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Abstract

algorithms.

Background: Animportant question in genetic studies is to determine those genetic variants, in particular CNVs, that
are specific to different groups of individuals. This could help in elucidating differences in disease predisposition and
response to pharmaceutical treatments. We propose a Bayesian model designed to analyze thousands of copy
number variants (CNVs) where only few of them are expected to be associated with a specific phenotype.

Results: The model is illustrated by analyzing three major human groups belonging to HapMap data. We also show
how the model can be used to determine specific CNVs related to response to treatment in patients diagnosed with
ovarian cancer. The model is also extended to address the problem of how to adjust for confounding covariates (e.g.,
population stratification). Through a simulation study, we show that the proposed model outperforms other
approaches that are typically used to analyze this data when analyzing common copy-number polymorphisms (CNPs)
or complex CNVs. We have developed an R package, called bayesGen, that implements the model and estimating

Conclusions: Our proposed model is useful to discover specific genetic variants when different subgroups of
individuals are analyzed. The model can address studies with or without control group. By integrating all data in a
unique model we can obtain a list of genes that are associated with a given phenotype as well as a different list of
genes that are shared among the different subtypes of cases.

Background

The aim of genome-wide association studies (GWAS) is
to assess the association between single nucleotide poly-
morphisms (SNPs) and common diseases. Recent GWAS
have been successful in discovering SNPs significantly
associated with complex diseases [1,2]. However, pub-
lished SNP associations account for only a fraction of
the genetic component of most common diseases [3].
Lately, several studies have been focused on the associa-
tion between copy number variants (CNV) and disease.
Some reports have suggested a role of rare CNVs (i.e. CNV
with low prevalence in the general population) in sus-
ceptibility to neurodevelopmental disorders [4-6]. Other
studies have shown statistically significant associations
between common CNVs (i.e. CNV with high prevalence
in the general population) and common diseases such as

*Correspondence: jrgonzalez@creal.cat

1 Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
Institut Municipal d'Investigacié Médica (IMIM), Barcelona, Spain

Full list of author information is available at the end of the article

( ) BiolMed Central

psoriasis [7], Crohn’s disease [8], HIV-1/AIDS [9], or Alze-
heimer’s disease [10] to name a few. These studies indicate
that the identification of DNA copy number is impor-
tant in understanding the genesis and progression of
human diseases.

Several techniques and platforms have been developed
for GWAS involving CNVs, such as array-based compara-
tive genomic hybridization (aCGH). For targeted studies,
other techniques such as real time PCR, or Multiplex
Ligation-dependent Probe Amplification (MLPA) assays
have been used to compare the copy number status of par-
ticular loci in cases and controls. In both cases, a signal
intensity is measured for each CNV as a continuous vari-
able, from which the copy number status is inferred. In
many cases, the distribution of the observed CNV probe
measurements is continuous and multimodal, represent-
ing the unobserved copy number status as a latent variable
[11]. Thus, scoring copy number may lead to misclassifica-
tion and, hence, unreliable results, making it necessary to
incorporate uncertainty in the association analysis. So far,
two methods have been developed to analyze CNV data
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that incorporate uncertainty. The first one performs the
calling procedure and incorporates the posterior probabil-
ities in a latent class model [11], while the other is based
on a likelihood test that combines calling and testing in a
single procedure [12].

Despite the existence of these methods, CNV associa-
tion studies often analyze CNVs with very low uncertainty
that are not likely genotyping artefacts. For example, in
the GWAS performed in the Myocardial Infarction Genet-
ics Consortium [13] the authors pointed out that: “[for
the CNV analysis] as an initial quality control step, [they]
removed any variant where more than 10% of the copy
calls were uncertain” [13]. Another example is given in
[14] were only CNVs without uncertainty are analyzed.
Such approach allows the use of standard tests such as x 2,
Fisher or Mann-Whitney tests [7-10] to assess differences
between cases and controls.

