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Abstract

Background: Biological databases contain large amounts of data concerning the functions and associations of
genes and proteins. Integration of data from several such databases into a single repository can aid the discovery of
previously unknown connections spanning multiple types of relationships and databases.

Results: Biomine is a system that integrates cross-references from several biological databases into a graph model
with multiple types of edges, such as protein interactions, gene-disease associations and gene ontology annotations.
Edges are weighted based on their type, reliability, and informativeness. We present Biomine and evaluate its
performance in link prediction, where the goal is to predict pairs of nodes that will be connected in the future, based
on current data. In particular, we formulate protein interaction prediction and disease gene prioritization tasks as
instances of link prediction. The predictions are based on a proximity measure computed on the integrated graph. We
consider and experiment with several such measures, and perform a parameter optimization procedure where
different edge types are weighted to optimize link prediction accuracy. We also propose a novel method for
disease-gene prioritization, defined as finding a subset of candidate genes that cluster together in the graph. We
experimentally evaluate Biomine by predicting future annotations in the source databases and prioritizing lists of
putative disease genes.

Conclusions: The experimental results show that Biomine has strong potential for predicting links when a set of
selected candidate links is available. The predictions obtained using the entire Biomine dataset are shown to clearly
outperform ones obtained using any single source of data alone, when different types of links are suitably weighted.
In the gene prioritization task, an established reference set of disease-associated genes is useful, but the results show

that under favorable conditions, Biomine can also perform well when no such information is available.

The Biomine system is a proof of concept. Its current version contains 1.1 million entities and 8.1 million relations
between them, with focus on human genetics. Some of its functionalities are available in a public query interface at
http://biomine.cs.helsinkif, allowing searching for and visualizing connections between given biological entities.

Background

Biological databases contain a vast amount of readily
accessible data concerning the function and relationships
of genes and proteins, such as protein interactions, genes’
effects on diseases and functional gene annotations. Here,
we introduce Biomine, a system that integrates data from
several such databases under a common graph data model
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and repository, with the goal of enabling discovery and
evaluation of connections spanning multiple types of rela-
tionships derived from different source databases. Such
indirect relationships can act as hypotheses for potential,
yet undiscovered links, or they can be used to describe and
validate relationships obtained from experimental data.

Biomine represents the knowledge extracted from the
source databases using an abstract and efficiently acces-
sible graph representation: biological entities and con-
cepts (the nodes) linked by their known relationships (the
edges). Figure 1 shows a small example graph illustrating
the contents of the database.
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Figure 1 A subgraph summarizing the relationships between 2 genes related to gastric cancer. The query genes, PIK3CA and KLF6, are
marked with a green border. The other nodes in the graph are the ones on the strongest paths linking the query genes, as defined by the

edge-weighting scheme described later in this article.

GASTRIC CANCER

Phenotype

A practical motivation for our work is prioritization of
putative disease genes resulting from genome-wide asso-
ciation studies [1]. Such studies typically produce a large
number of genes showing statistical association with the
disease in question, of which only a fraction are actu-
ally biologically related to the disease. An important task
is to identify the actually relevant genes from this list of
putative disease genes.

The main idea underlying the work in this paper is that
genes and their protein products do not function in iso-
lation, but rather as part of a large network of molecular
interactions. Thus the impact of a specific genetic abnor-
mality is not restricted to the gene product that carries
it, but can spread along the links of the network and
alter the activity of functionally related gene products.
Consequently, mutations in functionally related genes
(e.g. participating in the same pathway or protein com-
plex) will often affect the same diseases [2]. Analysis of
disease-related protein networks has shown that proteins

involved in a disease tend to physically interact with
other proteins involved in the same disease [3]. With the
recent rise in the availability of molecular network data,
it has become practical to predict disease-affecting genes
based on the network of biological relationships (see [4-6]
for reviews).

As another example application, consider protein inter-
action measurements from genome-wide protein interac-
tion screens [7]. A major issue with this kind of data is the
prevalence of spurious interactions. An analysis by Deane
et al. [8] suggests that only 30-50 % of interactions derived
by such methods are biologically relevant. The problem of
separating the true interactions from spurious ones can be
formulated as a link prediction problem within the graph
of already known interactions.

We formulate the protein interaction prediction and
gene prioritization tasks as instances of link prediction,
where the goal is to recognize pairs of nodes that should
be (or will be) connected by an edge. The predictions are
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based on a proximity measure computed on the integrated
graph. We consider and evaluate a number of proxim-
ity measures that are based on weights assigned to the
individual graph edges. These weights are based on three
factors: the type of the relationship, an informativeness
measure based on the number of other nodes linked to
each node, and reliability or other suitable edge-specific
score available in some of the source databases. We eval-
uate the power of this approach for prediction in a chal-
lenging setting: we use proximities of nodes in a 3-year-old
version of the Biomine database to predict the appearance
of new links to the current database version.

The contributions that follow in subsequent sections
can be summarized as follows.

1. We introduce Biomine, an integrated network of
biological entities from heterogeneous source
databases.

2. We systematically evaluate Biomine in two
challenging link discovery settings: protein
interaction and gene—phenotype relationship
prediction. The evaluations consist of comparing
several node proximity measures, assessing the
importance of different data sources for the link
prediction task, and optimizing the weights of
different types of links.

3. We show how to apply Biomine to the task of disease
gene prioritization, and propose a new
clustering-based gene prioritization method which is
applicable when there is no pre-existing reference set
of known disease genes available.

An early version of Biomine has been outlined by Sevon
et al. [9]. To make this article self-contained, we pro-
vide an updated description of the edge weighting method
introduced by Sevon et al.

Related work

We will next briefly review representative related work
in the areas of integrating biological networks, graph-
based disease gene prediction, and general node proximity
measures for link prediction.

Integrating biological networks

Data about relationships of biological entities is readily
available in numerous public databases. To enable joint
analysis of such data, the data needs to be integrated and
made accessible under a uniform query interface. Sev-
eral such data integration systems have been proposed
in the literature. Of these, most similar to our approach
are ONDEX [10] and Biozon [11], which both collect
the data from various sources under a single data store,
using a graph data schema centered around the non-
redundant set of biological objects shared by each data
source. The data model in both systems is a graph with
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typed nodes and edges, allowing for the incorporation of
arbitrary data sources. In addition to curated data derived
from the source databases, both ONDEX and Biozon
include in-house data such as similarity links computed
from sequence similarity of proteins and predicted links
derived by text mining. Biozon provides several types of
queries, e.g. searching by graph topology and ranking of
nodes by importance defined by the graph structure. In
ONDEX, the integrated data is accessed by providing a
standard pipeline, in which individual filtering and graph
layout operations may be combined to process the graph
in application-specific ways. BioWarehouse [12] aims to
provide generic tools for enabling users to build their
own combinations of biological data sources. Their data
management approach is rather similar to ONDEX and
Biozon, but the data is stored in a relational database with
a dedicated table for each data type instead of a generic
graph structure. This approach allows database access
through standard SQL queries. Biomart [13] tackles the
problem not by collecting data into a central location, but
instead by representing the data in each original source
database using a data storage service with a standard for-
mat, enabling them to be accessed through a uniform
web-based query interface.

Graph-based disease gene prediction

A simple approach for predicting potential disease genes
is to just assign interaction partners of already known
disease-related proteins as potential candidates [14].
Krauthammer et al. [15] use a more elaborate method,
where evidence from known disease genes is propagated
to nearby candidate genes according to a score based
on shortest paths distance. Kohler et al. [16] also use a
related approach, based on a random-walk-based network
proximity measure instead of considering only a direct
neighborhood or shortest paths. Vanunu et al. [17] take
an even more global view, and expand the query from the
given disease to include other diseases with phenotypic
similarity. Evidence is then propagated in a protein inter-
action network from all proteins known to be related to
any of these diseases.

In contrast to the previous methods, which only use
protein interaction data, Franke et al. [18] and Linghu et
al. [19] both construct a network of functional associa-
tions (“functional linkage network”) using multiple types
of integrated source data, and use mutual proximities of
genes in this graph as supporting evidence for the disease
association. They construct a network of functional asso-
ciations using machine learning techniques to combine
evidence from different data sources, using a fixed cutoff
value to remove unreliable associations. Franke et al. [18]
evaluate each candidate gene based on the shortest path
distance to other candidate genes, while Linghu et al. [19]
only use information from neighboring genes.
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Hwang and Kuang [20] consider both multiple types
of associations (edges) and multiple types of nodes.
Instead of integrating them all together into a homo-
geneous network, they propose methods to propagate
information in the network while taking its heterogeneity
into account.

