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Abstract

Background: Locus heterogeneity is one of the most documented phenomena in genetics. To date, relatively little
work had been done on the development of methods to address locus heterogeneity in genetic association
analysis. Motivated by Zhou and Pan’s work, we present a mixture model of linked and unlinked trios and develop
a statistical method to estimate the probability that a heterozygous parent transmits the disease allele at a di-allelic
locus, and the probability that any trio is in the linked group. The purpose here is the development of a test that
extends the classic transmission disequilibrium test (TDT) to one that accounts for locus heterogeneity.

Results: Our simulations suggest that, for sufficiently large sample size (1000 trios) our method has good power to
detect association even the proportion of unlinked trios is high (75%). While the median difference (TDT-HET
empirical power - TDT empirical power) is approximately 0 for all MOI, there are parameter settings for which the
power difference can be substantial. Our multi-locus simulations suggest that our method has good power to
detect association as long as the markers are reasonably well-correlated and the genotype relative risk are larger.
Results of both single-locus and multi-locus simulations suggest our method maintains the correct type | error rate.
Finally, the TDT-HET statistic shows highly significant p-values for most of the idiopathic scoliosis candidate loci,
and for some loci, the estimated proportion of unlinked trios approaches or exceeds 50%, suggesting the presence
of locus heterogeneity.

Conclusions: We have developed an extension of the TDT statistic (TDT-HET) that allows for locus heterogeneity
among coded trios. Benefits of our method include: estimates of parameters in the presence of heterogeneity, and
reasonable power even when the proportion of linked trios is small. Also, we have extended multi-locus methods
to TDT-HET and have demonstrated that the empirical power may be high to detect linkage. Last, given that we
obtain PPBs, we conjecture that the TDT-HET may be a useful method for correctly identifying linked trios. We
anticipate that researchers will find this property increasingly useful as they apply next-generation sequencing data
in family based studies.

Background

In genetics, heterogeneity is a major feature of human
traits. Genetic heterogeneity occurs when the same or
clinically indistinguishable phenotypes are caused by dif-
ferent genetic factors. This can be due to multiple variants
located in the same locus (allelic heterogeneity) or to
mutations located in different loci (locus heterogeneity).
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The focus of this work is locus heterogeneity, specifi-
cally heterogeneity caused by having an unknown subset
of pedigrees in a sample being unlinked to a disease
locus while the rest are linked [1,2].

There are many reported examples of locus heteroge-
neity, including breast cancer [3-6], maturity-onset dia-
betes of the young (MODY) [7], epilepsy [8], early-onset
Alzheimer’s Disease [9], rheumatoid arthritis [10], non-
polyposis colorectal cancer [11], non-syndromic hearing
loss [12-14] and retinitis pigmentosa [15-17].

Locus heterogeneity can substantially affect the power
of linkage and association analyses [18-27]. In linkage
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analysis, there are many examples of methods that
address this issue. For example, we have: the M test [28]
(also known as K-test [29,30]), a likelihood ratio test
(LRT) that estimates the value of the (assumed fixed)
recombination fraction (&) for each pedigree in a sample;
the B-test [29], which is a more powerful version of the
M-test that assumes an underlying beta null distribution
for each estimated #; the admixture test (A-test), which
is based on the difference between the log-likelihood of
the admixture model (data are composed of linked and
unlinked families) and the homogeneity model (families
are all linked with a common 60) [2,31-36]; the D-test
[30], a combination of the A and B tests and finally, the
C-test [19], which is based on the M-test and for which
the underlying null probability distribution is deter-
mined by simulation. The M and B tests were originally
developed to identify different values of @ for different
pedigrees. For the A-test, families are grouped into two
types: a proportion « that are linked to the disease locus
(6 < 1/2) and a proportion 1- ¢ that are unlinked (6 =
1/2) [1,2]. As contrasted with M and the B tests, which
place pedigrees into classes a priori, the A test accounts
for heterogeneity by maximizing the standard log-odds
(LOD) score [37] over o and 6. That is, each pedigree
has some probability of being in the linked or unlinked
group. This statistic is known as the heterogeneity LOD
score (HLOD) [38].

The A-test has been implemented in a suite of pro-
grams to test for heterogeneity vs. homogeneity
(HOMOG) [38]. More complex heterogeneity scenarios
are also available in this package: HOMOG]I allows for
gender specific differences in . HOMOG2, HOMOGS3,
HOMOG4, distinguish two, three and four types of
families respectively, each linked to different disease loci
on the same chromosome. HOMOGS3R is a special case
of HOMOGS3 where there are three family classes: the
first class is linked to a given marker; the second is
linked to another marker on a different chromosome
and the third is linked to neither marker. Lastly,
HOMOGM [39], an extension of HOMOGS3R, allows
for any number of disease loci.

It is important to mention linkage analysis methods
for quantitative trait loci (QTL) that account for locus
heterogeneity in the analysis. Yang et al. [40] proposed a
QTL mapping model for sib pair data. Knight et al. [41]
and Ekstrem et al. [42] independently developed LRT-
based models in which the underlying null probability
distributions are determined by simulation while Wang
and Peng [43] proposed three test statistics with known
null asymptotic distributions. It appears that relatively
fewer publications considering locus heterogeneity for
association have been published as compared with het-
erogeneity for linkage. When using the search terms
“(locus heterogeneity) AND (linkage)” in ISI Web of
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Knowledge, we retrieve a total of 2,418 titles. By con-
trast, using the using the search terms “(locus heteroge-
neity) AND (association)”, we retrieve a total of 884
titles, an almost 67% reduction. Having documented
that, we do note that methods to address locus hetero-
geneity for association-based methods have been
developed.