In this article, we present a Bayesian shared component
model for CNV-based association studies. We illustrate
the model with a case study to determine those CN'Vs that
are specific to a given population when comparing indi-
viduals belonging to the HapMap project. In this example
it is expected to find differences in a large proportion
of CNVs due to ethnic background. An example includ-
ing patients with ovarian cancer is analyzed in order to
illustrate how our model identifies phenotype-associated
CNVs when a tiny number of CN Vs are expected to be dif-
ferente accross groups. Our approach adapts and extends
the model suggested by [15] for genetic association stud-
ies based on SNPs to cope with CNVs too. We introduce
the Bayesian shared component model formulation, the
likelihood, priors and hyperpriors as well as the infer-
ential process. We empirically examine its performance
by using simulated data. We generated data under two
scenarios in order to mimic the type of CNVs that are
typically analyzed. The first simulation generates CNVs
which can be tagged by SNPs (also known as copy num-
ber polymorphisms, CNPs), while the second one mimics
situations in which complex CNVs are studied. The ana-
lyzed data sets and proposed methods are available in the
R package bayesGen http://www.creal.cat/jrgonzalez/
software.htm.

Methods

Data sets

The first motivating data were collected from a genetic
study conducted at the Center for Genomic Regulation
(CRG) in Barcelona, Spain. The study aimed to deter-
mine those CN'Vs that are specific to major human ethnic
groups included in the HapMap project (e.g., African,
Asian or European) [16] (http://hapmap.ncbi.nlm.nih.
gov/). This type of data can help in the understand-
ing of some Mendelian diseases such as cystic fibrosis
[17] or deafness [18], that present different prevalences
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in the different populations. In addition, the genomic
variants that are population-specific can guide to drug
discovery. For example, the existing population variabil-
ity in the acetylating activity of the N-acetyltransferase
2 (NAT2) gene makes possible to determine those eth-
nic groups that are more susceptible to develop some
diseases [19].

The second motivating data belongs to an study on
ovarian cancer. The data are obtained from The Cancer
Genome Atlas (TCGA) data portal http://cancergenome.
nih.gov/ and it includes phenotype and CNV information
for 572 females. We are interested in determining those
CNVs that are specific to each type of response to treat-
ment. In order to address this problem, we analyzed the
variable named ‘primary therapy outcome success’ that
contains information about the response for the first
therapy received. Our final data set contains informa-
tion for 456 females, since 116 of them did not have
information for this variable. This variable had 4 cat-
egories: 'Complete remission, 'Partial remission, ’Stable
disease’ and 'Progressive disease’ Categories 'Stable dis-
ease’ and 'Progressive disease’ were collapsed into one
categorie ('Null response’). The copy number data matrix
contains the number of copies for each CNV anno-
tated at the Database of Genomic Variants using the
genome build GRCh37 (http://projects.tcag.ca/variation/
downloads/variation.hg19.v10.nov.2010.txt).

As previously mentioned, a very simple approach to
determine the CNVs that are specific to each subgroup
of individuals is to compare the observed CNV frequen-
cies between individuals from different groups [7,16]. One
of the main limitations of this approach is that the num-
ber of copies may vary between 0 and 6 and therefore x2,
Fisher or Mann-Whitney tests can be underpowered. In
addition, most of the analyzed CN'Vs have similar frequen-
cies accross ethnic groups, and only a few, if any, show
differences between them. Therefore, the use of a shared
component model can be very useful in the context of
CNVs.

The Bayesian Model

Let {X;j € D} be the number of copies of the jth CNV,
for the ith individual of population p, where D denotes the
set of indices for the observed data, i = 1,...,n (num-
ber of individuals), j = 1,...,c (number of CNVs) and
p =1,..., P (number of populations). We assume that all
individuals in the same population group have the same
chance of having a number of copies in a given CNV, then
we observe X, € {0,1,2,3,4,...}. The motivation for this
assumption relies on the fact that we are looking for asso-
ciations between CNVs and populations. If a given CNV is
linked to a specific population, it is expected that most of
the individuals in that population have similar values for
that CNV.