An alternative to network-based approaches is to uti-
lize pre-known sets of functionally related genes [21,22].
The idea in these methods is that each known pathway
(or other pre-defined set of functionally related genes)
is tested for relative excess of disease-associated genes,
accumulating information from several modest associa-
tions into a single, stronger signal. The results of Chas-
man [22] indicate that while extremely strong associations
remain best identified by conventional methods, the gene
set approach provides a useful complementary mode of
analysis for revealing modestly associated genes for com-
plex diseases.

Literature mining is a popular source of information for
hypothesis generation in biological discovery [23]. Hris-
tovski et al. [24] predict disease genes using co-occurrence
statistics of terms. Following Swanson’s ideas [25], they
look for strong connections of exactly two hops in a net-
work of term co-occurrences: if the given disease name
X co-occurs with some terms Y which in turn co-occur
with some genes Z, then Z are candidate genes for dis-
ease X. Hristovski et al. additionally take into account
chromosomal location.

A practical overview of freely available web tools to
prioritize candidate genes is provided by Tranchevent
et al. [26].

Node proximity measures for link prediction

Many node proximity measures have been proposed for
link prediction in unweighted graphs. For an experimen-
tal comparison of these measures, see Liben-Nowell and
Kleinberg [27]. For the weighted graphs considered here,
much less has been published.

Asthana et al. [28] were the first to use network reli-
ability for link prediction in protein networks. In our
earlier publication [9], we used two alternative proximity
measures: probability of best path, and network reliabil-
ity measured in a subgraph consisting of a fixed number
of best paths. Potamias et al. [29] recently introduced
expected-reliable-distance for link prediction in proba-
bilistic weighted graphs. Random walk methods are a
popular choice for measuring proximity in networks (see,
e.g., [16,29,30]), and can be straightforwardly extended
to work with weighted graphs. We will review the exact
definitions of the above-mentioned measures later.

Hwang and Kuang [20] and Vanunu et al. [17] propose
different propagation methods for measuring proximity
of nodes that are not directly connected. Like random
walk and network reliability, their measures are global
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in the sense that they consider — at least in principle
— connectivity using the whole network. These methods
seem to assume structured information about phenotype
similarity and known disease genes.

The field of network-based protein function prediction
(see, e.g., [31] for a review) is also related to the work
in this study, and many methods have been developed to
annotate proteins of unknown function based on existing
annotations and network data. However, these methods
are not directly applicable to the problem of predicting
arbitrary edges in weighted graphs.

Methods

We next describe the Biomine database, and then give
node proximity measures that can be used for link predic-
tion. (Disease gene prioritization methods are deferred to
the Results section, to be presented in the context of that
particular application.)

The Biomine database

The Biomine graph database essentially is an integrated
index of several biological databases, each with different
contents and format. Biomine has a relatively simple data
model: a labeled graph with typed nodes and edges. Dis-
tinct entities of the source databases, such as genes, pro-
teins and gene ontology (GO) concepts, are the nodes of
the Biomine database, and connections (cross-references)
between entities, such as GO annotations, gene-protein
relationships and protein interactions, are edges between
nodes. Additionally, nodes and edges can have arbitrary
attributes, such as names and reliabilities, to represent
additional data from the source databases. In this section,
we describe the database contents and data model, includ-
ing the edge-weighting scheme.

Database contents

We first briefly review the source databases indexed by
Biomine and summarize what data is derived from each
of them. The contents of Biomine are summarized in
Tables 1 and 2. Currently, data is extracted and stored for
human and four model organisms: mouse, rat, fruit fly
and nematode (c. elegans). The current primary topic is
human biology, and the additional organisms are included
to enable predictions based on potentially more compre-
hensively annotated homologous genes in these model
organisms.

NCBI’s Entrez Gene [32,33] database is the main source
of gene annotation in Biomine. The gene nodes in Biomine
are derived from the respective gene entries in Entrez.
The main types of edges derived from Entrez are gene
ontology (GO) annotations, protein interactions, cytoge-
netic gene locations, and information about genes’ par-
ticipation in diseases (represented by Phenotype nodes).
Additionally, genes are linked to their protein products
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Table 1 Summary of node types in Biomine
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Node type Source databases Count Mean degree
Article PubMed 533,000 3.9
Protein UniProt, STRING 275,000 29.6
Gene Entrez Gene 193,000 18.6
Homology group Entrez HomoloGene 25,000 32
Biological process GO 20,000 325
Gene variant OMIM 19,000 14
Gene location (Locus) Entrez Gene, OMIM 12,000 18.7
Protein family InterPro 12,000 69.6
Molecular function GO 10,000 491
Drug KEGG 8,800 0.7
Protein feature InterPro 8,000 69.6
Phenotype OMIM 6,500 17.0
Enzyme KEGG 5,100 10.2
Cellular component GO 2,900 122.2
Pathway KEGG, UniProt 1,800 37.1
Tissue UniProt 1,300 189.1

total 1,133,000 14.8

Table 2 Most important edge types in Biomine

Edge type Source databases Count
Protein is associated to Protein STRING 2,916,000
Article refers to Node Entrez Gene, UniProt, KEGG, OMIM 2,250,000
Node has annotation GO Entrez Gene, UniProt, InterPro 1,365,000
Protein contains Feature UniProt 507,000
Gene is homologous to Gene HomoloGene 259,000
Gene codes for Protein Entrez Gene, STRING 174,000
Gene is located in Locus Entrez Gene, OMIM 151,000
Protein belongs to Family UniProt 114,000
Protein interacts with Protein Entrez Gene, UniProt 98,000
OMIM refers to OMIM OMIM 85,000
Gene participates in Pathway KEGG 65,000
GO has parent GO GO 56,000
InterPro has parent InterPro InterPro 20,000
Compound participates in Pathway KEGG 9,700
Gene affects Phenotype Entrez Gene 5,100
Phenotype is mapped to Locus OMIM 3,400

total 8,078,000

“Node” denotes any type of node, “OMIM” denotes nodes of type “Gene”, “Gene variant” or “Phenotype”, “GO” denotes nodes of type “Molecular function”, “Cellular
component” or “Biological process”, and “InterPro” denotes nodes of type “Protein family” or “Protein feature”. Edge types with less than 3,000 instances are not listed.
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and homologous genes in other organisms. Homology
relationships are derived from another Entrez database,
HomoloGene [33].

UniProt [34] is the main source of protein-related infor-
mation. Its core elements are proteins, pathways and tis-
sues, mapped to nodes in Biomine. Edges derived from
UniProt include GO annotations for proteins, protein
interactions, participation of proteins in pathways, mem-
bership in protein families and other protein features
(defined by the InterPro database, see below), as well as
tissue-specificity of proteins.

Gene Ontology (GO) aims to provide a controlled vocab-
ulary for genes and gene products [35]. Its core domains
are cellular components, biological processes and molec-
ular functions. The ontology is structured as a directed
acyclic graph, and each term has defined relationships
to one or more other terms in the same domain, and
sometimes to other domains. This graph is imported as
part of the Biomine graph. The actual annotations linking
genes and proteins to GO nodes are derived from other
databases, primarily from Entrez Gene and UniProt, as
described above.

InterPro [36] is a protein signature database that
enables classification of proteins into families and func-
tional protein features, which are mapped into nodes in
Biomine. The InterPro entries (protein families and fea-
tures) are organized into a hierarchy, represented as edges
between the InterPro nodes. The actual edges linking pro-
tein and InterPro nodes are derived from the UniProt
database.

STRING [37] contains known and predicted functional
associations between proteins, based on text mining and
sequence analysis, as well as protein-related informa-
tion from other databases. These are directly mapped
to Biomine as edges between proteins. In addition, each
association contains a score between 0 and 1 reflecting the
confidence in the prediction, which is stored to Biomine as
edge reliability (see Subsection Weighting of edges below).

Online Mendelian Inheritance in Man (OMIM) is a cat-
alogue of human genes and genetic disorders [38], and
is the main source of phenotype information in Biomine.
There are two types of records in OMIM: genes and phe-
notypes. The former are mapped to corresponding gene
IDs in Entrez and are merged into a single node in Biomine
with the OMIM ID as a secondary identifier. Phenotype
records are represented in Biomine by dedicated nodes.
The OMIM database also contains descriptions of allelic
variants and gene locations, mapped to their distinct node
types, and a large number of references to biomedical lit-
erature. The OMIM records consist of text with references
to other OMIM records; these references are mapped to
edges in Biomine.