Latent class models [44] have been used to estimate
membership-class probabilities for individuals with simi-
lar genetic backgrounds [45-48].Ordered Subset Analysis
(OSA)-based models have been extended to association,
including the sequential addition (SA) procedure [49]
and the OSA case-control (OSACC) method [50]. For
family-based data, the OSA-TDT [51] applies OSA to
the transmission disequilibrium test (7DT) [52], and the
APL-OSA [53] similarly applies OSA to the “association
in the presence of linkage” test (APL) [54].

Yang et al. [55] extended the Posterior Probability of
Linkage (PPL) method to one that incorporates linkage
disequilibrium information between marker and disease
alleles. Huang et al. [56] extended the PPL method to
case-control data. These methods maintain all the fea-
tures of the original PPL method for linkage, namely,
they do not require correction for multiple testing and
they can sequentially update information across multiple
data sets.

Wang and Huang [22] developed two LRT extensions
of the HLOD: the LD-Het for general pedigrees and the
LD-multinomial for affected sib pair data. Here, LD
stands for linkage disequilibrium. Schmidt et al. [57]
proposed using a two-stage linkage/association approach
for affected sib pair data. Finally, Zhou and Pan [58]
used a mixture model to allow for locus heterogeneity
in a case-control design.

The purpose of this work is the development of a new
test statistic that we call TDT-HET, that allows for locus
heterogeneity when applying the TDT statistic. This
work is largely motivated by the recent work of Zhou
and Pan [58]. As in their paper, our statistic is based on
an underlying mixture model. We apply an expectation-
maximization (EM) algorithm to compute log-likeli-
hoods of the data under null and alternative hypotheses.
The EM algorithm also produces maximum likelihood
estimates of parameters such as the probability that a
heterozygous parent transmits the disease allele to an
affected child, the probability that a trio (mother, father,
affected child) is linked to the locus in question, and the
probability that certain trio types (determined by the
constellation of genotypes) are linked to the locus being
studied. In addition, we extend our TDT-HET method
to statistic that can evaluate multiple loci jointly. This
extension is motivated by and similar to the work of
Hoh, Ott, and colleagues. They called their method
SumStat [59-62].
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For both single-locus and multi-locus simulations, we
evaluate the type I error rate and the power of the
TDT-HET method to detect association. In addition, we
apply the TDT-HET method to candidate loci from a
study of idiopathic scoliosis trios to determine if there is
any suggestion of locus heterogeneity at the loci consid-
ered, and whether the results suggest evidence for asso-
ciation in the presence of heterogeneity.

Methods

Notation

Much of the notation we use comes from the work of
Zhou and Pan [58], who developed a test statistic for
case-control data that allows for locus heterogeneity.
Also, much of the TDT notation comes from the work
of Schaid and Sommer [63]. Here we present notation
used in the main body of this work. A fuller notation
list may be found in the additional file 1, Appendix
(Notation section).

M = The disease allele at the putative disease SNP
locus.

N = The non-disease allele at the putative disease SNP
locus.

%45 = The trio where parent 1, parent 2, and affected
child have a, b, and ¢ copies of the M allele at the puta-
tive disease locus (range for all copies: 0 - 2). For exam-
ple, x5 is the trio with mating type MM x MM and
affected child genotype MM. Throughout this work, we
will use the notation abc interchangeably with x,..

Ngpe = The number of trios x,,. in the sample.

n = The total number of trios in the study.

D = Event that the child in a trio is affected.

A = Event that individual in a population is affected.

¢ = Pr(A) = Disease prevalence.

fi = Pr(Ali copies of M allele in individual’'s genotype)
= Disease penetrances, i = 0,1,2.

R; = ]f:) , i = 1,2 = genotype relative risks (GRR) [63]. R;
corresponds to the heterozygote GRR and R, to the
GRR for disease allele homozygote. We consider three
kinds of disease modes of inheritance (MOI) in this
work: R; = R, (dominant); R, = 1 (recessive); R? = R,
(multiplicative).

p = Pr(M) = Disease allele frequency (DAF).

q = Pr(N) = 1 - p = Non-disease allele frequency.

t = Pr(heterozygous parent transmits M allele to
affected offspring). In this work, the null hypothesis, Hj,
is t = 0.5. The alternative hypothesis, Hy, is £ = 0.5.

Uri = Pr(Mating type = i|D, pop = k) = probability
that the mating type is i given that the child is affected
and the trio comes from the k™ population, 1 < k < 2.
Throughout this work, we shall use the notation k = 1
to indicate that the trio is in the linked population (¢ =
0.5) and k = 2 to indicate that the trio is in the unlinked
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population (¢ = 0.5). Similar to Schaid and Sommer [63],
we consider 6 mating types in this work. We recognize
that other models, such as those considered by Wein-
berg and colleagues [64,65], require more than six mat-
ing type frequencies. We conjecture that our work
extends to such situations.

7y = Pr(trio is linked to trait locus) = Pr(¢ =z 0.5). In
this work we specify that ¢ is the same for all linked
trios. This specification is also made for the recombina-
tion fraction in some tests of linkage allowing for het-
erogeneity (see, e.g., work by C. A. B. Smith [1,2] and
Ott [38], specifically the method implemented in pro-
grams such as HOMOG [38], GENEHUNTER [66],
SIMWALK?2 [67], VITESSE [68], MERLIN [69], and
other programs).

7T2=1—7T1.

% = Maximum likelihood estimate (MLE) of the para-
meter x. This MLE is determined by means of the EM
algorithm.

z; = The indicator variable for population k and trio
xj, where the subscript j indicates the j™ trio in the
sample.