http://www.creal.cat/jrgonzalez/software.htm
http://www.creal.cat/jrgonzalez/software.htm
http://hapmap.ncbi.nlm.nih.gov/
http://hapmap.ncbi.nlm.nih.gov/
http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
http://projects.tcag.ca/variation/downloads/variation.hg19.v10.nov.2010.txt
http://projects.tcag.ca/variation/downloads/variation.hg19.v10.nov.2010.txt

Gonzalez et al. BMC Bioinformatics 2012, 13:130
http://www.biomedcentral.com/1471-2105/13/130

Now, let Vj, = Z:’f L )}i’:’P be the average number of
copies found in the jth CNV of the pth population, where
njq denotes the number of individuals in population p with
non-missing information for the jth CNV. Then, by the
central limit theorem [20], and assuming independence

among individuals we have
Yip N (1jps vy)» (1)

where 11, is the mean number of copies for CNV j in pop-
ulation p and 1)[2, is the variation of the average of CNV
frequencies in population p.

We introduce the next shared component formulation
with Gaussian likelihood to decompose the variability

of wjp
Wip = Ap + Bp - 6 + Ajp, (2)

where a,, is a population-specific intercept, 6; is the com-
ponent shared by all populations, 8, denotes the loading
of the common component into population p and A,
encodes the population-specific components. In order to
make the model as flexible as possible we have considered
that 1)[2, depends on the population group p. However, a
simpler model can also be fitted by considering that Yj,
has the same variance for each population group, v2. The
likelihood of our proposed model is

Uewps Bps O Ajp vp) H H qu exp (szz(}/lv —ap = Byl — )‘/‘17)2)
roj

= 1—[ v;] exp (sz Z(Y/P —ap — Bt — )»,'p)z)
r j

Figure 1 depicts a schematic representation of our
model. Notice that this formulation considers that no
reference group is available (i.e control group). The for-
mulation can be changed to accomodate the possibility of
having a control group. For example, in the context of a
case-control study where different diseases and only one
group of control individuals is available. This is the case of
the Wellcome Trust Case Control Consortium (WTCCC)
study where 7 common diseases are compared with a
unique group of controls [21] and thousands of CNVs
were analyzed.
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In the Bayesian framework, all parameters must be
assigned prior distributions that, in turn, may depend
on new parameters, which are referred to as hyperpa-
rameters. Prior distributions (hyperpriors) must also be
assigned to these. To complete the Bayesian formula-
tion, the prior and hyperprior distributions for the model
parameters are needed. Our basic principle in specifying
these distributions is to let the data likelihood dominate
over the prior information. To achieve this, it is common
to consider prior distributions with large variances that
allow for a really wide range of potential values for the
parameters thus being non-informative a priori. Follow-
ing this we chose flat prior distributions. We also refer to
previous similar studies that specify prior distributions in
this way. We assumed the following priors

Normal(0, 1000)
Normal (0, 092)
Np ~ ta(0,07)

Normal(0, 100)

and non-informative hyperpriors for the standard devia-
tions of the random effects

04,0 ~ Normal(0, 100) - I(0,+o0)

For the sake of identifiability we fixed 07 = 1. These pri-
ors and hyperpriors are commonly used for full Bayesian
statistical inference when information about the model
parameters is not available. However, in order to account
for large values, the specific components, 1;,, were con-
sidered as zero-mean ¢-distributions with 4 degrees of
freedom and unknown variances. The priors and hyper-
priors for the asymmetric formulation (e.g. having a con-
trol group and different diseases) are mainly the same,
except that we consider 8; = 1, where §; corresponds to
the reference population.

Inclusion of covariates
In almost all situations the disease is affected not only by
genetic factors but also by environmental determinants. In

Shared (6;)

7

\

Population 1 (1)

Population 2 (y;,)

Population p (st;,)

l

l

IPcrpulzlticm 1 specific (,\_,l]|

Population 2 specific [,\,_)}| |Pc:p11]:1tin11 p specific (A, )

denotes the j-th CNV and p is the number of groups.