Kyoto Encyclopedia of Genes and Genomes (KEGQG) is
a large, integrated database resource consisting of 16
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main databases, broadly categorized into systems infor-
mation, genomic information, and chemical information
[39]. Biomine uses a subset of KEGG, including pathways
as the main node type, and the participation of genes,
drugs and compounds in each pathway represented as
edges between the corresponding node and pathway.

PubMed [33] is a freely accessible on-line database of
biomedical journal citations and abstracts with approxi-
mately 20 million entries at the time of writing. In addi-
tion to the data types listed above, many of the source
databases (Entrez, UniProt, InterPro and OMIM) con-
tain references to PubMed entries, to represent the fact
that the corresponding entity is mentioned in the article.
In Biomine, these referenced PubMed entries are repre-
sented by Article nodes. From PubMed itself, we only
import the titles of these articles.

Data management. The data storage is organized as
a data warehouse: information from several source
databases is first extracted and transformed into a gen-
eral data format, and subsequently stored in a local rela-
tional database (MySQL) for easy access by query pro-
grams. This approach is motivated by the requirement to
rapidly perform complex queries needed by the link pre-
diction methods, which excludes the online use of services
(such as Entrez e-utils). Also, it enables performing some
integrity checks of cross-references between the indepen-
dently maintained data sources. On the other hand, we
essentially only store an index: identifiers and additional
names of entities, cross references between entities (i.e.,
edges with weights), and URL to the original records in
the source databases.

The database is updated periodically with new data
from the source databases. During the update process,
synonyms, invalid references, and other anomalies are
resolved, and the resulting data is compared to the previ-
ous version of the database to detect loss of data resulting,
e.g., from formatting changes in source databases. The
details of the complete conversion and importing process
are out of the scope of this paper.

In addition to the relational database, we use a dedicated
cache server which stores the graph structure in a com-
pact format in main memory, enabling significantly faster
queries than would be possible by using only the rela-
tional database. A public query interface to the database is
available at http://biomine.cs.helsinki.fi.

Data model

We now present the Biomine data model more formally.
The Biomine database is a directed, labelled and weighted
graph G = (V, E, p) where V and E are the sets of nodes
and edges, respectively, and p : E —[0,1] associates a
probability p(e) to each edge e € E.
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The nodes v € V are labelled by a type from set T}, such
as Gene or Protein. T), consists of the node types in the left
column of Table 1. We denote the node type mapping by
ty: VT,

The set E C V x V of edges consists of node pairs
(u,v). (Biomine supports parallel edges, but for simplicity
we ignore them here. The extension is straightforward.)
Edges are weighted. Edges have labels from the edge type
set T,; we denote the mapping from edges to their types
by ¢, : E — T,. Edge types represent relations between
nodes, such as “Gene codes for Protein” or “Article refers to
Gene”. The left column of Table 2 lists the most common
edge types in T,.

Each edge type t € T, has an inverse type 1. For
instance, the inverse of “Gene codes for Protein” is “Pro-
tein is coded by Gene” For each edge e = (u,v) € E we
assume that its inverse edge (v, u) with type £.(e) ! always
exists in E. Hence, the graph is effectively undirected but
has directed edge types.

In most cases there is only one possible edge type for
a pair of node types. For example, an edge between a
gene and a protein always has the type codes for. In some
cases, though, there are different edge types between the
same types of nodes, such as experimentally verified pro-
tein interaction vs. predicted protein association, or gene
homology vs. textual reference between two gene records
in OMIM.

Weighting of edges

Not all edges in Biomine are equally important. For exam-
ple, an experimentally verified protein interaction (an
edge of the type Protein interacts with Protein) should
probably have a higher weight than a predicted one (Pro-
tein is functionally associated to Protein). Similarly, anno-
tated knowledge about a gene’s effect on a disease is
probably more important than just knowing that the gene
and the disease are mentioned in the same article.

As an example of a second type of edge importances,
consider two articles, where one refers to 2 genes and the
other one to 20 genes. Since the former article is more
specific, the corresponding edges are likely to be more
informative.

A third and most obvious case of different importances
is when a source database specifies a weight or score for
a relation such as the confidence of predicted associations
in the STRING database [37].

In Biomine, we formalize the three above-mentioned
factors as follows.

1. Relevance. Each edge type t has a fixed relevance
coefficient g, €[ 0, oo] representing the relative
importance of that relationship type. We denote the
relevance of an arbitrary edge e by g(e). The suitable
choice of values for each ¢ is ultimately dependent
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on the specific application at hand. In Subsection
Link prediction methods, we will experimentally
choose the relevances such that they maximize link
prediction accuracy. Relevances can also be set
manually, to reflect the user’s subjective interests.

2. Informativeness. The informativeness i(u,v) €[ 0, 1]
of an edge (1, v) is measured based on the degrees of
its incident nodes. As a simple method to penalize a
node u with a high degree deg(u), we take some
negative power deg(u) ™ of it. Here 0 < o < lisa
parameter controlling how steeply the
informativeness decreases with increasing node
degree. The informativeness of an edge (u, v) is then
defined by the degrees of both its endnodes:

i(u,v) = \/deg(u)—‘" - deg(v)~Y.

Based on preliminary experiments with different
values of «, we by default set « = 0.25. (Where
needed, this parameter can be optimized e.g. by
systematically testing different values, possibly in
combinations with other parameters. A thorough
optimization of all parameters is not within the scope
of this paper, however.)

We consider two versions of degree penalty. The
linktype-independent penalty simply uses the
ordinary degrees of nodes. The linktype-specific
penalty only takes the degree with respect to edges of
the same type as edge (&, v).

3. Reliability. The reliability of an edge e, denoted by
r(e) €[0,1], measures how confident we are that the
relationship represented by the edge actually exists.
From the STRING database, we obtain a reliability
value for each predicted edge e, directly mapped to
Biomine as r(e). For edges derived from other
databases, r(e) is currently defined to be one, as they
contain manually curated information which is
expected to be reliable.

We combine these three factors into an overall edge
weight by simply taking their product:

p(e) =ql(e) -i(e) - r(e).

In the next section, we will define general node prox-
imity measures based on the edge weights. The above
definition is directly applicable when using random walk
as the node proximity measure. However, for probabilistic
proximity measures, edge weights need to be in [0, 1], and
consequently the following modification is used:

p(e) = min(g(e) - i(e) - r(e), 1).

In this case weight p(e) can be interpreted as the proba-
bility that e represents an actually existing, relevant and
informative relationship.
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Link prediction methods

The computational problem that we consider is link pre-
diction, the prediction of relationships that are not obvi-
ous in the existing data. The motivation for this is that the
graph of biological knowledge is far from complete; most
of the information is still missing, but the existing data can
potentially help identify some of the missing pieces.

Link prediction as node proximity measurement

In the most concrete form, link prediction means predict-
ing the appearance of new edges into the database. We
also use the term “link” in a broader sense, however. For
example, in the experiments we will predict whether two
genes will be discovered to affect the same disease (repre-
sented by two Gene affects Phenotype edges). As a more
complex example, we predict whether a gene affects sus-
ceptibility to a disease, based on its proximity to other
genes already known to affect the disease.

We base link prediction on a graph-based node prox-
imity measure. The assumption is quite simply that nodes
closely connected in the graph are likely to be related
also biologically, potentially warranting the addition of a
direct link to one of the source databases. (In machine
learning, this is known as transductive learning.) Given
the huge number of nodes in Biomine, resulting in an
even larger number of potentially related node pairs, it is
obviously not feasible to predict links without some prior
information about the set of potential links. Such a set of
candidate links could be established, for instance, as the
top ranking genes from a genome-wide association study
and their potential relationships to the node represent-
ing the phenotype being studied. Under the assumption
of correlation between biological relatedness and graph
proximity, ranking genes by their proximities to the phe-
notype enables extracting the most promising candidates
for further study. As another example, a list of candidate
links to be evaluated can result from a genome-wide pro-
tein interaction screen, where only a minority of identified
putative interactions are biologically relevant [8].

In the following paragraphs, we will define and con-
sider a number of node proximity measures suitable for
weighted graphs such as Biomine. In the Results section
we will evaluate the hypothesis that links can be predicted
applying such measures on the data in Biomine.