T}f? =1t jteration step estimate that the ;" trio is in
the k™ population, k = 1,2. Without loss of clarity, we
will use sometimes write Tk(;)bc’ where abc refers to the

trio x,,. (see above).

TDT-HET Test Statistic
The TDT-HET statistic is a likelihood ratio statistic.
Log-likelihoods under the null hypothesis, Hy: £ = 0.5 or
m = 0, and under the alternative hypothesis,H; : ¢t # 0.5
and m; # 0, are computed by maximizing these para-
meters for the observed data. We compute the maxi-
mum likelihood estimates under Hy and H; using the
Expectation-Maximization method [70]. P-values are
computed using permutation methods. Full details are
provided in the additional file 1, Appendix (TDT-HET
Statistic section).

All trios drawn from a population with one set of
parental mating types

Simulations
Single locus
To evaluate the type I error rate and power of the test
statistic under different scenarios, we perform simula-
tions. In this section, we describe simulations where we
consider type I error rate and power for a single disease
locus that has been genotyped. The parameter settings
that we consider are presented in Table 1.

We comment that, in item 3 in Table 1, we specify
that the disease locus is in Hardy Weinberg Equilibrium.
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Table 1 Simulation parameter settings for the single-locus simulations

Item Parameter Setting

1 MOI Dominant, Recessive, Multiplicative
2 ¢ 005, 0.15

3 R> 1.0 (Null), 2.25

4 m 0.25, 050, 0.75, 1.0

5 p 0.10, 0.25, 0.50, 0.75, 0.90
6 Number of trios 1000

7 Number of permutations per statistic 500

8 Number of starting points 200

9 Number of EM steps per starting point 100

10 € 10°

1 Penalty C in EM algorithm (Equation (1)) 0.001

12 Number of replicates per vector (Items 1-3) 250

MOI = Mode of inheritance

¢ = Disease prevalence

R, = Genotype relative risk for disease allele homozygote
mm; = Proportion of linked trios

p = Disease allele frequency

& = Tolerance

In our simulations, we use the value p to determine the
mating type frequencies. Specifically, we specify random
mating in the single-locus simulations, so that the mat-
ing-type frequencies y; are the products of the parental
genotype frequencies, which themselves are determined
by the allele frequency p according to Hardy-Weinberg
Equilibrium. For example, the frequency of the mating-
type MN x NN is 2 x (2pq) x q° = 4pq°, where g = 1 -
p is the frequency of the N allele. Schaid and Sommer
provide similar results in their Table 1[63]. While we do
not simulate non-Hardy-Weinberg situations in our sin-
gle-locus simulations, we do so in our multi-locus simu-
lations (see below).

Multi-locus

To evaluate the TDT-HET statistic for multiple loci, we
apply a slight variant of the “SumStat “ procedure devel-
oped by Hoh, Ott, and colleagues [59-62]. While these
researchers consider sums of ever-increasing number of
SNPs, in this work, we consider just the full sum. Speci-
fically, for each of the k loci, 1 < k < L, where L is the
number of loci in the simulation, we compute TDT-
HET(k), the value of the statistic at the k™ locus. We
then compute:

SumStat = Z;l TDT — HET (k). (1)

Empirical significance levels are determined through
permutation. Since each locus k has 500 permuted TDT-
HET(k) statistics associated with it, we can compute the
permuted SumStat statistics for each permutation num-
ber (1 to 500) (This value changes to 100,000 for the
Idiopathic scoliosis Candidate Loci - see below). The
empirical significance level is defined as the proportion

of SumStat values that exceed the SumStat value for the
observed data. Table 2 lists the parameter settings for
our multi-locus simulations (those parameters not listed
there are the same as listed in Table 1).

Here, we consider 4 correlated SNPs in each simula-
tion. Mating types for the first locus (labeled MT[1] [i])
are determined using the disease allele frequency p (set-
ting 2b in Table 2). As above, each mating type i = 1, ..,
6 will have its frequency determined using HWE pro-
portions. See above (Simulations - Single Locus) for for-
mulas determining mating type frequencies for the first
locus. For each consecutive locus /, 2 < [ < 4, the mating
type frequencies for the i mating type is determined in
the following fashion.

1. Define [/][i]] = p x MT[l - 1][i]] + (1 - p) x X, where
X~U(0,1).

2. Compute SumY[l] = %, Y[I][i].

. Nl
3. MT[1][i] = sﬁn]y[]”.

Table 2 Simulation parameter settings for the multi-locus
simulations

Item Parameter Setting

1 Number of loci 4

2a Locus transmission probability: MOI Multiplicative

2b Locus transmission probability: p 0.10, 0.50, 0.9

3 R> 1.0 (Null), 225,90
4 M 025, 0.75

5 P 08

MOI = Mode of inheritance

p = Disease allele frequency

R, = Genotype relative risk for disease allele homozygote

mm; = Proportion of linked trios

p = correlation coefficient. p = 1 (perfect correlation), p = 0 (no correlation)
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Note that, if p = 1 (perfect correlation), then the mat-
ing type frequencies for each locus are identical. If p = 0
(no correlation), then each locus has mating type fre-
quencies that are essentially random numbers that sum
to 1. In the Results section, power is computed at the
1% significance level (see below).

Idiopathic Scoliosis Candidate Loci

We applied our method to a dataset that included
selected loci from our published genome-wide associa-
tion study (GWAS) of adolescent idiopathic scoliosis
(AIS) [71]. Briefly, AIS is a common spinal deformity
with a prevalence of ~3% in school age children world-
wide. The underlying genetics of AIS are generally com-
plex and heterogeneity is apparent [71,72]. In the work
presented here we selected genotypes for five loci
derived in a total of 447 trios (1849 samples) from 447
families that were included in our previous publication
[71]. Of the five loci, four (rs1400180, rs10510181,
rs1040315, and rs2222973) were selected due to their
significance by TDT analysis, their evidence of cluster-
ing, and their proximity to genes of potential biological
relevance. We also selected an additional locus,
rs11770843, because of its proximity to haplotypes pre-
viously linked and associated with AIS [73].