Figure 1 Schematic representations of the shared component model using a symmetric formulation (i.e., no reference group). The index j
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these situations the association between the disease and
CNVs has to be adjusted by some covariates that indi-
cate whether an individual is exposed or not to those
environmental variables. Our model can accomodate this
information in the case of having categorical covariates
(e.g., exposed vs non-exposed, males vs females, smok-
ers vs non-smokers, ...) by aggregating the data in more
categories. For instance, suppose we have a categorical
covariate Z taking values in a set of K categories. Then, we
will have P x K groups and we aggregate the CNV counts
over all of them: Yy, = > Xjjx,. The adjustment for Z
could be introduced in the model as follows:

Yjkp ~ Normal (i, o)

Wikp = 0p + Vi + Bpbj + Ajp + §jik-

Prior distributions should also be assigned to the addi-
tional parameters yx and &j. These could be analogous to
the priors for o, and A,

Notice that if we are interested in adjusting by contin-
uous covariates we should create some categories before
including them into the model. One possibility is to cre-
ate some categories using tertiles or quartiles (e.g. when
measuring the exposure to the compsumtion to any nutri-
ent) or use a priori cut-points (e.g. age can be categorized
depending on the risk groups). A special case when an
adjustment for continuous covariates is required appears
in genetic studies when the population structure has to be
considered. In these cases, principal component analysis
(PCA) is used to determine subpopulation the structure
[22]. Then association analysis between genetic mark-
ers and the disease is performed using logistic regression
adjusted for the two principal components instead of
using a chi-square test. In this case, after performing PCA
and using any clustering method, individuals are classi-
fied into subpopulations. These subpopulations can be
included in the model as previouly mentioned.

Estimation of model parameters

The JAGS software (available at http://mcmc-jags.source
forge.net/) was used to carry out MCMC posterior sam-
pling using the R package rjags [23]. We ran the sampler
for 40,000 iterations and considered estimates based on
the last 30,000 runs, allowing a burn-in of 10,000 iter-
ations. Two chains were run for each of the models.
Convergence was assessed from trace plots. We also used
the “potential scale reduction factor” diagnostic proposed
by Gelman and Rubin [24].

MCMC is computationally intensive, even more in the
case of analyzing genetic data where normally thousands
of genes are analyzed. To overcome this difficulty we
also used the Integrated Nested Laplace Approximation
(INLA) approach to make statistical inference of our
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model. INLA provides a fast (it gives answers in min-
utes when MCMC requires hours and days) deterministic
alternative to MCMC [25]. The only difference between
both approaches is that the model based on INLA replaces
the t distributions with Normals. This, in principle, could
shrink CNV-disease risk associations more than the orig-
inal model, but it runs much faster and it can be applied
to GWAS. In any case, the t distribution can easily be
incorporated when available for INLA (http://www.r-inla.
org/). We have developed an R package called bayesGen
that incorporates both estimating processess as well as
some tools for displaying model parameters and evaluat-
ing model convergence. The package is available at http://
www.creal.cat/jrgonzalez/software.htm.

Results

Genomic differences between human populations
Armengol et al. [16] showed some CNV loci that are
present with different frequencies accross individuals
belonging to three human populations (YRI-Yoruba in
Ibadan, Nigeria, CEU-Utah residents with ancestry from
Northern and Western Europe; and CHB/JPT-Han Chi-
nese in Beijing, China and Japanese in Tokyo, Japan),
representatives of sub-Saharan Africa, Europe and East
Asia, respectively. The authors, in a preliminary step, used
aCGH and BAC-based platforms to identify CNV loci
with different frequencies in the three populations using
pools of individuals. This yielded a total of 111 loci whose
copy number state frequencies differed among popula-
tions. In order to confirm the changes detected with the
aCGH platforms, they performed validation experiments
using MLPA on individual DNAs from the HapMap sam-
ples. In total they analyzed 152 CNV loci (genes). Overall,
they found 33 CNV loci that were specific to any of the
three populations after applying standard statistical tests
(x2 or Fisher tests).