Proximity measures

We consider four existing proximity measures: probability
of best path (9], network reliability (28], expected reliable
distance [29], and a weighted version of rooted random
walk with restart [27]. Of these, the first three are specif-
ically defined for probabilistic graphs, while the rooted
random walk is normally used for unweighted graphs, but
can be modified straightforwardly to take edge weights
into account.
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Probability of best path. Each edge e has a probabil-
ity p(e) €[0,1]. Let path P consist of edges ey,...,ex.
The path exists only if all of its edges exist, and
correspondingly the probability of P is the product of the
probabilities of its edges: Pr(P) = p(e1) - ... - p(ek).

The simplest possible proximity measure for two nodes
s,t € V is the probability of the best path:

Pr(P). (1)

max

bp(s, 1) =
Php Pisapath fromsto ¢

An obvious potential shortcoming of this measure is that
it does not take into account other paths between s and .

Network reliability. To specify the next two, more com-
plex proximity measures that are not restricted to consid-
ering the single best path, we first define a probabilistic
graph model. Let G = (V, E, p) be a probabilistic graph,
such as a subgraph of Biomine. g is a random realization
of G if it is a non-probabilistic graph g = (V, Eg) with
nodes V' and with edges sampled from E according to the
probabilities p, i.e., each edge e € E is selected to be an
edge of g with probability p(e), independently of other
edges. The probability of a given random realization g
thus is

Prigp=[]re [] a-pe).

ec€ky ecE—Eg

The Network reliability, p,(s, t) between nodes s and t is
defined as the probability that a randomly picked instance
of G contains a path between s and t:

pris,t) = > Pr(g). (2)

gls and ¢ are connected in g

Expected reliable distance. Given a graph g sampled
from G, we denote the shortest-path distance (measured
as the number of edges) between s and ¢ by d, (s, £).

The expected-reliable-distance [29] is now defined as
the expected shortest-path distance in all instances g in
which a path exists between s and ¢:

> Pr(g)-dy (s, t).

gls and ¢ are connected in g

der(s,t) = Py

The expected-reliable-distance reflects the expected
proximity of nodes s and ¢, but does this on the condition
that they are connected.

Random walk with restart. As a final probability mea-
sure, we consider a symmetric, weighted version of a
standard random walk stationary distribution score with
restarts[27]. We first define a directed version of the score.
A random walk starts at a node s. It then iteratively moves
to a random neighbor of the current node x, such that
the probability of traversing edge e is proportional to the
edge weight p(e). Additionally, there is a fixed probability
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B of returning to the initial node s at each step, instead
of traversing an edge. Now, the directed version of the
score, dry(s,t) is defined simply as the stationary dis-
tribution probability of the walker being at node ¢ after
indefinitely many iterations. The final, symmetric version
of the score is defined as the average of the corresponding
directed scores:

drw (s, ) + drw (£, 5)

5 3)

drw (s, t) =

In practice, we compute the score by simulating a ran-
dom walk from both nodes of the pair in turn, using
1,000,000 iterations, and counting the number of itera-
tions where the walker is located in the other node.

Results

We now test Biomine as a resource for biological link pre-
diction, first with experiments predicting protein interac-
tions and phenotypical relationships of genes. The main
goal of the experiments in the first subsection is to demon-
strate that the proposed approach of combining data from
heterogeneous data sources into a single graph proximity
measure is beneficial. Secondary goals are assessing the
relative importances of different types of data and find-
ing suitable weights for them, as well as evaluating the
different node proximity measures defined in the Meth-
ods section. While the optimization of edge weights serves
as a simple example of how to optimize parameters in
Biomine, a thorough optimization of all the parameters is
outside the scope of this paper. In the second subsection
we will consider the specific application of prioritizing
putative disease genes.

Predicting future links

The aim in the first evaluation is to predict protein inter-
actions and phenotypical relationships of genes. The tests
in this section are carried out with two versions of the
Biomine database: old from June 2007, and current from
June 2010, such that the current version is used to validate
predictions made using the old version. This prediction
task is scientifically interesting and most challenging: can
we predict which links will be discovered and added to
the source databases? Predictions are performed by rank-
ing node pairs by their proximity values, as defined by one
of the general graph-based proximity functions defined in
the previous section.

We consider two different link prediction settings:

1. Predict protein interactions that will be added to the
Entrez Gene database [33] in the three-year period
between the database versions.

2. Predict pairs of genes that will be discovered to affect
the same disease during the three-year period. These
are based on gene-phenotype associations reported
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in the Entrez Gene database, from the two genes to a
shared phenotype. (At least one of them must
be new.)

Evaluation methodology

Given a list of node pairs (i.e., potential links) and a prox-
imity function f; we rank the given node pairs by f com-
puted using the old version of the Biomine graph database.
The hypothesis is that pairs ranking higher are more likely
to be biologically related and thus to be directly linked in
the current database version. The pairs that became linked
are the positive instances while all pairs that remained
unlinked are considered negative instances (although it is
of course possible that they will actually become linked
later on).

We measure the prediction performance using ROC
analysis [40], a generic framework for analyzing and com-
paring classifiers. In our case, a proximity measure imme-
diately gives a classifier: fix a cut-off value g €[ 0, 1] for the
proximity, then predict all pairs (&, v) with f(u,v) > g to
become linked and all other pairs to remain unlinked. In
ROC analysis, two statistics are associated to each clas-
sifier: (1) the true positive rate, which in our case is the
fraction of positive instances that have proximity at least g,
and (2) the false positive rate, which is the fraction of
negative instances with proximity at least g.

In the ROC framework, a proximity measure can conve-
niently be evaluated without fixing a single cut-off value 4.
A ROC plot is a two-dimensional curve that plots the true
positive rate on the y-axis and the false positive rate on
the x-axis. A single classifier (or in our case a single cut-
off value g) corresponds to a single point in the ROC plot,
and a ROC curve is obtained by considering all possible
cut-off values g. Such a curve depicts the different trade-
offs between the benefits (true positives, y-axis) and costs
(false positives, x-axis). In practice, ROC curves can be
constructed by iterating the node pairs in ranked order
and plotting the curve accordingly, with g being defined
implicitly by the fraction of instances covered at any point.

The resulting ROC curves can be compared either visu-
ally, or by computing the area under ROC curve (AUC)
as a composite statistic. AUC has an interpretation as
the probability that a randomly chosen positive instance
will be ranked above a randomly chosen negative instance
[40]. We also evaluate the statistical significance of the
difference in AUCs between two classifiers, using the
statistical ROC analysis tool StAR[41].

We sample a set of positive and negative instances for
the evaluations, as described below. In those experiments
where we optimize parameters, we use separate sam-
ples for training (parameter optimization) and validation
(evaluating the final performance). Both the training and
validation sets are sampled in the same way, under the
constraint that no node pair appears in both data sets.
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Sampling of test data

We performed the experiments by sampling 500 positive
and 500 negative instances for each of the two settings
as follows.

Sampling of protein interactions We first extracted the
set of all protein interaction edges that exist only in the
current database version. From these interactions, we ran-
domly sampled 500 node pairs as the positive instances.
A set of 500 negative instances was then sampled by
randomly pairing nodes appearing in the set of positive
instances, excluding any node pairs that have an inter-
action in the current database version. We picked the
negative pairs in this manner to make the comparison as
fair as possible, as a completely random selection of neg-
ative instances would most likely contain less researched
proteins (with fewer links), unnecessarily making the pre-
diction task easier.

Sampling of disease gene pairs The set of potential pos-
itive instances was defined as those gene pairs that became
linked by a path of two “Gene affects Phenotype” edges
derived from the Entrez Gene database, going through
any intermediate Phenotype node. First, all pairs of genes
linked in the current database version were considered
as candidates for positive instances. From these pairs, we
removed ones that were already linked in the old database
version by some path of length two consisting of any
combination of following edge types:

® “Gene affects Phenotype” (derived from Entrez Gene)

® “Gene refers to Phenotype” (derived from OMIM or
Entrez Gene)

e “Phenotype refers to Gene” (derived from OMIM)

Of the remaining candidate pairs, we randomly sampled
500 positive instances to be used in the experiments. A set
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of 500 negative instances was then sampled by randomly
pairing nodes appearing in this set of positive instances,
such that all pairs linked (as described above) either in the
old or new database version were excluded.

The sets of sampled positive and negative node pairs are
available in Additional file 1.