While we keep a number of the settings fixed (Table
1, settings 8-9), we alter the number of permutations
per statistic to 100,000. Note that this number is much
larger than the number performed in our simulation
studies. The reason for this is that we are analyzing far
fewer markers here than in our simulations, so time/
CPU constraints are not really an issue. Also, the Sum-
Stat P-value is based on 100,000 permutations, since we
have 100,000 permutation TDT-HET statistics for each
locus.

As a comparison, we compute the TDT statistic [52]
as implemented in the PLINK software [74]. We also
compute point-wise and family-wise permutation p-
values (labeled Empl and Max(T), respectively by Pur-
cell et al. [74]). The Max(T) permutation statistic is
based on the maximum observed test per permutation
and so accurately reflects the family-wise error rate in
the presence of LD.

While this description is for a genome-wide study, we
consider only the situation max(T) applied to 5 candi-
date SNPs. We compare the max(T) statistic to our
Bonferroni-corrected maximum TDT-HET SumStat sta-
tistic (corrected over 2 chromosomes, since one chro-
mosome has one locus).

Results

Simulations

Null hypothesis (Type I error rate)
R,=1.0
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For the situation where R, = 1.0, we present empirical
type I error rates at the 5% and 1% levels in Figure 1.
The minimum observed type I error rate at the 5% level
for TDT-HET is 0.04 (-log(0.04) = 1.46), which occurs
for the settings: ¢ = 0.05, m; = 0.50, p = 0.10, and the
maximum observed type I error rate is 0.07 (-log(0.07)
= 1.17), which occurs for the settings: ¢ = 0.15, m; =
0.50, p = 0.75. The median type I error rate is 0.05.

At the 1% level, the minimum observed type I error
rate for TDT-HET is 0.006 (-log(0.006) = 2.22), which
occurs for the settings: ¢ = 0.05, 7; = 0.25, p = 0.25, and
the maximum observed type I error rate is 0.02 (-log
(0.02) = 1.74), which occurs for the settings: ¢ = 0.15, m;
= 0.50, p = 0.75. The median type I error rate is 0.01.

Given that the type I error rate is computed over 250
replicates for each simulation vector setting in Table 1,
we can use the method implemented in the BINOM pro-
gram [38] to compute exact 95% confidence intervals for
each empirical type I error rate. For the minimum and
maximum empirical rates presented above from Figure 1,
BINOM indicates that 0.05 and 0.01 are contained in in
each respective 95% confidence interval. In addition, in
Figure 1 we include linear trend lines using the method
implemented in the MS Office 2007 Excel Spreadsheet
software. Note that the 5% and 1% trend lines are very
close to the constant lines y = 1.30 and y = 2.00, which
are the -log-transformed values of 0.05 and 0.01, respec-
tively. This result suggests that the TDT-HET maintains
the correct type I error rate under the null hypotheses.

As a confirmation of our simulation code, we comment
that the minimum observed type I error rate at the 5%
level for TDT is 0.03 (-log(0.03) = 1.55), the maximum
observed type I error rate is 0.06 (-log(0.06) = 1.19), and
the median type I error rate is 0.05. At the 1% level, the
minimum observed type I error rate for TDT is 0.004
(-log(0.004) = 2.40), the maximum observed type I error
rate is 0.02 (-log(0.02) = 1.72), and the median type I
error rate is 0.01. These results suggest that our simula-
tion code is correctly simulating null data.

Alternative hypotheses (Power)
Single Locus
In Figures 2, 3 and 4 we present contour plots of
empirical powers of the TDT-HET method for a single
locus at the 5% significance level for dominant, multipli-
cative and recessive MOls, respectively. The contour
plots provide empirical power ranges as a function of
the proportion of linked trios 77; and DAF (p), where
settings of the input values are stated in Table 1, items
4 and 5). Other parameter settings that are used in
these simulations are also provided in Table 1. In each
of these figures, the prevalence is 0.05.

Each contour in each figure represents a range of
empirical power values. In each figure, there are five
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Figure 1 Empirical type | error rates for TDT-HET and TDT statistics. Here we present the empirical type | error rates for the TDT-HET and
TDT statistics for different settings of the prevalence (0.05 or 0.15), DAF (0.10, 0.25, 0.50, 0.75, 0.90), m; (0.25, 0.50, 0.75, 1.00) at two different
significance levels (5%, 1%). The various plotted shapes in the figure represent empirical type | error rates (-log-transformed) for a fixed setting of
the parameters. Solid square = TDT-HET, 5% Empirical Type | Error Rate. Hollow diamond = TDT, 5% Empirical Type | Error Rate. Solid circle =
TDT-HET, 1% Empirical Type | Error Rate. Hollow triangle = TDT, 1% Empirical Type | Error Rate.

contours, corresponding to power ranges (x, x + 0.20),
where x = 0.00, 0.20, 0.40, 0.60, 0.80. For example, the
black contour represents the power range (0.00, 0.20).
The light gray contour contiguous to the black contour
represents the power range (0.20, 0.40) and so forth.
The lightest contour represents the power range (0.80,
1.00).