The final data set we use for illustration purposes con-
sists of 120 CNV loci (we removed 32 CNV loci that
were not variable among populations) and 261 individ-
uals (56 CEU, 58 YRI and 147 CHB/JPT) belonging to
the MLPA experiment. Therefore, our data consists of a
261 x 120-dimensional matrix with values corresponding
to the observed copy number status X;;, € {0,1,2,3,4}.
After aggregating the counts of each number of copies
over the individuals in each population for each CNV
loci we fit the model 2 to the aggregated data Yj, where
j = 1,...,120 and p € {CEU,YRI, CHB/JPT}. Using
the bayesCNVassoc function in the bayesGen R
package we ran two chains of 200,000 iterations. We
discarded the first 20,000 and kept every 50 to reduce
the autocorrelation in the chains. Inference is therefore
based on (thinned) samples of size 4,000. We assessed
convergence using graphical techniques and the Gelman-
Rubin method and no symptoms of non-convergence
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Table 1 Posterior median and 95% credibility intervals for
population-specific intercepts corresponding to HapMap
example

Group Parameter median (95%Cl)
CEU o 1.95(1.90,2.02)
YRI ['% 1.99 (1.94,2.04)
CHB/JPT o3 1.97(1.93,2.03)

were detected. To keep the false discovery rate under
control when evaluating whether a specific component
was statistically significant or not, we computed credi-
ble intervals at 99.98% level (in the frequentist frame-
work this would be equivalent to a Bonferroni correction
0.05/120 ~ 0.0002) for A;,’s.

Table 1 shows the estimates for the population-specific
intercepts o), for the shared component model assum-
ing a symmetric formulation. The specific intercept for
all three populations, a,, is around 2 as expected. The
shared component, §’s, are all 0. This is indicating that
populations are sharing CNV loci frequencies. Regarding
the specific component for each population we found that
only 31 CNV loci were population-specific (Figure 2). By
looking at the estimates of v, we observe that vcpy =
0.0756, while vcus/jpr = 0.0306 and vyr; = 0.0362. This
indicates that there is more variability among european
individuals, which decreases the power of finding any spe-
cific CNV locus for european population. Trace plots and
Gelman-Rubin scale reduction factor indicate good con-
vergence of MCMC parameter estimates (see Additional
file 1: Figures S1-S4 and Additional file 1: Table S1).

Armengol et al. [16] found 33 population-specific CNV
loci after using x 2 or Fisher tests. In order to compare the
performance of both approaches we tested the existence
of population stratification (i.e. genetic differences among
individuals) using a principal component analysis (PCA)
as suggested in [22]. Armengol et al. estimated that 30%
of the total variance is explained by the two first principal
components (PC1 16.6%, and PC2 13.4%) using 33 CNV
loci. In our case, with only 31 CNV loci, the two first prin-
cipal components explain a 38.3% of the total variability
(PC1 22.1%, and PC2 16.2%) indicating that our subset of
variants discriminates better the individuals.

Specific CNV loci associated with response to treatment in
ovarian cancer

This data set contains 8587 CNV loci and 456 individ-
uals. The number of observed copies ranged from 0 to
6. This example was analyzed using INLA configuration
of bayesGen package. As in the previous example, false
discovery rate was controlled by computing credible inter-
vals at a 99.9994% level (Bonferroni correction). Table 2
shows the estimates for the group-specific intercepts o,

Page 50f 10

for the shared component model under a symmetric for-
mulation (e.g. no control group). Again, as expected, these
intercepts are around 2. Regarding the specific compo-
nents, we observe that only 57 CNV loci are statistically
significant. As previouly mentioned, we were expecting
a little number of CNV loci that are specific for each
group, since analyzed individuals belong to the same eth-
nicity. HapMap data showed about 20% of CNV loci to
be specific of each subgroup (33 out of 152 detected in
[16]) while in this example only about 1% of CNV loci
(57 out of 8587) are significantly associated with any of
the three types of response to treatment. The complete
list of specific CNV loci for each group can be found in
Additional file 1: Table S2. Figure 3 shows 1;, estimates.
This figure illustrates those CNVs that are specific to get
each response after treatment.