Experimental results for link prediction

Comparison of proximity measures We first performed
a set of experiments to evaluate and compare the four
proposed proximity measures: probability of best path,
network reliability, expected-reliable-distance, and ran-
dom walk with restarts. In this experiment we used uni-
form relevance ¢=0.8 for all edge types, and the amount
of degree penalty was set to « = 0.25. These are the
parameter values that were found to perform best among
a number of alternatives tested in our previous paper
[9], for both the best path and network reliability prox-
imity measures. For the random walk method, we set
the restart probability 8 to 0.2 (roughly corresponding to
the relevance value g=0.8 used by the other, probabilistic
distance measures).

Figure 2 shows prediction accuracies from this exper-
iment as ROC curves. All measures give a prediction
accuracy significantly better than would be obtained by
a random classifier (the diagonal). In the protein inter-
action prediction task (left), differences between the
three probabilistic methods are very small, but notably
the random walk method achieves a clearly better accu-
racy compared to the other methods. The AUC scores
obtained by the classifiers are 0.8200, 0.7425, 0.7362 and
0.7314 for random walk, expected reliable distance, two-
terminal network reliability and probability of best path,
respectively. The differences to random walk are statis-
tically significant (p-values 0.0001, 0.0001 and <0.00001
for expected-reliable-distance, two-terminal network
reliability, and probability of best path, respectively).
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Figure 2 ROC curves for link prediction accuracy using different node proximity measures. Left: protein interactions. Right: disease genes.
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The differences between the other classifiers were not
statistically significant.

In the disease gene prediction setting (Figure 2, right),
random walk is again most accurate overall. However, the
difference to network reliability is non-significant (p-value
0.2596). More importantly, the two methods are com-
parable on the most relevant, leftmost part of the ROC
curve. Probability of best path is equally accurate in that
area, but slightly less accurate in other cases (p-value of
AUC difference to random walk is 0.0466). The expected-
reliable-distance is significantly inferior (the p-value of
AUC difference to random walk is 0.0062).

We decided to use the random walk measure in the rest
of the experiments of the paper, since it clearly outper-
formed the other methods in the protein interaction pre-
diction task, and none of the other methods outperformed
itin the disease gene prediction.

Choosing weights for different edge types In the pre-
vious experiment, edges of all types were weighted uni-
formly. Suitably weighting different edge types is expected
to improve prediction accuracy, as discussed above. Our
next goal is to examine whether edges of different types
can be weighted according to the prediction task to
improve prediction accuracy.

For both of the considered prediction settings (protein
interactions and disease gene pairs), we separately per-
formed the following simple manual procedure to approx-
imately optimize link prediction accuracy, as measured by
AUC. In the optimization, we used one sample of 500 +
500 instances as a training set, and then evaluated per-
formance with the resulting relevance coefficients using
another sample of 500 + 500 instances as a validation set.

In preliminary experiments, it was observed that the
most significant effect was obtained by adjusting the
weight of the edge type “codes for’; that is, the links con-
necting genes to their protein products. The relevance
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Yeodes for Was consequently first set to value 10 (increasing
the coefficient beyond this value did not improve accuracy
any more).

After setting rcoges_for, we evaluated the individual effects
of all other relevance parameters for the most abun-
dant edge types in Biomine by varying them one at a
time while keeping all the other parameters at the default
value 1 (Figure 3; protein interaction setting on the left,
disease gene pairs on the right). Based on this experi-
ment, each relevance parameter was set to the value where
the resulting AUC was maximized. This heuristic is sim-
ple and ignores any dependencies between edge types, so
the result is not guaranteed to be optimal. On the other
hand, the simplicity of the procedure helps avoid overfit-
ting to the data. In the protein interaction setting, not all
relevance parameters manifested any clear effect on accu-
racy, which is possibly partially due to the limited size
of the training set (500+500 pairs), and partially to some
edge types being less relevant than others for the task
at hand. The relevances for these edge types were left at
the default value of 1, as were the relevance coefficients
for other, less common edge types not considered in this
experiment.

The adjusted relevance values are listed in Table 3. The
dashes denote cases where adjusting the relevance of the
particular edge type did not have any noticeable effect on
accuracy. Note that the values are not directly comparable,
since larger relevances may result as a compensation for
low informativeness: the most abundant edge types (such
as article references and predicted protein associations)
are likely to be least informative in our edge weighting
model.

To evaluate prediction performance with the adjusted
relevance parameters, we next performed similar link pre-
diction experiments using a separate validation set, with
the following three sets of parameters: (1) uniform rele-
vance and informativeness for all edge types (no degree
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Figure 3 Effect of edge type-specific relevance parameters on link prediction accuracy. Left: protein interactions. Right: disease genes.




Eronen and Toivonen BMC Bioinformatics 2012, 13:119
http://www.biomedcentral.com/1471-2105/13/119

Table 3 Adjusted relevance parameters
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Edge type Source databases Relevance (interactions) Relevance (disease genes)
Article references All 40 1.0
Gene locations Entrez, OMIM - 0.5
Gene affects Phenotype Entrez - 50
GO annotations Entrez, Uniprot 1.0 0.5
OMIM references OMIM 0.25 1.0
Protein associations STRING 30 1.0
Protein interactions Entrez, UniProt 1.0 0.5
Pathway memberships KEGG - 1.0
Gene-protein relations KEGG 10.0 10.0

Value “-" indicates that adjusting the relevance of the edge type did not have a clear effect on accuracy.

penalty); (2) uniform relevance, degree penalty coefficient
a = 0.25; (3) relevance parameters set to their adjusted
values (Table 3), degree penalty coefficient « = 0.25.
Again, separate experiments were performed for the two
link prediction settings (Figure 4). The first version, using
no degree penalty, is included in this experiment to
demonstrate the usability of having a degree-based infor-
mativeness component in the edge weighting function, as
all other experiments in the article have been performed
using degree penalization.

Using adjusted relevances clearly improves accuracy in
both settings: AUC = 0.824 vs. AUC = 0.849 (p-value
0.0005) for the protein interaction setting (Figure 4, left)
and AUC = 0.792 vs. AUC = 0.814 (p-value 0.0002)
for the disease gene setting (Figure 4, right). Moreover,
the experiment shows that having a degree-based infor-
mativeness component in the edge weights is useful, espe-
cially in the disease gene prediction setting (AUC = 0.758
vs. AUC = 0.792, p-value < 0.0001), and to a lesser
extent in the protein interaction setting (AUC = 0.818 vs.
AUC = 0.824, p-value not significant).

Overall, prediction performance is clearly improved
by suitably weighting the edges compared to using uni-
form weights: AUC = 0.758 vs. AUC = 0.814 (p-value
< 0.0001) in the disease gene setting and AUC = 0.818
vs. AUC = 0.849 (p-value < 0.0001) in the protein
interaction setting.

Accuracy of individual data sources Finally, we evalu-
ate the value of integrating data from different heteroge-
neous sources, by comparing the link prediction accuracy
obtained using data from each individual data source
to accuracy obtained using all data in Biomine. These
experiments are performed using the separate validation
data set. Again, the test does not cover all edge types in
Biomine, only the major ones: Gene ontology annotations,
protein interactions from UniProt and Entrez Gene, par-
ticipation of genes in pathways, protein associations from
STRING, article references, and gene-gene and gene-
phenotype references from OMIM. Figure 5 shows the
prediction accuracy using each of these data types alone,
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Figure 4 ROC curves for link prediction accuracies using different edge weighting parameters. Left: protein interactions. Right: disease genes.
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Figure 5 ROC curves for link prediction accuracies using individual data sources. Left: protein interactions. Right: disease genes.

as well as for the complete Biomine database (all data
types combined) using the weights reported in Table 3.

The main observation from this experiment is that using
all data in Biomine results in significantly better accuracy
than using any single type of data alone. This is espe-
cially true for the disease gene prediction setting. Another
observation is that the predictive power of different data
types differs somewhat between the two link prediction
tasks.

In the protein interaction setting, using only article ref-
erences suffices to give a relatively good performance. Two
main factors are likely to contribute to this result. First,
links to articles are abundant (cf. Table 2). Second, they
relate many different types of nodes and thereby contain
richer information than any other individual data source.
Note also the article references are actually derived from
several data sources, although they are reported as a single
data type in this experiment.

Summary of results for link prediction We briefly sum-
marize the experimental results from this section below.
A more elaborate treatment is deferred to Discussion.

1. Biomine can be used to predict future links with high
accuracy.

2. A random walk proximity measure performed best
among the four tested node proximity measures.

3. Link prediction accuracy was improved by
experimentally adjusting the weights of different
edge types. The adjusted relevance coefficients
generalized to separate validation sets of node pairs
with good results.