Studying these figures, we can draw a number of con-
clusions. First, we see that, independent of the disease
MOI, as the proportion of linked trios 7; increases, the
empirical power increases as well. This result is not sur-
prising. It is interesting to note that power for a fixed
DAF is very much dependent upon disease MOI. For
example, we see in Figure 2 that empirical power for a
dominant MOI tends to be larger when p < 0.50. For a
multiplicative MOI (Figure 3), empirical power tends to
be larger for 0.25 < p < 0.75. Finally, for a recessive
MOI (Figure 4), MOI tends to be larger when p > 0.50.

How does the TDT-HET statistic’s power compare with
that of the TDT in the presence of heterogeneity? Our
previous work determining the non-centrality parameter
of the TDT in the presence of heterogeneity [27] allows
us to answer this question directly. However, we use
TDT empirical power instead to compare “apples to
apples” for power. In Figure 5, we present a Box and
Whiskers plot [75] that reports a summary of the distri-
bution of differences (ITDT-HET empirical power - TDT
empirical power) for the various MOIs (Dominant, Mul-
tiplicative, Recessive) and significance levels (5%, 1%).
TDT empirical power is computed using the method we
previously published [27].

While the median power difference is approximately 0
for all six categories, we see that there is a pattern asso-
ciated with disease MOI. That is, for the dominant
MOIs, TDT tends to have larger power than TDT-HET
(gray quartile boxes below 0 in Figure 5), while for
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Figure 2 Contour plot of TDT-HET empirical power for Dominant MOI at 5% significance level. Empirical powers at the 5% significance
level for prevalence (¢) equal to 0.05; DAF (p) equal to 0.10, 0.25, 0.50, 0.75, 0.90 and 7, equal to 0.25, 0.50, 0.75, 1.00. Each contour in the figure
represents a range of empirical power values. There are five contours, corresponding to power ranges (x, x + 0.20), where x = 0.00, 0.20, 040,
0.60, 0.80. For example, the black contour represents the power range (0.00, 0.20). The light gray contour contiguous to the black contour
represents the power range (0.20, 0.40) and so forth. The lightest contour represents the power range (0.80, 1.00).

multiplicative and recessive MOls, TDT-HET tends to
have higher power than TDT (gray quartile boxes above
0 in Figure 5). The minimum value for power difference
of -0.05 occurs for the parameter settings: ¢ = 0.05;
MOI = Dominant; R, = 2.25; DAF = 0.50; 7; = 0.50;
Significance Level = 1%. For these settings, TDT-HET
empirical power is 0.45, while TDT empirical power is
0.50. The maximum value for power difference of 0.17
occurs for the parameter settings: ¢ = 0.05; MOI =
Recessive; R, = 2.25; DAF = 0.25; m; = 0.75; Significance
Level = 1%. For these settings, TDT-HET empirical
power is 0.74, while TDT empirical power is 0.56.
Multi-locus

In Figures 6, 7 and 8, we present TDT-HET and TDT
SumStat empirical power values (type I error rate values
in Figure 6) for parameter settings listed in the

Methods. The results presented in Figure 6 (R, = 1.0)
indicate that our SumStat statistic appears to maintain
the correct type I error rate for all simulation para-
meters considered, with the exception of the settings:
TDT SumStat Statistic, m; = 0.25, DAF = 0.90, which
gives an empirical type I error rate of 0.03 at the 1%
level. According to BINOM, the exact 95% confidence
interval for this value does not contain 0.01 (the lower
bound of the interval is 0.02). However, all other simula-
tions do contain 0.01 in their 95% confidence intervals.
Regarding empirical power, when R, = 1.5 (Figure 7),
TDT-HET and TDT produce nearly identical powers.
This can be seen from the fact that the hollow symbols
of the TDT empirical powers do not seem to appear in
Figure 7. The reason is that they are covered by the
TDT-HET empirical power symbols. When R; = 3.0
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Figure 3 Contour plot of TDT-HET empirical power for Multiplicative MOI at 5% significance level. Empirical powers at the 5%
significance level for prevalence (¢) equal to 0.05; DAF (p) equal to 0.10, 0.25, 0.50, 0.75, 0.90 and 77, equal to 0.25, 0.50, 0.75, 1.00. Each contour
in the figure represents a range of empirical power values. There are five contours, corresponding to power ranges (x, x + 0.20), where x = 0.00,
0.20, 040, 0.60, 0.80. For example, the black contour represents the power range (0.00, 0.20). The light gray contour contiguous to the black
contour represents the power range (0.20, 0.40) and so forth. The lightest contour represents the power range (0.80, 1.00).
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(Figure 8), TDT-HET and TDT also produce nearly
identical powers. Note that the values on the vertical
axis for Figure 8 are much higher than those for Figures
6 and 7. We comment that, when R; = 3.0, we have
very high power at the 1% significance level even with
the proportion of linked trios is low (m; = 0.25; dia-
monds and triangles; Figure 8). This result suggests that
genotype relative risk can “trump” locus heterogeneity.
We have observed this phenomenon in previous studies,
where genotype relative risk is the most significant fac-
tor in determining power [76], even in the presence of
“missing data” (e.g., misclassification errors).

Idiopathic Scoliosis Candidate Loci

In Table 3, we present the results of our TDT-HET ana-
lysis for the five candidate loci mentioned in the Meth-
ods section. They are: RS1400180, RS10510181 (both on

Chromosome 3), RS11770843 (on Chromosome 7); and
RS1040315, RS2222973 (both on Chromosome 21).