Simulation Studies

In real datasets we can only illustrate the methods, the
truth about which CNV loci are really associated with
each group is unknown. In order to evaluate our proposed
method we carried out a small-scaled simulation study
that mimics the real data analysis presented in previous
section. We considered three different groups and 500 and
2,000 CNV loci. Only two of the CNVs were in a differ-
ent proportion for one population (i.e. these two CNV loci
were specific for such group of individuals). We simulated
3 different scenarios for the trully associated CNV loci.
The first one considers that the two CNV loci are highly
associated with one of the populations (OR=2.0), the sec-
ond one considers a moderate increase on risk (OR=1.5),
while the third one is designed to study the performance of
our proposed method in a low risk scenario (OR=1.2). The
simulation emulates a likely association between thou-
sands of genes and disease. In genetic studies only a few of
the analyzed genes are trully associated with the pheno-
type of interest. For instance, the WTCCC analyzed 3,432
CNV loci among different diseases and only found 3 loci
associated with disease [21].

The copy number status for the loci were simulated con-
sidering two types of CNV data. The first one assumes that
CNVs were common, meaning that they can be tagged by
SNPs ( i.e. analysis of CNPs). In this scenario the copy
number status can only be {0, 1, 2}. This kind of data has
been obtained by several authors when analyzing CNVs
[7,26,27]. This particular scenario could also be modelled
assuming that a common CNV locus follows a Binomial
distribution and, hence, the model proposed in [15] could
also be used. The main advantage of using our formu-
lation is that it can also be applied when CNV loci are
not in HWE since the only assumption made is that the
mean of the observed number of copies follows a gaus-
sian distribution. This holds in general due to the central
limit theorem as we are summing the number of copies



Gonzalez et al. BMC Bioinformatics 2012, 13:130
http://www.biomedcentral.com/1471-2105/13/130

Page 6 of 10

249 CEU
249 CHB
29 YRI l

s
|

population are coloured in red (gains) and blue (losses).

’ CNVs

Figure 2 Estimates of specific components, A, for each CNV and each human populations belonging to HapMap data example. Each
point represents the posterior medians, while segments show its 99.98% credibility intervals. CNVs that are statistically significant specific of each
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for each group of individuals. The second scenario consid-
ers polymorphic CNV loci taking values {0, 1, 2, 3,4, 5, 6}.
This scenario tries to mimic situations in which complex
CNVs are analyzed. In both cases we simulated CNV loci
assuming Hardy-Weinberg equilibrium. The allelic fre-
quencies were randomly selected from 1/(0.01, 0.1) trying
to reflect the fact that most CNVs are rare CNVs. In addi-
tion, in order to assess the performance when analyzing
CNPs as in [7], we also performed the same simulations
assuming that allelic frequencies between 0.05 and 0.5.
We compared the results obtained from our proposed
Bayesian shared component model with those obtained
witha x 2 test, a non-parametric Kruskall-Wallis test and a
multinomial logistic regression comparing the null model
versus the model including the CNV using the likeli-
hood ratio test. Bonferroni correction was used in order
to deal with multiple comparisons. We also computed
corrected credible intervals for the specific components.
Given that the Bonferroni-like correction requires estima-
tion of extreme percentiles for the posterior distribution,

which are difficult to be obtained from MCMC samples,
we computed a credible interval based on the normal
approximation. Finally, we considered the posterior prob-
ability as an alternative criterion to detect significant CNV
loci. We compared the different approaches by comput-
ing the true positive and negative rates (TPR and TNR,
respectively) in 500 simulations.

Table 3 shows the TPR and FPR for the different meth-
ods in the case of analyzing common CNVs with allelic
frequencies between 0.01 and 0.1. Across all scenarios, as

Table 2 Posterior median and 95% credibility intervals for
population-specific intercepts corresponding to ovarian
cancer example

Group Parameter median (95%Cl)
Complete response o 2.00(1.98,2.03)
Partial response o) 1.99(1.97,2.01)
Null response o3 1.99(1.97,2.01)
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Figure 3 Estimates of specific components, 1;,, for each CNV and each group of individuals depending on response to treatments
belonging to ovarian cancer example. Each point represents the posterior medians, while segments show its 99.9994% credibility intervals. CNVs
that are statistically significant specific of each population are coloured in green (gains) and red (losses).