4. Applying a degree penalty based on node degree
improved prediction results.

5. Integration of multiple data types produced superior
results over any individual type of data.

Disease gene prediction

As a second example application, we next consider using
Biomine for the refinement of results from genome-wide
association studies, that is, identifying the actually rel-
evant genes from the list of all genes showing statisti-
cal association to the disease. As discussed above, our
approach is based on the assumption that genes proximal
in the integrated graph of biological associations are more
likely to be related to the same disease than a pair of more
distant genes.

We formulate the task as a classification problem.
Assume a set S of statistically disease-associated genes
from an association study, where only genes in the sub-
set Sp C S actually increase susceptibility to the disease,
i.e.,, they are the (true) positives. The rest, Sy = S — Sp,
are negatives or false positives of the association study.
Also assume a proximity measure p(-), as in the previ-
ous section. The task now is to predict Sp (and Sy) by
outputting an estimate Ep CS.

We consider two alternative formulations of the
problem:

¢ supervised classification using only positive
instances (see, e.g., George et al. [2] and Kohler et al.
[16]). In this easier formulation we are given, in
addition to S, a separate reference set Sg of genes
already known to increase susceptibility to the
disease. The predictions are then based on
proximities between elements of S
and Sg.

¢ unsupervised classification (see, e.g. Franke et al.
[18]). In this “de Novo” version of the problem, we do
not assume information about known disease genes.
Instead, S is the only input. In this case, the
predictions are based only on the mutual proximities
of the genes in S.
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In the supervised version of the problem, the idea is that
among the statistically associated genes, those proximal
to already known disease genes will be identified as the
most promising candidates. In the unsupervised version,
such existing information is not assumed. Instead, associ-
ated genes that are close to other associated genes will be
considered as the most likely candidates.

Classifiers

We use the random walk with restart (Equation 3) as the
proximity measure p(s, t) in these experiments, as it out-
performed the other tested measures in the link predic-
tion experiments above, and also performed consistently
well in comparison to other methods in the disease gene
prediction problem considered here (results not shown).
Based on the pairwise proximity measure, we next define
three alternative classifiers.

Supervised classifier For the supervised version of the
problem, we simply rank genes in S based on their average
proximity to elements of the reference set Sg:

SCOT€) () = 1/|Sk| - Y _ p(s,t). (4)

teSp

This definition is closely related, although not identical
to the one used by Kohler at al. [16]. A binary classifier is
obtained by setting a threshold ¢: TS\p = {s € S :score(s) >
Q};gN = {s € S:score(s) < q}.

KNN classifier In the unsupervised version of the prob-
lem, there is no fixed reference set; instead we just rank
each gene by its proximity to k nearest elements of S:

scorefm(s) =1/k- s/r??}s Zp(s, t). (5)
‘S/lzk, teS

This is motivated by the fact that random genes (false
positives) are not likely to have many close neighbors in S;
on the other hand, genes actually related to the disease are
expected to be proximal to each other, and thus likely to
be found in the set of k nearest neighbors. This definition
can be seen as a generalization of the scoring scheme used
by Franke et al. [18]). Again, a classifier can be obtained
by simply thresholding, as for the Supervised classifier
above. For the experiments of this section, we have used
a fixed value of k=4 for the number of neighbors. (This
value was found to be optimal in preliminary experiments
where the number of positive genes to be discovered
was 5.)

Cluster-based classifier We propose the following new
method for the unsupervised version of the problem. Do
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not rank individual genes; instead find a single cluster
Sp C S of genes that maximizes

scorel, (Sp) = D (p(s,t) — q). (6)
S,tEgp
s#t

Label the rest of the genes Sy =S—Spas negative. Here,
q is a parameter governing how proximal a gene should
be on average to the other members of the cluster to be
considered positive. This definition may be best explained
by considering the decision of whether to add a new gene
s to some current estimate of Sp. Adding a gene s increases
the score if the average proximity of s to the genes already
assigned to Spis larger than the constant g. The definition
is similar to the maximum edge-weighted clique problem
[42], and also related to the outlier detection problem in
clustering [43]; the difference to the latter one is that here
only one cluster is sought, and searching the cluster and
handling of outliers is done in a single integrated step.

A practical way of using the Cluster-based classifier is
to vary the sensitivity parameter ¢ in order to obtain a
number of predicted sets of different sizes. Since the pre-
dicted sets are not monotone, that is, a smaller predicted
set is not necessarily a subset of a larger prediction, there is
not necessarily an immediately implied ranking of genes.
However, as a rule, genes that appear in smaller predic-
tions and more often can be considered more clustered.

To implement the Cluster-based classifier, in particular
to find the Sp C S that maximizes Equation 6 for a given
value of g, we use greedy search with multiple initializa-
tions, as follows. We maintain an estimate of Sp. At each
step of the algorithm, we test all possible moves of a single
element between §p and §N. There are thus |S| possible
moves. Let C denote the current value of (§p,§N) and let
C; be the candidate situation after moving s from its cur-
rent set to the other set. For each possible move s € S,
we compute the improvement Score(Cs) — Score(C) and
choose the s that maximizes it. The algorithm is termi-
nated when the score cannot be improved any more by
moving any single element. We perform the above greedy
algorithm for a number of different, randomly chosen ini-
tial estimates of §p, to reduce the problem of convergence
to local optimum. In the experiments described next, we
have used 100 restarts (increasing the number beyond
this value did not yield any practical improvements in
accuracy).

Test settings

A problem with systematic evaluation of disease gene pre-
diction performance is that although results from several
genome-scan experiments are publicly available (see e.g.
[44]), the “correct” answer (genes actually affecting sus-
ceptibility to the disease) is not known. Therefore, instead
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of using actual genome-scan data, we evaluate the perfor-
mance of the proposed methods by using artificial gene
lists simulating lists of top-ranking genes from an associ-
ation study, where the positive instances come from 110
already known disease gene families compiled by Kohler
et al. [16]. These disease families have been constructed
using information primarily from the OMIM database
[38], augmented by domain knowledge and literature or
database searches to find all genes clearly associated with
each disease.

Generation of test cases Each test case is a set S of
genes, consisting of a fixed number of “positive” genes
Sp from one of the 110 disease gene families, and a con-
trol set Sy of “negative” genes chosen at random from the
other disease gene families. The control genes were cho-
sen from the other disease families instead of all genes in
the database to avoid bias caused by the fact that known
disease genes have usually been studied more and thus
have more edges in the database.

The original 110 families contain a total of 783 genes
with 665 distinct genes, whereby the largest family con-
tains 41 genes and the smallest only three genes. As a
baseline setting, we consider prioritizing gene sets with
|Sp| = 5 and |Sy| = 15, and thus |S| = 20 genes in total.
We will then evaluate more challenging settings by vary-
ing these parameters. The number of genes in the disease
gene families is a limiting factor in designing the experi-
ments, and this choice means that only those 68 families
that have at least 5 members can be used as positive
instances in the experiments.

We performed experiments varying both the number
of positive and negative instances, with |Sp| € {2, 3,4, 5}
and |Sy| € {5,15,25,35,45}. For each combination
(ISpl, ISn1), 100 test cases were generated, each contain-
ing |Sp| genes sampled from a single disease gene fam-
ily and |Sn| genes sampled from among the other 109
disease gene families. As there were only 68 < 100 dis-
ease gene families with at least 5 members, 32 of the
families are used twice for each set of tests with 5 pos-
itive genes. The generated test cases are available in
Additional file 2.

Due to the limited number of genes available in the
original disease gene families, we did not sample separate
sets Sk to be used in the experiments with the supervised
problem setting. Instead, we use the already sampled sets
Sp to define Sg, using the following leave-one-out cross-
validation procedure: when computing the score defined
by Equation 4 for each gene p € Sp, we use Sp \ {p} as the
reference set Sg. To compensate for this, also the negative
genes are similarly scored using |Sp| — 1 reference genes
only, where a subset S, C Sp with |S},| = |Sp| — 1 is used
to score each negative gene n € Sy (it is ensured that each
possible subset S, is used equally many times).
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The results obtained using this approach are expected
to be equivalent with results that would be obtained by
using distinct sets Sg (with |[Sg| = |Sp| — 1), while enabling
using a larger number of the original gene families for the
experiments; if Sp and Sg were to be sampled separately,
then only the 27 gene families that have at least 9 genes
would be available for the experiments, which is only 39%
of the families usable with the described cross-validation
approach (the ones with at least 5 members).

