank parameter are selected. Every
possible value is tried up to the value of k.

These methods are considered experimental and they pro-
vide roughly the same precision as the default method.
For certain problems with highly correlated columns/rows
one method (ortho.top.score) seems to be very promising.
In this way the selection of multiple similar columns/rows,
which does not contain new information is avoided, hence
the necessary number of columns/rows can be reduced.

To extract the matrices C, U, R and the statistical lever-
age scores from the object CURobj function, the functions
getC, getU, getR and leverage, respectively, may be used.
With the function top.leverage, one can get the indexes of
the rows or columns with highest leverage scores as the
most influential features (genes or samples, respectively).
Using these indexes one can get subset of the matrix A for
further analysis.

To improve efficiency the computation of components
that are not used can be switched off. In particular, if the
restricted CUR decomposition is required, the parameter
r can be set to the actual number of rows of A. In this case
row selection is skipped and X can be recovered as UA.
(The actual matrix multiplication UA is not performed by
the package.)

In addition, with the function plot.leverage, one can plot
the statistical leverage scores themselves, highlighting the
largest values and indicating the uniform level directly
from CURob;j.

For users who would like to test the functionalities
of the package on published, real world data sets we
incorporated the data used by paper [4] presenting CUR
decomposition. This is a subset of a soft tissue tumor data
set[13]. The 31 samples of dataset belong to three pheno-
types gastrointestinal stromal tumor (GIST), leiomyosar-
coma (LEIO) and synovial sarcoma (SARC). For each
sample, 5520 gene expression values are stored in matrix
STTm and annotation information in data frame ST7a.
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The original, full dataset[13] is downloadable from the
Gene Expression Omnibus database (GSE3443) and from
Stanford Microarray Database (http://smd.stanford.edu).

Results and discussion

We illustrate the benefits of CUR matrix decompositions
and dimension reduction with the rCUR package by com-
paring it with two different previously-published case
studies. In the first, we show that feature selection based
on leverage scores can differentiate classes with a perfor-
mance similar to that of the entire gene set of a microarray.
In the second, we show that CUR performs well not only
in the separation of classes, but in addition we can get
comparable results in trend analysis with a fraction of full
feature set. We provide all the code that is neccessary to
reproduce these results as Additional file 1 and Additional
file 2

Case study 1: soft tissue tumor discrimination

Here our goal is to check if it is possible to separate groups
with genes filtered by CUR and obtain a performance sim-
ilar to that with the total gene set. In this example we
use a soft tissue tumor dataset, which is incorporated in
the package as mentioned above (STTm, STTa). By using
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Figure 1 Feature selection using leverage score. Normalized
leverage scores (grey bars) are presented for each gene (5520) in
dataset ordered by row number. The highest 27 leverage scores are
dotted with black.
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the rCUR package, we repeated the analysis that was per-
formed in the paper publishing the CUR method [4]. After
running the function CUR the genes with highest lever-
age scores are selected as the most influential features (see
Figure 1). Then, using the 27 genes with the highest nor-
malized leverage scores, we performed a PCA, just as with
the total 5520 genes of dataset. Biplots were created from
the two first components from both PCAs (see Figure 2).

According to biplots, one can conclude visually that
using CUR as feature selection method we can discrim-
inate the classes with many fewer variables (0.5% of the
full dataset), obtaining performance comparable to the full
set.

Case study 2: discrimination and trends

One of the major problems of microarray studies is that
the individual probe values are not always well corre-
lated with the expression of the corresponding gene. On
the other hand, it has been shown [1] that even for a
very large and inhomogeneous set of microarray samples
it is possible to extract reliable information and classify
the samples. In that study, the authors collected 5,372
human samples representing 369 different cell and tissue
types, disease states, and cell lines. The samples were part
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Figure 2 PCA plots are presented using the first two principal
components. The plot at the top shows PC1 and PC2 using all genes,
the one below plots the results based on the selected (27) features.
Genes filtered by leverage scores give similar discriminative
performance like the whole dataset.
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of a public international archive, which means that not
only the sample parameters but the research groups doing
the experiments, the goal of their studies, the sample
handling, etc. were very heterogeneous. We have recon-
structed their main finding in Figure 3. Note that, despite
the mixed origin of the samples, one can clearly identify
distinct classes like hematopoietic or malignant samples.
After reducing the number of probes from 22, 300 to 250
with CUR, we obtain the very same trends in the first
few components. Since we have several classes and many
dimensions, Figure 3 provides just a visual demonstration
of the classification.

To make the goodness of the classification more quan-
titative, we apply the following metrics to measure the
separation of the classes. For all group pairs all point pair
Euclidean distance was calculated. We measure the sepa-
ration of two groups by the median of these distances for
that group pair. For all group pairs these medians were
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summarized as a total separation measure. In Figure 4,
we plot the value of the measure of separation against the
reduced number of genes at different k values. We can see
that for most of the parameter values the CUR compres-
sion not just reproduces the results of the original PCA
(horizontal red line) but gives somewhat better values. It
is interesting that the critical value where the separation
performance of the compressed representation jumps to
similar values as the full PCA is kK = 4 which is the number
of the different classes. The optimal separation perfor-
mance is around 150 genes and k = 6, using less than 1%
of the original 22, 283 genes.

Conclusions

The package rCUR provides functions for the users to per-
form CUR matrix decompositions in the R environment.
In gene expression studies, it may give an additional way
of analysis of differential expression and discriminant gene
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Figure 3 Trends from principal components. Based on 5,372 human microarray data Lukk et al. [1] showed that the first two principal
components can be interpreted as “hematopoietic” and “malignancy” axes. In their study they used all 22,283 gene expression values in the
principal component analysis. The two plots on the left side are reproductions of their results. Classifying the tissue of samples due to a
“hematopoietic” direction (hematopoietic system, connective tissue, incompletely differentiated and other) a trend can be found along the
horizontal axis (on top). Using another classification of samples (cell line, neoplasm, disease and normal) a “malignancy” trend can be recognized
vertically (on bottom). Dots represent the samples colored according to classes determined by Lukk et al. [1]. Using the 250 most influential features
filtered by leverage scores from CUR decomposition (with k = 5) very similar pattern was plotted (on right).
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Figure 4 Measure of separation against the reduced number of
genes at different k values. The sum of median distance measure as
a function of genes and k parameter of CUR (different colors). The
horizontal red line shows the baseline value when all the genes are
used for PCA. Above 300 genes and k = 3 the CUR selected subsets
give better separation than the original all-genes and the maximum
separation performance is around k = 5 using 150 genes.

selection based on the use of statistical leverage scores.
The approach proposed [4] is quite novel in the sense
of interpretable dimension-reduced matrices and in han-
dling “outliers” as the most important data points. We
have also demonstrated that by using rCUR it is possi-
ble to significantly reduce the number of necessary probes
in classification studies. This may open the way towards
much cheaper diagnostic chips.

Availability and requirements

Projectname : rCUR

Projecthome page : http://cran.r-project.org/web/
packages/rCUR/index.html

Operating system(s) : Platform independent
Programming language : R Other requirements: pack-
age MASS, methods, Matrix

License : GNU GPL Any restrictions to use by non-
academics: none

End notes
AfC = UcEcV{ isthe SVD of C, then CT = VeEZ UL,

Additional files

Additional file 1: rCUR package: The R package rCUR (version 1.1) with
functions for CUR decomposition.

Additional file 2: rCUR_Case_Studies.R: R-script file containing all the
sources necessary to reproduce the results presented in the paper.cdgqwqC.
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