expected, the TPR decreases when the ORs for the sig-
nificant CNV loci decrease. The TPR are almost 100% in
all cases since only two of the CNV loci (500 or 2,000)
were simulated with a signal different from 0. We observed
that the Bayesian shared component model outperforms
the other methods in the case of having low and moder-
ate risk effects. This finding is important since common
CNVs can be tagged by SNPs and their risks are expected
to be about 1.15-1.45. For example, in the context of CN'Vs
that can be tagged by SNPs, de Cid et al. [7] found that
the risk of having one copy of the LCE gene increased by
41% the chance of having psoriasis. We finally noticed that
non-parametric tests are not able to detect the two sig-
nificant CNV loci in any situation, suggesting that such
methods are not a good choice for the analysis of CNV
data with a very small number of significant signals. On
the other hand, Table 4 shows the TPR and FPR in the
case of analyzing complex/polymorphic CNVs. Overall,
the results are the same as those obtained for the case
of analyzing common SNPs, showing even more differ-
ences between Bayesian model and the other methods.
This can be explained by the fact that by simulating CNV
loci with number of copies between 0 and 6, the number

of individuals in each category is reduced. In this situation,
the power of using methods based on the observed num-
ber of individuals in each category decreases. Additional
file 1: Tables S3 and S4 show the results for the same sim-
ulations when allelic frequencies were simulated ranging
from 0.05 and 0.5. The conclusions are the same and, as
expected, the only difference is that the TPR and the TNR
increase because allelic frequencies are higher.

Regarding to computation time, we compared the
required time to fit a model with 2,000 CNV loci and 3,000
individuals (1,000 for each of the 3 populations) and chi-
square approach took 7sec, Kruskal-Wallis 28sec, multi-
nomial logistic regression 7min 40sec, Bayesian model
using INLA 1min 39sec and Bayesian model using MCMC
1h 10m. All computations were done in a workstation
Dual Intel Xeon X5482 3,2GHz 2x6 Mb, Quad-Core with
32Gb RAM.

Conclusions

Here we considered the problem of determining copy
number variants that are specific to different subgroups
of individuals or different subphenotypes when thousand
of markers are analyzed and only a few of them are truly
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Table 3 Results for the simulation study for the case of having common CNVs

# SNPs
high risk scenario (OR=2.0)

TPR 2000
TNR 2000
TPR 500
TNR 500

moderate risk scenario (OR=

TPR 2000
TNR 2000
TPR 500
TNR 500

low risk scenario (OR=1.2)

TPR 2000
TNR 2000
TPR 500
TNR 500

100.00
100.00
100.00
99.73

1.5)

60.25
99.95
69.25
99.81

0.75
99.99
1.50
99.99

K-w

100.00

100.00

100.00

100.00

100

0
100

Multinomial

regression

100.00
100.00
100.00
99.73

56.75
99.95
67.50
99.81

0.75

99.9

3.25
99.99

Posterior

Distribution

100.00
99.98
100.00
99.99

75.25
99.98
96.25
99.96

10.50
100.00
25.25
99.99

Bayesian Shared Model
Normal

Approximation

100.00
99.99
100.00
99.95

75.50
99.99
96.25
99.99

10.25
100.00
26.50
99.99
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Posterior

Probability

100.00
99.96
100.00
99.80

75.00
99.95
95.75
99.98

10.25
99.98
25.50
99.98

Results for the simulation described in Simulation Studies Section for the case of having common CNVs with major allele frequency simulated from U(0.01, 0.1). The
different scenarios are described in that section. We compare four different approaches: x? test, Kruskall-Wallis (K-W), Multinomial regression using likelihood ratio
test, and our proposed Bayesian model. The comparison was based on computing the True Positive and Negative Rates, TPR and TNR respectively. Results are

expressed in %.