Different versions of Biomine data Some of the test
cases are unrealistically easy to solve using Biomine, since
it may contain edges that directly reflect knowledge about
the disease gene families. For instance, direct textual ref-
erences between genes belonging to the same disease
family could have been derived from the OMIM database.
To make the test settings here more realistic and chal-
lenging, we also carried out experiments where the most
obvious sources of phenotype-related data were excluded.
More specifically, we performed the experiments of this
section using the following two alternative versions of the
Biomine graph:

e Complete data includes all data in Biomine.

® Reduced data was obtained from the complete data
by removing the following entities and links that
most directly relate to the problem (and that were
observed to have significant roles in the experiments
of the previous section, cf. Figure 5):

— Remove all phenotype nodes (and edges
incident to those nodes). This avoids direct
references to phenotypes.

— Remove all edges derived from the OMIM
database. This avoids references closely
related to phenotypes.

— Remove all edges derived from the STRING
database. This removes predicted protein
relationships, which may partly be based on
data derived from OMIM.

Although even after removing these data types there
is “trivial” data left, the aim is that performing
experiments with this more challenging subset of the
data will reveal how the methods perform when there
is less data on which to base the inferences.

Using ROC to evaluate classifiers The Supervised and
KNN classifiers can directly be evaluated in the ROC
framework, and we again use both visualization of ROC
curves and area under curve (AUC) as an overall score.
The Cluster-based classifier does not directly rank the
genes but instead finds a partition into positive and nega-
tive instances. Any candidate cluster thus gives a point in
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the ROC space, but the clusters have to be computed sepa-
rately for each value of g, unlike with methods that directly
produce a ranking of genes. We compute a pseudo-ROC
curve for the Cluster-based method by varying the sen-
sitivity parameter g over a set of predefined thresholds.
For each threshold, we perform experiments for all the
100 data sets. We then compute the true positive rate and
false positive rate for each data set, and average these over
all the data sets to obtain a composite point in the ROC
space for each value of g. These points are then plotted
to obtain the final ROC curve. (Unlike a standard ROC
curve, the resulting curve is not guaranteed to be mono-
tone, but deviations from monotonicity seem to be small
in practice.)

Comparing results between the two versions of the
ranking problem The two problem settings, the super-
vised and unsupervised one, are not directly comparable
since they are not really practical alternatives: the super-
vised method should be used whenever a reference set of
known disease genes is available, since this helps in rank-
ing; and when such a reference set is not available, there
is no other option but to use an unsupervised method.
Thus, a fair comparison is not straightforward to set up.
Nevertheless, such a comparison between the methods
can provide insight on how crucial having a pre-known
reference set is for the prediction task.

We compare the classifiers in settings where each (pos-
itive) gene is scored using information from the same
number of other positive genes by all methods. For exam-
ple, when |Sp| = 5, each gene within Sp is ranked using
the 4 other positive genes by the Supervised classifier.
For the KNN classifier, each positive gene is ranked using
the 4 nearest neighbors (in the optimal case the 4 other
positive genes), while in the Cluster-based method, each
positive gene can potentially cluster with the 4 other
positive genes.
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Experimental results for disease gene prediction
Comparison of classifiers First, we test the three pro-
posed classifiers on the problem of identifying a set Sp
of 5 disease genes among a set of 15 unrelated genes Sy.
100 independent test cases of 20 genes are analyzed, as
described above. The questions addressed by this setting
are (1) how well disease genes can be prioritized using
Biomine using any of the methods; (2) how much more
difficult it is to prioritize disease genes without a refer-
ence set of pre-known disease genes; and (3) how well
the cluster-based classifier (Equation 6) works compared
to the simpler baseline classifier based on the k nearest
neighbors (Equation 5).

Figure 6 reports the results from these experiments as
a ROC curve averaged over the 100 independent test
cases, using either complete data in Biomine (left) or the
reduced data set (right). Figure 7 shows the first 10% of the
same ROC curve. There are several observations from this
experiment. First, using all data in Biomine (left), the true
disease genes can be predicted with a rather high accu-
racy. Also in the more challenging case of reduced data
(right), predictions can be made with reasonable accu-
racy. In both settings, the Cluster-based classifier obtains
practically identical accuracy with the Supervised classi-
fier for most of the ROC space, although it uses less prior
information. It is also clearly superior to the KNN clas-
sifier. However, in the very beginning of the ROC curve
(Figure 7) the cluster-based method does not perform
well. This is most likely because that beginning of the
curve corresponds to stringent (large) values of g, where
only a part of the true positive genes are included in the
cluster; here, the cluster-based method is not yet able to
utilize information from all positive genes, a limitation
which does not affect the KNN method.

Effect of increasing the number of negatives To make
the problem more realistic and challenging, we next

0.8
2o
€ 06
o
2
.("“7)
o
Q
g 04
0.2
Basic classifier (problem A)
Cluster-based classifier (problem B) ——
KNN classifier (Problem B) ——
0 1 1
0 0.2 0.4 0.6 0.8 1

false positive rate

77‘
2o
S 06
o
=
.("“7)
o
Q
g 04
0.2
Basic classifier (problem A)
Cluster-based classifier (problem B) ——
KNN classifier (Problem B) ——
0 1 1
0 0.2 0.4 0.6 0.8 1

false positive rate

Figure 6 Comparison of classifiers using ROC curves. Left: protein interactions. Left: all data. Right: reduced data.
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evaluate how the accuracy of the proposed methods is
affected when the amount of false positives in the set
of genes to be prioritized is increased. For this experi-
ment, we used the 5 sets of 100 test cases with |Sy| €
{5,15, 25, 35,45}. As in the previous setting, the amount of
positive genes |Sp| is fixed to 5, giving positive-to-negative
ratios from 1:1 to 1:9 and total number of genes to be
ranked |S| between 10 and 50.

Again, we test the three proposed classifiers, with com-
plete and reduced data separately. For the Supervised
classifier, AUC should not be affected by the increasing
number of negatives, as the ranking of each gene always
occurs using a fixed reference set, irrespective of the
number of negative genes. On the other hand, the more
challenging unsupervised problem becomes more difficult
when the amount of negatives is increased.

Figure 8 plots the AUC values obtained by each classi-
fier as a function of the number of negative genes |Sy/|.
Each point in the plot is an average AUC over the 100

independent test cases with a specific |Sy|. As expected,
AUC values for the Supervised classifier remain about
the same in all settings. The accuracy of the other meth-
ods decreases quite steeply as the number of negatives
increases. However, the cluster-based classifier is con-
sistently superior over the KNN method, with a clear
margin.

The results indicate that a reference set Sg is obviously
useful, but if one is not available, relatively good predic-
tions can still be obtained with the cluster-based method
if the fraction of positive instances within the set of genes
to be prioritized is sufficiently high.

Effect of decreasing the number of positives In the
final experiment, we evaluate how decreasing the number
of positives affects prioritization, by varying the number
of positives |Sp| between 2 and 5, while fixing the num-
ber of negatives to 15. Figure 9 plots the average AUC
obtained by each classifier as a function of the number of
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Figure 8 Effect of increasing number of false positives on prediction accuracy. |Sp| = 5,|Sy| € {5, 15,25, 35,45}. Left: all data. Right: reduced
data.
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positive genes |Sp|. As expected, decreasing the number
of positives has a dramatic effect on accuracy, especially in
the unsupervised version of the problem, but also in the
supervised version. Notably, the clustering-based method
does not work well with the smallest values of |Sp|, and
is outperformed by the KNN method in these settings.
Based on this experiment, it appears that at least 4 posi-
tive genes are required in the set to be prioritized in order
to benefit from the cluster-based approach.

Summary of results for disease gene prediction The
results of this section can be summarized as follows.

1. The Biomine data and node proximity measures can
be used to obtain a high accuracy in identifying
actual disease genes from a putative set of genes. The
best results are obtained, if a reference set S of
known causal genes is available.

2. With a sufficient true disease gene density in the
candidate list, the cluster-based method (Equation 6)
performed almost as well. This is an interesting
result, because the clustering method does not
require a pre-known reference set. However, the
cluster-based approach did not work well when the
number of positive genes within the candidate list
was small; in our experiments, at least 4 positive
genes were needed for the cluster-based approach to
be beneficial.