The first thing to notice about these results is that the
statistic values are similar. For example, on Chromo-
some 3, locus RS1400180 has a TDT-HET statistic value
of 14.78 versus a TDT value of 14.35. Similarly, on
Chromosome 21, locus RS2222973 has a TDT-HET sta-
tistic value of 22.53 versus a TDT value of 22.25. How-
ever, as noted above, the TDT-HET statistic does not
follow a central chi-squared distribution with 1 degree
of freedom under the null hypothesis. For that, we must
compare permutation p-values. If we compare the
point-wise permutation p-values (P-value (Perm) col-
umn for TDT-HET and PermO1 column for PLINK
TDT), we see that, for most loci the permutation p-
values are quite similar (same order of magnitude). In
fact, according to BINOM, for most of the loci, the
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Figure 4 Contour plot of TDT-HET empirical power for Recessive MOI at 5% significance level. Empirical powers at the 5% significance
level for prevalence (¢) equal to 0.05; DAF (p) equal to 0.10, 0.25, 0.50, 0.75, 0.90 and 7, equal to 0.25, 0.50, 0.75, 1.00. Each contour in the figure
represents a range of empirical power values. There are five contours, corresponding to power ranges (x, x + 0.20), where x = 0.00, 0.20, 040,
0.60, 0.80. For example, the black contour represents the power range (0.00, 0.20). The light gray contour contiguous to the black contour
represents the power range (0.20, 0.40) and so forth. The lightest contour represents the power range (0.80, 1.00).

exact 95% confidence intervals overlap (full results not
shown). The one exception is for locus RS11770843 on
Chromosome 7. For this locus, the upper bound of the
exact 95% confidence interval of the TDT-HET permu-
tation p-value as computed by BINOM is 5.6 x 107,
while the lower bound of the exact 95% confidence
interval of the PLINK 7TDT permutation p-value
(Perm01) is 9.1 x 10, This result suggests that, for this
marker locus, the TDT-HET has slightly more power.
As for the multi-locus results, the situation is quite
similar. The Bonferroni corrected minimum p-value of
the TDT-HET SumStat statistic is 0.00, on Chromosome
21. The upper bound of the exact 95% confidence inter-
val is 3.0 x 107, The lower bound of the exact 95% con-
fidence interval for the minimum max(T) p-value is 2.8

x 107, indicating that the p-values overlap. Thus power
for each method is equivalent for this data set. While
additional studies need to be performed, this result sug-
gests that the SumStat method for TDT-HET may not
be as advantageous when loci are in HWE and/or are in
linkage disequilibrium.

If there is no gain in power for the TDT-HET method
over the standard TDT method, what is its utility? We
suggest that the value comes from the estimates of the
transmission probability, the proportion of linked trios,
and most especially, the estimates of the probabilities
that each of the trios is linked to a particular locus.
Similar information is available for the HLOD statistic
in that we may obtain probability estimates that each
family is linked to a particular locus [38].
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We demonstrate this utility for locus RS2222973, on
Chromosome 21. In Table 4, we present the posterior

fl(r) that each of the 10 coded
,abc

trios abc (see Table 5) is linked to the locus. We note
that in Table 3, the estimate of the overall proportion of
linked trios, 77, is 0.87. As Ott points out [32] and [38]
(page 224), this value can be used as a cutoff for deter-
mining coded trios that are linked to the locus as com-
pared with coded trios that are not. Specifically, if

()
Tl,abc

probability estimates

> 771, then we conclude that the coded trio x,. is

linked to the locus. Similarly, if fl(ra)bc < 71, then we

conclude that the coded trio x,,. is unlinked. The
results in Table 4 suggest that the coded trios xg00, X100,
X1105 X201, X211, X222 are linked to locus RS2222973,
while the remaining 4 coded trios %191, 111, 112, %212
are not. Of the coded trios for which at least one parent

is heterozygous (i.e., either a or b equals 1), the linked
coded trios are defined by the fact that the affected
child always receives the “1” allele from a heterozygous
parent. This result suggests that, for this locus, the “1”
allele is the risk allele.

Discussion

In this work, we present a mixture model of linked and
unlinked trios and develop a statistical method to esti-
mate the probability ¢ that a heterozygous parent trans-
mits the disease allele at a di-allelic locus, as well as the
probability mr; that any trio is in the linked group. The
null hypothesis is that £ = 0.5. The purpose here is the
development of a test, the TDT-HET, which extends the
classic transmission disequilibrium test (7DT) to one
that accounts for locus heterogeneity. Our results sug-
gest that use of permutation p-values enable us to cor-
rectly maintain correct type I error rates at the 5% and
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Figure 6 Empirical type | error rates for TDT-HET and TDT SumStat statistics. In this figure, we provide TDT-HET and TDT SumStat empirical
type | error values (GRR Ry = R, = 1.0) for parameter settings listed in Tables 1 and 2. In this figure, solid symbols represent TDT-HET SumStat
empirical powers; hollow shapes represent TDT SumStat empirical powers. More specifically: Solid diamonds = TDT-HET SumStat empirical type |
error rate at 1% significance level when m; = 0.25. Solid squares = TDT-HET SumStat empirical type | error rate at 1% significance level when my =
0.75. Hollow diamonds = TDT SumStat empirical type | error rate at 1% significance level when 1, = 0.25. Multiplication signs = TDT SumStat
empirical type | error rate at 1% significance level when my = 0.75.

1% significance levels. Power simulations using disease
MOIs suggest that power can be disease model depen-
dent, with the TDT being slightly more powerful for
dominant MOIs, and the TDT-HET being more power
for recessive MOIs. Also, we find that our statistic can
have high power, even in the presence of locus hetero-
geneity, when the GRR is larger.

It is interesting to note that the value of the TDT-HET
statistic and the corresponding permutation p-value
appears to be about the same as that of ordinary TDT
for the Idiopathic scoliosis Candidate Loci data set even
though results of the TDT-HET analysis suggest that
there is locus heterogeneity for several loci. Based on
our simulations, we might conjecture that the single-
locus MOI for each SNP is multiplicative.