Table 4 Results for the simulation study for the case of having polymorphic CNVs

# SNPs

X

moderate risk scenario (OR=2.0)

TPR 2000
TNR 2000
TPR 500
TNR 500

moderate risk scenario (OR=

TPR 2000
TNR 2000
TPR 500
TNR 500

low risk scenario (OR=1.2)

TPR 2000
TNR 2000
TPR 500
TNR 500

48.50
100.00
46.25
100.00

1.5)

30.25
100.00
20.50
99.99

0.70
99.98
0.50
99.99

100

Multinomial

regression

52.25
100.00
42.50
100.00

3545
100.00
23.25
99.99

0.70
99.99
0.50
99.99

Posterior

Distribution

75.25
100.00
64.50
100.00

58.50
99.98
4425
99.96

20.25
99.97
16.25
99.99

Bayesian Shared Model

Normal

Approximation

74.25
100.00
64.75
100.00

58.50
99.99
44.25
99.96

20.25
99.99
16.25
99.99

Posterior

Probability

75.50
100.00
64.25
100.00

57.75
99.97
44.50
99.94

20.75
99.98
15.75
99.98

Results for the simulation described in Simulation Studies Section for the case of having polymorphic CNVs with major allele frequency simulated from U(0.01, 0.1).
The different scenarios are described in that section. We compare four different approaches: 2 test, Kruskall-Wallis (K-W), Multinomial regression using likelihood
ratio test, and our proposed Bayesian model. The comparison was based on computing the True Positive and Negative Rates, TPR and TNR respectively. Results are

expressed in %.
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associated with a given group. We have demonstrated the
utility of our model by analyzing two real datasets. One
focuses on describing how to find specific CNV loci for
the three major ethnic groups, while the second example
illustrates how to detect specific CNV loci related to the
response to treatment in patients diagnosed with ovarian
cancer. We have implemented a Bayesian shared compo-
nent model to decompose the observed variability in the
number of copies of each CNV loci into two components:
shared and specific. Simulation results showed a better
performance than other existing methods.

We established the CNV loci that are specific to each
group by computing credible intervals of the posterior
mean of the specific components and their posterior
probabilities. In order to avoid false positive results, we
adopted a Bonferroni-like correction. Therefore, credible
intervals require estimation of extreme percentiles. This
may lead to some difficulties when using MCMC sam-
ples. Thus, we also calculated credible intervals based on
normal approximation. Simulation studies showed that
this method slightly outperforms the method based on
percentiles.

The model has been formulated using a hierarchical
structure. Therefore, it is straightforward to add further
levels of hierarchy if needed. For instance, CNVs can be
in the same pathway or may have the same function.
Thus, this information can be incorporated in the model
in order to estimate better the effect of each CNV locus, as
described in [28]. This new structure could be easily incor-
porated into our model by introducing a new hierarchy on
top of the CNV loci. There are several ways this could be
done. One could be as follows: imagine that a CNV j is
involved in pathway g. Then, we could simply replace the
prior distribution

2
Aip ~ ta (0,02)

by

2
Ajp ~ 4 <wgp,6p>

and then assign hyperpriors to the parameters wg, that
would pick up the variation at the pathway level. With
this formulation, large values of wg, would indicate an
association between pathway g and population p.

Our model considers that the number of copies for each
CNV locus is measured without uncertainty, as consid-
ered by some authors [13,14]. In principle this could be
a limitation, but this is a problem related to the technol-
ogy used to obtain information about CNVs and calling
algorithms. Notice that some of the CNV studies obtain
information about CNVs using SNP array data [13,14]
that are not designed to detect such type of markers.
Nonetheless, several authors have pointed out that this
will not be a problem with the use of Next Generation
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Sequencing (NGS) methods [29-31]. This technology is
already capable of detecting CNVs by taking advantage
of read mapping and having a very low false positive rate
[30]. In addition, as NGS continues to improve as well as
computational methods of CNV calling, the uncertainty
surronding CNV calls will fall rapidly, making our method
to be valid.

We conclude that our proposed model is useful to dis-
cover specific genetic variants for different subgroups of
individuals. This could help in determining differences
in disease predisposition or response to pharmaceuti-
cal treatments. Estimating model parameters can be very
time consuming, however we have developed an R pack-
age (bayesGen) that not only includes MCMC methods
but also a fast estimation of the posterior distribution
based on INLA that provides estimates for a whole chro-
mosome in a few minutes.
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