Discussion

We first considered a number of node proximity mea-
sures as the basic element of link prediction. In these
experiments, a random-walk based proximity measure
was found to perform best. This result strongly contrasts
results from a recent study comparing similar proximity
measures on probabilistic graphs [29], where a method
based on expected shortest path distance performed best,

followed by probability of best path, network reliabil-
ity, and finally random walk, with clear margins. The
most striking difference is that in their link prediction
experiments, random walk performed only slightly bet-
ter than a random guess. We hypothesize that the main
reason is the difference in the edge weighting schemes,
which may be more suitable for some methods than for
others. One difference in weighting is that the graphs
of Potamias et al. contain more edges with probabili-
ties close to 1.0, whereas in our scheme the types of
edges and degrees of nodes have a larger effect on edge
weights, and the resulting distribution of edge weights is
more uniform.

Our empirical results show that the Biomine approach
has strong statistical prediction power (see, e.g., Figure 5).
However, the prediction accuracy is likely not sufficient
for predicting arbitrary links within Biomine, as there
are relatively few true positives among a huge number of
potential links. Consider the current statistics of Biomine:
the number of node pairs is of the order of 101, while the
current number of edges is of the order of 107. For the
sake of example, assume that the number of true positive
links is 10 times larger than the number of current edges,
i.e, 108. The fraction of true positives among all poten-
tial links would be 108/1011, i.e., one positive instance for
every 1,000 negative ones.

Now, assume a true positive rate of 0.1 and a false
positive rate of 0.0001, similar to experimental results in
Figure 5. We are then 1,000 times more likely to classify
positively a true positive than a true negative. Inciden-
tally, this ratio is identical to the ratio of the negative and
positive instances assumed above. In other words, the pre-
dicted positives would be expected to contain an equal
amount of true and false positives. If one produced pre-
dictions for the whole Biomine, there would with these
parameters be about 107 true and false positives—clearly
too much for any practical use.



Eronen and Toivonen BMC Bioinformatics 2012, 13:119
http://www.biomedcentral.com/1471-2105/13/119

In practical applications, such as analysis of protein
interaction measurements or disease gene ranking, the set
of potential links to predict is limited to a predefined set
of candidate links that is already enriched with positive
instances. This also means that although the proximity
measure itself does not take into account the type of links
to be predicted, the set of candidates is already chosen in
such a way that the edge type is implicitly defined.

We next discuss our two test settings, protein interac-
tion prediction and gene prioritization, and their results.

The protein interaction prediction experiments have
been carried out with respect to new links introduced to
the source databases between 2007 and 2010, with the
above-mentioned good results. An interesting question is
if and how much the methods are biased to making pre-
dictions in active areas of research. Existing information
in the source databases reflects past and current research
topics and hypotheses, and these may well correlate with
future research and discoveries. A topic for future study is
to investigate if certain types of links are easier to predict
than others.

Use of Biomine in disease gene ranking enables identi-
fying, from among a number of putative candidate genes,
the ones that appear most plausible based on the data con-
tained in the source databases. This approach is expected
to work best in cases where several functionally related
genes contribute to the disease, and knowledge about
functions of the genes is already present in the source
databases. Obviously, less studied genes with little or no
functional annotations cannot be identified in this way.

We considered two versions of the gene ranking prob-
lem: one where genes are ranked based on their proxim-
ities to an already known reference set of disease-related
genes (supervised setting), and another where ranking is
based on the mutual proximities of the putative genes
(unsupervised setting). Both formulations have already
been considered in previous work[16,18]. The methods
of producing data and computing proximities are differ-
ent, however. Kohler et al. [16] only use a single type of
edge (protein associations) while Franke et al. [18] col-
lapse information from several data sources into a single
type of edge. Neither of these approaches considers edge
weights. In contrast, we retain the original edge types and
construct a heterogeneous, weighted network. An addi-
tional difference is that the approach of Franke et al. is
directly aimed at linkage studies where genes within con-
tinuous susceptibility intervals are examined, whereas we
consider cases where the genes may be spread over the
whole genome.

Powerful methods for disease gene prediction have been
proposed by Hwang and Kuang [20] and Vanunu et al.
[17]. They assume availability of three specific types of
links (similarities between diseases, links from diseases to
proteins, and protein interactions) and these are used in
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specific ways. In contrast, we do not make such assump-
tions about edge types: the link prediction methods used
in this study are purely based on node proximities. While
the approaches of Hwang, Kuang and Vanunu et al. can
take better advantage of specific information, the methods
used in this paper are more flexible and can also utilize
unanticipated types of links.

Unlike the methods considered here, Wang et al. [21]
and Chasman [22] do not use graph data, but instead per-
form joint testing of disease association within predefined
sets of related genes (pathways and functional categories).
In contrast, the methods applied in this paper are not lim-
ited to detecting association only within such predefined
sets.

To sum up, the following combination of factors distin-
guishes our work from previous work on utilizing protein
networks for disease gene prioritization:

¢ use of weighted edges, with weights based on
combining information from the type of edges, node
degrees and weights in the original databases,

e use of a heterogeneous graph, and

e the novel single-cluster clustering formulation.

In this paper, the evaluation of Biomine has been carried
out quantitatively, using numerical measures of predic-
tion accuracy. Such measures are directly motivated by
the prediction tasks considered in this study. An impor-
tant, complementary application of Biomine is visualizing
relationships between entities of the biological graph (cf.
Figure 1), enabling the basis of predictions to be shown
to the user for subjective analysis and verification. Find-
ing connections previously unknown to the user may
help understand biological mechanisms and produce new
biological hypotheses.

Consider, for instance, the top ranking genes from a
gene mapping study, or a gene that by some other evi-
dence might be related to the phenotype under study. A
subgraph that connects them [45] can be used to show
the concrete chains of annotations that link the genes
to the phenotype. Such use of Biomine is remotely sim-
ilar to search engines: enter a number of query entities,
and Biomine will search for chains and networks of enti-
ties that summarize the known relationships between the
query entities. This search functionality is available in the
Biomine web site http://biomine.cs.helsinki.fi.

Conclusions

We presented Biomine, a system that integrates data
from a number of heterogeneous sources into a single,
graph-structured index. The experimental results indicate
that Biomine enables performing useful prediction tasks,
such as prediction of new links and ranking of putative
disease genes.
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Based on the experiments, a number of components
contribute to the success.

1. The Biomine database and data model: both
integration of multiple types of data from several
data sources, as well as use of weights on edges were
important factors.

2. Suitable methods and measures for prediction:
random walk with restart worked best as a link
prediction measure; for candidate gene ranking,
slightly more complex supervised or unsupervised
prediction methods (using random walk as a
proximity measure) can be used depending on the
availability of a reference set of known disease genes.

3. Enriched data for the prediction problem:
Biomine has, together with the above-mentioned
methods, statistically strong predictive power.
However, for practical use in prediction or ranking
tasks, a selected set of candidate hypotheses should
be available. This is the case, for instance, in analysis
of candidate genes from a genome-wide association
study.

Our main motivation comes from gene mapping, in
particular from analyzing and visualizing relations of can-
didate genes to the phenotype under study. In our experi-
ments, Biomine had a high accuracy in identifying actual
disease genes from a putative set of genes using a sim-
ple ranking scheme based on an already known reference
set of disease genes. Experiments using a novel clustering-
based method demonstrated that putative disease genes
can also be ranked without an already established refer-
ence set, if the number and density of true disease genes
is sufficient among the candidates. An interesting future
research topic in this area is a semi-supervised setting
where information both from a reference set of disease
genes and from mutual proximities of the candidate genes
is used. This might be useful especially in cases where
only a small number of reference genes is available for the
disease under study.

The current version of the Biomine database contains
1.1 million entities and 8.1 million relations between
them, with focus on human genetics. The index can be
queried using a public web interface on the Biomine web
page. and results are visualized graphically. While gene
mapping has been the motivating application, we believe
that Biomine has applications in many other biomedi-
cal problems that benefit from integration of data and
from the ability to estimate proximities of biological
entities.

Biomine in its current form has a number of practi-
cal limitations. It only covers part of the available data,
with focus on human genetics. Keeping the database
updated and extending it requires resources. The database

Page 20 of 21

could be improved in a number of ways, including auto-
matic learning of relevance coefficients for different edge
types, or better semantic use of taxonomies such as
Gene Ontology. Discovery of statistical relations between
entities would be an interesting addition, for instance
gene set enrichment analysis [46]. Naturally, future
work will include applications of Biomine to specific
biomedical problems.
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