We computed parameters for the situation where
linked and unlinked trio types come from populations
with different sets of parental mating type frequencies,
but apart from determining the r™ iteration step esti-
mates, we did not investigate this form of the TDT-HET
statistic further. Given the extensive amount of work

already present, we consider this work to be beyond
scope of the present manuscript. We plan to follow up
this research and report our findings in another
manuscript.

As noted in Results, Idiopathic Scoliosis Candidate
Loci section, Ott documents that a decision rule for
determining whether a particular trio type x,,. is linked
to a locus is seeing whether the inequality:

fl(,?bc z 7?1' (2)

is satisfied. Having said that, Terwilliger and Ott [77]
report that, for linkage, the conditional probabilities “...
should be taken with a grain of salt, and they cannot
ever be validly used to separate families for the remain-
der of a linkage study. It should be required that any
further marker typings be done on all families com-
bined...” Their rationale for this statement is that selec-
tively typing only linked families would introduce bias
and increase the type I error rate of the linkage statistic.
However, this book was published in 1994, even before
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Figure 7 Empirical powers for TDT-HET and TDT SumStat statistics when GRR R; = 1.5. Here, we present TDT-HET and TDT SumStat
empirical powers for parameter settings listed in Tables 1 and 2. Solid diamonds = TDT-HET SumStat empirical power at 1% significance level
when 71, = 0.25. Solid squares = TDT-HET SumStat empirical power at 1% significance level when 7, = 0.75. Hollow diamonds = TDT SumStat
empirical power at 1% significance level when m; = 0.25. Multiplication signs = TDT SumStat empirical power at 1% significance level when m; =

the advent of SNPs. We are now producing next genera-
tion sequence data, so that the causative variant may
well be typed in the first set. It remains an open ques-

~(r)
Tl,abc

to find trios that contain the causative variant(s). We
recognize that there are situations where parameter esti-
mation may be quite difficult. Vieland and Logue [78]
documented that when the genetic models at linked and
unlinked loci differ, maximizing the HLOD yields incor-
rect parameter estimates. These authors found that the
admixture parameter o does not even measure the pro-
portion of linked families within the sample, as is com-
monly supposed.

We conjecture that having additional information on

tion whether one can use the parameter estimates

the posterior probabilities fl(rzbc

ability of correctly identifying linked trios. One of the
advantages of the TDT-HET statistic is that it provides
estimates that each of the 10 types of trios (Table 5) is
linked/unlinked. We can use this information to create
a decision rule about whether a particular trio type is

may increase the prob-

linked (i.e., harbors the disease allele). One possible
decision rule is the inequality documented by Ott [38]
and listed above (2). Ott reports that, for linkage analy-
sis allowing for locus heterogeneity, a decision rule for
determining whether a particular family is linked to a
locus is checking whether the posterior probability that
the family is linked is larger than or equal to the overall
estimate of the proportion of linked families. We can
extend this rule to our work by making the decision
rule be that a trio type x,;, is linked to a locus if and
only if the inequality is satisfied. Here r is the iteration
step such that the log-likelihoods are less than the stop-
ping criterion.

This decision rule potentially reduces the number of
trios that we need consider when looking for linked
trios. We can further reduce the number of trios consid-
ered by adding the condition that we only consider trios
in which at least one parent is heterozygous. Thus, the
two decision rules we consider here for selecting linked
trios using the TDT-HET statistic are: (i) all trios that
satisfy inequality (2); and (ii) all trios for which at least
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Figure 8 Empirical powers for TDT-HET and TDT SumStat statistics when GRR R; = 3.0. Here, we present TDT-HET and TDT SumStat
empirical powers for parameter settings listed in Tables 1 and 2. Solid diamonds = TDT-HET SumStat empirical power at 1% significance level
when 71, = 0.25. Solid squares = TDT-HET SumStat empirical power at 1% significance level when 77, = 0.75. Hollow diamonds = TDT SumStat
empirical power at 1% significance level when m; = 0.25. Multiplication signs = TDT SumStat empirical power at 1% significance level when m; =
0.75.

Table 3 Results of TDT-HET analysis on idiopathic scoliosis candidate loci

PLINK Results

Chr Locus BP TDT-  P-value t ﬂ TDT-HET  SumStat P-value TDT P-value OR ¢ Max(T) P-value
HET (Perm) SumStat (Perm) (Perm01) (Perm02)
3 RS1400180 145968 1478 16x 10" 080 030 2393 10x10° 1435 28 x 10" 144 059 0.001
3 RS10510181 166047 9.15 0.003 060 0.77 9.04 0.004 1.37 058 0.02
7 RS11770843 146426312 1832 10x 10° 026 047 NA 1729 16 x 10% 156 061 33x10*
21 RS1040315 40746722 1841 20x 10° 076 038 40.94 0.00 1900 30X 10° 154 061 12%x10*
21 RS2222973 40755754 2253 0.00 036 087 2225 20x10° 060 038 70 x 107

The headings for each of the columns are defined as follows:

Chr = Human chromosome on which locus is located.

Locus = Particular SNP genotyped in idiopathic scoliosis trios.

BP = Base pair position of Locus. This position is based on the human reference sequence (NCBI Build 36.1/HG18).

TDT-HET = Value of the TDT-HET statistic for particular locus genotype data in idiopathic scoliosis trios.

P-value (Perm) = P-value of corresponding TDT-HET statistic, based on 100,000 random permutations. For a description of how the permutation p-value is
computed, see Methods, P-values by permutation.

'i = EM-Algorithm estimate of the probability, t, that a heterozygous parent transmits a “1” allele.

]/t\l = EM-Algorithm estimate of the probability, m;, that a trio is linked to the locus in question.

TDT-HET SumStat = 5, TDT-HET (k), where k indexes the set of all loci on a chromosome and TDT-HET (k) is the value of the TDT-HET statistic at the particular
locus. For example, in Table 3, k = 1 or 2, corresponding to locus RS1400180 or RS10510181, respectively. The TDT-HET statistic for each locus is 14.78 (k = 1) and
9.15 (k = 2). Therefore, for Chromosome 3, TDT-HET SumStat = 14.78 + 9.15 = 23.93.

SumStat P-value (Perm) = Permutation P-value corresponding the TDT-HET SumStat value. For a further description, see Methods, Simulations, Multi-locus.
(PLINK Results)

TDT = Value of the TDT statistic as computed by PLINK.

P-value (Perm01) = Permutation p-value computed by PLINK. Purcell et al. [74] label this p-value “Emp1”. It is the Point-wise empirical p-value.

OR = Odds Ratio for the disease allele.

i= T = The maximum likelihood estimate of the probability, t, that a heterozygous parent transmits the disease allele. Here, T is the number of times a
hete?:)iyéﬂxjs parent transmits the disease allele, and NT = the number of times a heterozygous parent does not transmit the disease allele. It has been shown
that, for the likelihood form of the TDT, this value is the maximum likelihood estimate of the transmission probability (see, e.g., [81-83]).

Max(T) P-value (Perm02) = Permutation p-value computed by PLINK that controls the family-wise type | error rate. For more information, see Methods, Idiopathic
Scoliosis Candidate Loci.
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Table 4 Posterior probability estimates that each coded
trio is in linked group for Chromosome 21 Locus
RS2222973 in the idiopathic scoliosis data set

Coded trio Xgpc fﬁ’lbc
000 0.87
100 0.90
101 083
110 0.92
m 0.86
112 078
201 0.87
211 0.90
212 083
22 0.87

We indicate in bold the coded trios xq. such that r( ) > =0.87. The
value 0.87 comes from Table 3, for locus R52222973 See Results Idiopathic
Scoliosis Candidate Loci, for further discussion of the importance of this
inequality.

one parent is heterozygous and that also satisfy inequal-
ity (2).

For the TDT statistic, our analogous decision rules
are: (i) all trios; and (ii) all trios for which at least parent
is heterozygous.

We plan to perform an extensive analysis to evaluate
the empirical probabilities that each statistic can cor-
rectly identify linked trios. We can simulate linked and
unlinked trios using the method implemented in the
FASTSLINK software [79,80]. We can use different
genetic model parameter settings, specifically, settings in
which the genetic effect is small/large. Since FASTLINK
produces pedigree files that indicate which pedigrees are
linked or unlinked, we can directly test our decision
rules. This is work in progress.

Given that next generation sequencing data applied to
families is bound to identify large amounts of locus
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heterogeneity, any methods that increase the probability
of identifying true disease variants should be welcome.
We realize that, though, the probabilities of correctly
identifying linked trios may be dependent upon the true
proportion of linked trios. One way we can reduce het-
erogeneity is to look at larger family sizes. We plan to
apply our statistic to such families and investigate its
performance.

Conclusions

Motivated by the recent work of Zhou and Pan [58], we
have developed a TDT statistic, TDT-HET, that allows
for locus heterogeneity among coded trios. This method
is an extension of TDT, in that our simulation results
suggest it has approximately the same power as the ori-
ginal TDT. Results of our simulations suggest that our
method maintains correct type I error for the null
hypothesis (R; = 1.0). Benefits of our method include:
estimates of parameters in the presence of heterogeneity
(e.g., the proportion of linked coded trios, the posterior
probabilities that a particular trio type is linked to a
locus), and reasonable power even when the proportion
of linked trios is lower. Also, we have extended Hoh,
Ott, and colleagues’ SumStat method to TDT-HET. The
parameter estimation above, particular, estimation of the
probability that a trio is linked will be useful as we enter
the age of next-generation sequencing, where one can
expect extensive levels of locus heterogeneity given the
rare disease frequencies.

Additional material

Additional file 1: Appendix. Full details of the derivation of the TDT-
HET statistic, including notation.

Table 5 Conditional probabilities of mating type and child genotype

Mating type =i  Pr(Mating type = i|D, Child Notation Pr(Child genotype|D, Mating type = i, pop = k) (t = 1/ Pr(X,uc|D, pop
pop = k) genotype 2 when k = 2) = k)
MM x MM (i = 1) Hin MM X222 1 Mk
MM x MNC Uk2 MM X212 t Mo
(i=2)
MM X MNC M2 MN Xom (1-1 Uz (1-1)
(i=2)
MM x NN(i = 3) U3 MN X201 1 Uk 3
MN x MN(i = 4) Ui MM X112 £ s T
MN x MN(i = 4) Uka MN X111 2t(1 - 1) 2 L t(1 -0
MN x MN(i = 4) Ua NN X110 a-v a1 - 0
MN x NN(i = 5) ks MN X1 t Ugs t
MN x NN( = 5) ks NN X100 (-9 s (1 -0
NN x NN(i = 6) ks NN Xo00 1 ks

In this table, the high risk allele is M. Also, we define D to be the event that the child is affected. Note that 1 < k < 2. The last column is computed using the
definition of conditional probability. Schaid and Sommer [63] also demonstrated this calculation. Note that Pr(x,.|D, pop = k) = fg(%apc; 6)) - Finally, t = Pr

(heterozygous parent transmits an M allele to an affected child).
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